
The pi-calculus
Origin and recent developments

1

Robin Milner
Photo from
Jan. 1986

Joachim Parrow
Uppsala University

2

Blackboard in Robin’s office, April 1987

ax.P
ax→ P a(y).Q

a(y)→ Q

ax.P | a(y).Q τ→ P | Q{x/y}

2

Blackboard in Robin’s office, April 1987

VALUE PASSING

ax.P
ax→ P a(y).Q

a(y)→ Q

ax.P | a(y).Q τ→ P | Q{x/y}

2

Blackboard in Robin’s office, April 1987

ax.P
ax→ P a(y).Q

a(y)→ Q

ax.P | a(y).Q τ→ P | Q{x/y}

(ax.P)\x a(x)→ P

2

Blackboard in Robin’s office, April 1987

ax.P
ax→ P a(y).Q

a(y)→ Q

ax.P | a(y).Q τ→ P | Q{x/y}

(ax.P)\x a(x)→ P

2

Blackboard in Robin’s office, April 1987

ax.P
ax→ P a(y).Q

a(y)→ Q

ax.P | a(y).Q τ→ P | Q{x/y}

(ax.P)\x a(x)→ P

(ax.P)\x | a(y).Q τ→ (P | Q{x/y})\x

2

Blackboard in Robin’s office, April 1987

SCOPE EXTRUSION!

ax.P
ax→ P a(y).Q

a(y)→ Q

ax.P | a(y).Q τ→ P | Q{x/y}

(ax.P)\x a(x)→ P

(ax.P)\x | a(y).Q τ→ (P | Q{x/y})\x

3

The very first written note
by Robin on what was to
become the pi-calculus.

What do you think Robin did
in the very first sentence?

1) Explained the main idea
x) Explained the motivation
2) Gave most of the credit to
 someone else

4

4

”This is an attempt to simplify the presentation of the
ideas of Nielsen and Folkjaar [sic], who made the technical
breakthrough in showing that CCS can be extended to
label-passing without losing any of the algebraic laws”

5

The first pi-calculus
semantics (May ’87)!

5

The first pi-calculus
semantics (May ’87)!

No
input / output

5

The first pi-calculus
semantics (May ’87)!

No
input / output

A Surprise

Up to now we have included the two kinds
of variable binding, x(y).P and P\y. Can we
do with just one kind? If so, the calculus gets
cleaner and more “canonical”. Well, we can!

Prop If x �= y, then x(y).P ∼ (xy.P)\y

5

The first pi-calculus
semantics (May ’87)!

Final words of first note

No
input / output

A Surprise

Up to now we have included the two kinds
of variable binding, x(y).P and P\y. Can we
do with just one kind? If so, the calculus gets
cleaner and more “canonical”. Well, we can!

Prop If x �= y, then x(y).P ∼ (xy.P)\y

6

”We should accumulate examples of the use of equational
laws which ‘ought’ to be true. The examples could be
realistic, capturing some aspect of a useful application, or
they could be purely illustrative of a law - but it would be
nice if they could be as realistic as possible.”

Beginning of Robin’s second note (June ’87):

Turned out to have:

- Wrong basic constructors
- Wrong definition of bisimulation
- No sensible algebraic laws

Turned out to have:

- Wrong basic constructors
- Wrong definition of bisimulation
- No sensible algebraic laws

Revision

Turned out to have:

- Wrong basic constructors
- Wrong definition of bisimulation
- No sensible algebraic laws

Revision

Establish
properties

Turned out to have:

- Wrong basic constructors
- Wrong definition of bisimulation
- No sensible algebraic laws

Revision

Establish
properties

8

Time passes
Proof archive grows

8

Time passes
Proof archive grows

9

From the pi-calculus

proof archive (1987):

first ever proof of

scope extension law

10

Date:	 12	 Apr	 89	 15:13:18	 BST
From:	 RM@ED.ECSVAX	 (Robin	 Milner)
Subject:	 How	 about	 this	 for	 a	 title	 and	 abstract?
To:	 jgp@ed.LFCS	 (N%"jgp@lfcs")
Message-‐Id:	 <"12-‐APR-‐1989	 15:13:18">
Status:	 RO

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Mobile	 processes	 (or	 the	 pi-‐calculus)
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐
Robin	 Milner,	 Joachim	 Parrow,	 David	 Walker

Process	 calculi	 such	 as	 TCSP,	 ACP,	 CCS	 have	 not,	 on	 the	 whole,	 allowed	 for	
shifting	 contiguity	 among	 agents	 (though	 they	 allow	 them	 to	 bifurcate	 and	 to	
die).	 	 The	 purpose	 of	 this	 talk	 is	 to	 present	 a	 very	 basic	 calculus
in	 which	 shifting	 contiguity,	 modelled	 by	 the	 use	 of	 names	 to	 communicate

Two years later, this is called the ”pi-calculus”

11

I	 thought	 "process",	 or	 "pointer",	 or	 "parallel",	 but	 I	 also	 thought	 it
a	 usable	 name	 -‐-‐	 if	 not	 too	 arrogant,	 and	 signifying	 that	 it	 aspires
to	 primitivity	 like	 the	 lambda-‐calculus.	 	 You	 could	 also	 think	 of	 it
as	 a	 near	 successor	 to	 the	 lambda	 calculus.	 	 Consider:
	 	 	 	 	 	 	 	 	 	 	 	 	 mu-‐calculus	 ...	 this	 signi`icantly	 exists
	 	 	 	 	 	 	 	 	 	 	 	 	 nu-‐calculus	 ...	 I	 thought	 we	 might	 have	 used	 this	 name,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (nu	 standing	 for	 "name"),	 but	 mu	 and	 nu
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 sound	 so	 alike.
	 	 	 	 	 	 	 	 	 	 	 	 	 omicron	 calculus	 ...	 who	 would	 want	 that?
which	 leads	 to
	 	 	 	 	 	 	 	 	 	 	 	 	 PI-‐CALCULUS
...	 I	 put	 it	 in	 parentheses	 to	 try	 it	 out	 ..

Robin’s reply to my question ”why pi”?

11

I	 thought	 "process",	 or	 "pointer",	 or	 "parallel",	 but	 I	 also	 thought	 it
a	 usable	 name	 -‐-‐	 if	 not	 too	 arrogant,	 and	 signifying	 that	 it	 aspires
to	 primitivity	 like	 the	 lambda-‐calculus.	 	 You	 could	 also	 think	 of	 it
as	 a	 near	 successor	 to	 the	 lambda	 calculus.	 	 Consider:
	 	 	 	 	 	 	 	 	 	 	 	 	 mu-‐calculus	 ...	 this	 signi`icantly	 exists
	 	 	 	 	 	 	 	 	 	 	 	 	 nu-‐calculus	 ...	 I	 thought	 we	 might	 have	 used	 this	 name,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (nu	 standing	 for	 "name"),	 but	 mu	 and	 nu
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 sound	 so	 alike.
	 	 	 	 	 	 	 	 	 	 	 	 	 omicron	 calculus	 ...	 who	 would	 want	 that?
which	 leads	 to
	 	 	 	 	 	 	 	 	 	 	 	 	 PI-‐CALCULUS
...	 I	 put	 it	 in	 parentheses	 to	 try	 it	 out	 ..

Robin’s reply to my question ”why pi”?

11

I	 thought	 "process",	 or	 "pointer",	 or	 "parallel",	 but	 I	 also	 thought	 it
a	 usable	 name	 -‐-‐	 if	 not	 too	 arrogant,	 and	 signifying	 that	 it	 aspires
to	 primitivity	 like	 the	 lambda-‐calculus.	 	 You	 could	 also	 think	 of	 it
as	 a	 near	 successor	 to	 the	 lambda	 calculus.	 	 Consider:
	 	 	 	 	 	 	 	 	 	 	 	 	 mu-‐calculus	 ...	 this	 signi`icantly	 exists
	 	 	 	 	 	 	 	 	 	 	 	 	 nu-‐calculus	 ...	 I	 thought	 we	 might	 have	 used	 this	 name,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (nu	 standing	 for	 "name"),	 but	 mu	 and	 nu
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 sound	 so	 alike.
	 	 	 	 	 	 	 	 	 	 	 	 	 omicron	 calculus	 ...	 who	 would	 want	 that?
which	 leads	 to
	 	 	 	 	 	 	 	 	 	 	 	 	 PI-‐CALCULUS
...	 I	 put	 it	 in	 parentheses	 to	 try	 it	 out	 ..

Robin’s reply to my question ”why pi”?

11

I	 thought	 "process",	 or	 "pointer",	 or	 "parallel",	 but	 I	 also	 thought	 it
a	 usable	 name	 -‐-‐	 if	 not	 too	 arrogant,	 and	 signifying	 that	 it	 aspires
to	 primitivity	 like	 the	 lambda-‐calculus.	 	 You	 could	 also	 think	 of	 it
as	 a	 near	 successor	 to	 the	 lambda	 calculus.	 	 Consider:
	 	 	 	 	 	 	 	 	 	 	 	 	 mu-‐calculus	 ...	 this	 signi`icantly	 exists
	 	 	 	 	 	 	 	 	 	 	 	 	 nu-‐calculus	 ...	 I	 thought	 we	 might	 have	 used	 this	 name,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (nu	 standing	 for	 "name"),	 but	 mu	 and	 nu
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 sound	 so	 alike.
	 	 	 	 	 	 	 	 	 	 	 	 	 omicron	 calculus	 ...	 who	 would	 want	 that?
which	 leads	 to
	 	 	 	 	 	 	 	 	 	 	 	 	 PI-‐CALCULUS
...	 I	 put	 it	 in	 parentheses	 to	 try	 it	 out	 ..

Robin’s reply to my question ”why pi”?

11

I	 thought	 "process",	 or	 "pointer",	 or	 "parallel",	 but	 I	 also	 thought	 it
a	 usable	 name	 -‐-‐	 if	 not	 too	 arrogant,	 and	 signifying	 that	 it	 aspires
to	 primitivity	 like	 the	 lambda-‐calculus.	 	 You	 could	 also	 think	 of	 it
as	 a	 near	 successor	 to	 the	 lambda	 calculus.	 	 Consider:
	 	 	 	 	 	 	 	 	 	 	 	 	 mu-‐calculus	 ...	 this	 signi`icantly	 exists
	 	 	 	 	 	 	 	 	 	 	 	 	 nu-‐calculus	 ...	 I	 thought	 we	 might	 have	 used	 this	 name,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (nu	 standing	 for	 "name"),	 but	 mu	 and	 nu
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 sound	 so	 alike.
	 	 	 	 	 	 	 	 	 	 	 	 	 omicron	 calculus	 ...	 who	 would	 want	 that?
which	 leads	 to
	 	 	 	 	 	 	 	 	 	 	 	 	 PI-‐CALCULUS
...	 I	 put	 it	 in	 parentheses	 to	 try	 it	 out	 ..

Robin’s reply to my question ”why pi”?

So this is all settled?
Technically, yes, around 20 years ago
+ Explains fundamental principles well

So this is all settled?
Technically, yes, around 20 years ago
+ Explains fundamental principles well
- Really not usable in application projects

We need applied rather
than minimal models!

Applied calculi

Encodings: more constructs are derived from

the few primitve ones.

Applied calculi

Encodings: more constructs are derived from

the few primitve ones.
+ Can inherit much theory

Applied calculi

Encodings: more constructs are derived from

the few primitve ones.
+ Can inherit much theory

- Encodings can be opaque

Applied calculi

Encodings: more constructs are derived from

the few primitve ones.
+ Can inherit much theory

- Encodings can be opaque

Applied calculi

Enrichments: new constructs are added.

Encodings: more constructs are derived from

the few primitve ones.
+ Can inherit much theory

- Encodings can be opaque

Applied calculi

Enrichments: new constructs are added.

+ More intuitive definitions

Encodings: more constructs are derived from

the few primitve ones.
+ Can inherit much theory

- Encodings can be opaque

Applied calculi

Enrichments: new constructs are added.

+ More intuitive definitions

- Theory needs to be redone

A plethora of calculi

A plethora of calculi

All-purpose calculus?

Just one problem:

All-purpose calculus?

Just one problem:

In real life there
is no such

A factory for calculi

17

Psi-calculi framework
	
 	
 	
 	
 	
 	
 	
 	
 (Bengtson, Johansson, Parrow, Victor 2008 -)

17

Psi-calculi framework
	
 	
 	
 	
 	
 	
 	
 	
 (Bengtson, Johansson, Parrow, Victor 2008 -)

Factory for applied calculi
A single parameterised framework
Straightforward and machine checked
Reusable theoretical effort

Psi-calculi

18

(νz)(az) | a(x). [x = b]P Ordinary pi-calculus

Psi-calculi

18

(νz)(az) | a(x). [x = b]P Ordinary pi-calculus

Data structures
can be sent

arbitrary
set of
data

(νz)(aM) | a(x). [x = b]P

Psi-calculi

18

(νz)(az) | a(x). [x = b]P

(νz)(aM) | a(λx̃)N. [x = b]P

Ordinary pi-calculus

Data structures
can be sent

Pattern matching

arbitrary
set of
data

(νz)(aM) | a(x). [x = b]P

Psi-calculi

18

(νz)(az) | a(x). [x = b]P

(νz)(aM) | a(λx̃)N. [x = b]P

(νz)(KM) | L(λx̃)N. [x = b]P

Ordinary pi-calculus

Data structures
can be sent

Pattern matching

Channels can be
arbitrary structures

arbitrary
set of
data

(νz)(aM) | a(x). [x = b]P

19

(νz)(aM) | a(λx̃)N. [x = b]P

(νz)(KM) | L(λx̃)N. [x = b]P

Data structures
can be sent

Pattern matching

Channels can be
arbitrary structures

arbitrary
set of
data

(νz)(aM) | a(x). [x = b]P

19

(νz)(aM) | a(λx̃)N. [x = b]P

(νz)(KM) | L(λx̃)N. [x = b]P

Data structures
can be sent

Pattern matching

Channels can be
arbitrary structures

Tests can be
arbitrary predicates(νz)(KM) | L(λx̃)N. if ϕ then P

arbitrary
set of
data

(νz)(aM) | a(x). [x = b]P

arbitrary
logic

19

(νz)(aM) | a(λx̃)N. [x = b]P

(νz)(KM) | L(λx̃)N. [x = b]P

Data structures
can be sent

Pattern matching

Channels can be
arbitrary structures

Tests can be
arbitrary predicates(νz)(KM) | L(λx̃)N. if ϕ then P

arbitrary
set of
data

(νz)(aM) | a(x). [x = b]P

arbitrary
logic

(νz)(KM). (|Ψ|) | L(λx̃)N. if ϕ then P assertions,
ie facts about
data used to
resove
predicates

new construct

Well, not completely arbitrary...
Data sets and logics must be nominal
(Pitts, Gabbay 2000) - there is a notion of
name and what names are contained in
what terms. These names can be scoped

A few general requisites, eg composition of
assertions is an abelian monoid

20

Just add data and logic

1. Define names, data terms, and a logic
can be absolutely anything nominal.

21

Just add data and logic

1. Define names, data terms, and a logic
can be absolutely anything nominal.

2. Define a few operators, eg substitution,
channel equivalence, ...

must satisfy some requisites

21

Just add data and logic

1. Define names, data terms, and a logic
can be absolutely anything nominal.

2. Define a few operators, eg substitution,
channel equivalence, ...

must satisfy some requisites

A Psi-calculus

21

Assertions:
information embedded in processes

Assertions:
information embedded in processes

first(pair(x, y)) = x
decrypt(encrypt(M, k), k) = M

Global facts about data structures

Assertions:
information embedded in processes

local knowledge
(νk)((|c = encrypt(M, k)|) | P)

Assertions:
information embedded in processes

parametrised
a(x) . ((|c = encrypt(M,x)|) | P)

a(x) . ((|x|) | P)

Assertions:
information embedded in processes

communicated

Can capture
Applied pi-calculus (Abadi, Fournet 2001)

Explicit fusion calculus (Wischik, Gardner 2005)

Concurrent constraint pi (Buscemi, Montanari 2007)

Polyadic synchronization (Carbone, Maffeis 2003)

Pattern matching and higher order values
(Various)

And moreover
Higher-order and non-monotonic concurrent
constraints

Algebraic operators on communication
channels

23

Can capture
Applied pi-calculus (Abadi, Fournet 2001)

Explicit fusion calculus (Wischik, Gardner 2005)

Concurrent constraint pi (Buscemi, Montanari 2007)

Polyadic synchronization (Carbone, Maffeis 2003)

Pattern matching and higher order values
(Various)

And moreover
Higher-order and non-monotonic concurrent
constraints

Algebraic operators on communication
channels

24

Results
Standard Semantics

Symbolic Semantics

Compositionality

Strong and Weak Bisimulation

Barbed Congruence

Algebraic Laws

25

Results
Standard Semantics

Symbolic Semantics

Compositionality

Strong and Weak Bisimulation

Barbed Congruence

Algebraic Laws

25

Definition of behaviour

Results
Standard Semantics

Symbolic Semantics

Compositionality

Strong and Weak Bisimulation

Barbed Congruence

Algebraic Laws

25

Definition of behaviour

More ”computable”

Results
Standard Semantics

Symbolic Semantics

Compositionality

Strong and Weak Bisimulation

Barbed Congruence

Algebraic Laws

If P and Q behave
the same,
then P|R and Q|R
behave the same

25

Definition of behaviour

More ”computable”

Results
Standard Semantics

Symbolic Semantics

Compositionality

Strong and Weak Bisimulation

Barbed Congruence

Algebraic Laws

If P and Q behave
the same,
then P|R and Q|R
behave the same

Efficient
proof
method

25

Definition of behaviour

More ”computable”

Results
Standard Semantics

Symbolic Semantics

Compositionality

Strong and Weak Bisimulation

Barbed Congruence

Algebraic Laws

If P and Q behave
the same,
then P|R and Q|R
behave the same

Efficient
proof
method

Intuitive
equivalence

25

Definition of behaviour

More ”computable”

Results
Standard Semantics

Symbolic Semantics

Compositionality

Strong and Weak Bisimulation

Barbed Congruence

Algebraic Laws

If P and Q behave
the same,
then P|R and Q|R
behave the same

26 JESPER BENGTSON, MAGNUS JOHANSSON, JOACHIM PARROW, AND BJÖRN VICTOR

Theorem 16.
P ∼ P | 0

P | (Q | R) ∼ (P | Q) | R
P | Q ∼ Q | P
(νa)0 ∼ 0

P | (νa)Q ∼ (νa)(P | Q) if a#P
M N.(νa)P ∼ (νa)M N.P if a#M,N

M(λ�x)N.(νa)P ∼ (νa)M(λ�x)(N).P if a#�x,M,N

case �ϕ : �(νa)P ∼ (νa)case �ϕ : �P if a#�ϕ
(νa)(νb)P ∼ (νb)(νa)P

!P ∼ P | !P

The most awkward part of the proofs is for Theorem 13(1), and historically this is
the proof that most often fails in calculi of this complexity; the intricate correspondences
between parallel processes and their assertions are hard to get completely right. We give
an outline of the proof, and in detail cover the simulation case where the parallel processes
communicate with each other.

We pick the candidate relation R = {(Ψ, (ν�a)(P |R), (ν�a)(Q |R)) : P
.∼Ψ⊗ΨR Q} where

�a#Ψ, and prove that R is a bisimulation. Moreover we assume that �bP #�bQ, Q,�bR, R, Ψ,
and �bR#P,Q,Ψ, or, in other words, that bound names are distinct from all free names and
other bound names. Formally the proof is conducted by an induction on the length of �a.
The induction steps are straightforward, so we focus on the base case. The agent P | R can
operate either by P or R doing individual actions, or by P and R communicating, where
we cover the latter case, as it is the most involved.

In this case we have, by the Com rule, that P does an input transition (Ψ⊗ΨR ✄

P
M N−−−→ P �), R does an output transition (Ψ⊗ΨP ✄ R

K (νea)N−−−−−→ R�), and that the
subjects of the transitions are channel equivalent (Ψ⊗ΨP⊗ΨR � M

.↔ K). The resulting
communication between P and R is thus Ψ ✄ P | R

τ−→ (νã)(P � | R�).
To complete this step of the proof we need to find a Q� such that Ψ ✄ Q | R

τ−→
(νã)(Q� | R�), and (Ψ, (νã)(P � | R�), (νã)(Q� | R�)) ∈ R.

The presence of assertions in the transitions complicates the proof. We know that
P

.∼Ψ Q, and hence by Definition 10(3) that P
.∼Ψ⊗ΨR Q. Since Ψ⊗ΨR ✄ P

M N−−−→ P �, we
can obtain a Q� such that Ψ⊗ΨR ✄ Q

M N−−−→ Q� and P � .∼Ψ⊗ΨR Q�. However, this transition
cannot communicate with Ψ⊗ΨP ✄ R

K (νea)N−−−−−→ R�, since that transition is derived by the
assertion Ψ⊗ΨP , and not Ψ⊗ΨQ. Moreover, M and K are channel equivalent by the
assertion Ψ⊗ΨP⊗ΨR, and not Ψ⊗ΨQ⊗ΨR, which would be needed to derive the desired
communication. In order to complete the proof, we need a lemma which switches the
occurrences of ΨP to ΨQ in the transition of R, as well as in the channel equality.

Once a communication has been derived, we must prove that the corresponding deriva-
tives (νã)(P � | R�), and (νã)(Q� | R�) are in the candidate relation R. From the definition
of R we get that this holds if P � .∼Ψ⊗ΨR� Q�, but we only know that P � .∼Ψ⊗ΨR Q�. In order
to complete the proof, P � and Q� must be bisimilar in the assertion Ψ⊗ΨR� , and not only
in Ψ⊗ΨR.

We provide lemmas which will address both of these obstacles in turn, after which
this proof will be concluded. Lemma 19 simultaneously changes the assertion deriving the

Efficient
proof
method

Intuitive
equivalence

25

Definition of behaviour

More ”computable”

Results
Standard Semantics

Symbolic Semantics

Compositionality

Strong and Weak Bisimulation

Barbed Congruence

Algebraic Laws

If P and Q behave
the same,
then P|R and Q|R
behave the same

26 JESPER BENGTSON, MAGNUS JOHANSSON, JOACHIM PARROW, AND BJÖRN VICTOR

Theorem 16.
P ∼ P | 0

P | (Q | R) ∼ (P | Q) | R
P | Q ∼ Q | P
(νa)0 ∼ 0

P | (νa)Q ∼ (νa)(P | Q) if a#P
M N.(νa)P ∼ (νa)M N.P if a#M,N

M(λ�x)N.(νa)P ∼ (νa)M(λ�x)(N).P if a#�x,M,N

case �ϕ : �(νa)P ∼ (νa)case �ϕ : �P if a#�ϕ
(νa)(νb)P ∼ (νb)(νa)P

!P ∼ P | !P

The most awkward part of the proofs is for Theorem 13(1), and historically this is
the proof that most often fails in calculi of this complexity; the intricate correspondences
between parallel processes and their assertions are hard to get completely right. We give
an outline of the proof, and in detail cover the simulation case where the parallel processes
communicate with each other.

We pick the candidate relation R = {(Ψ, (ν�a)(P |R), (ν�a)(Q |R)) : P
.∼Ψ⊗ΨR Q} where

�a#Ψ, and prove that R is a bisimulation. Moreover we assume that �bP #�bQ, Q,�bR, R, Ψ,
and �bR#P,Q,Ψ, or, in other words, that bound names are distinct from all free names and
other bound names. Formally the proof is conducted by an induction on the length of �a.
The induction steps are straightforward, so we focus on the base case. The agent P | R can
operate either by P or R doing individual actions, or by P and R communicating, where
we cover the latter case, as it is the most involved.

In this case we have, by the Com rule, that P does an input transition (Ψ⊗ΨR ✄

P
M N−−−→ P �), R does an output transition (Ψ⊗ΨP ✄ R

K (νea)N−−−−−→ R�), and that the
subjects of the transitions are channel equivalent (Ψ⊗ΨP⊗ΨR � M

.↔ K). The resulting
communication between P and R is thus Ψ ✄ P | R

τ−→ (νã)(P � | R�).
To complete this step of the proof we need to find a Q� such that Ψ ✄ Q | R

τ−→
(νã)(Q� | R�), and (Ψ, (νã)(P � | R�), (νã)(Q� | R�)) ∈ R.

The presence of assertions in the transitions complicates the proof. We know that
P

.∼Ψ Q, and hence by Definition 10(3) that P
.∼Ψ⊗ΨR Q. Since Ψ⊗ΨR ✄ P

M N−−−→ P �, we
can obtain a Q� such that Ψ⊗ΨR ✄ Q

M N−−−→ Q� and P � .∼Ψ⊗ΨR Q�. However, this transition
cannot communicate with Ψ⊗ΨP ✄ R

K (νea)N−−−−−→ R�, since that transition is derived by the
assertion Ψ⊗ΨP , and not Ψ⊗ΨQ. Moreover, M and K are channel equivalent by the
assertion Ψ⊗ΨP⊗ΨR, and not Ψ⊗ΨQ⊗ΨR, which would be needed to derive the desired
communication. In order to complete the proof, we need a lemma which switches the
occurrences of ΨP to ΨQ in the transition of R, as well as in the channel equality.

Once a communication has been derived, we must prove that the corresponding deriva-
tives (νã)(P � | R�), and (νã)(Q� | R�) are in the candidate relation R. From the definition
of R we get that this holds if P � .∼Ψ⊗ΨR� Q�, but we only know that P � .∼Ψ⊗ΨR Q�. In order
to complete the proof, P � and Q� must be bisimilar in the assertion Ψ⊗ΨR� , and not only
in Ψ⊗ΨR.

We provide lemmas which will address both of these obstacles in turn, after which
this proof will be concluded. Lemma 19 simultaneously changes the assertion deriving the

Efficient
proof
method

Intuitive
equivalence

25

Definition of behaviour

More ”computable”Machine checkedonce and for all

Milner: ”weak
bisimulation up to ”

Abadi, Fournet:
the applied pi-
calculus

Buscemi, Montanari:
the concurrent
constraint pi-calculus

Our own extended
pi-calculus

Correctness: the holy grail
proof method
turned out invalid

semantics turned
out non
compositional

turned out not to
satisfy scope
extension

≈

26

Benefit 1: Certainty (no false assertions)
Benefit 2: Good proof structure (clarity of arguments)

Advocated by Robin
in the work on LCF

in a Theorem Prover
Theory Development

27

Benefit 1: Certainty (no false assertions)
Benefit 2: Good proof structure (clarity of arguments)

Advocated by Robin
in the work on LCF

in a Theorem Prover
Theory Development

27

Benefit 3: Flexibility (easy to change details)
Benefit 4: Generality (easy to keep track of assumptions)

28

Theory development
is like programming:
It almost never starts from
scratch. You continually
add, improve, amend,
adjust...

Flexibility

28

Theory development
is like programming:
It almost never starts from
scratch. You continually
add, improve, amend,
adjust...

Flexibility

Please change
this one

Programming: Every amendment
needs a program recompilation.

Theory development: Every
amendment needs a re-check of all
proofs. A huge error source.

Mechanised proofs means we
have a proof repository and can
quickly assess ramifications of
changes.

29

Recent Developments I

30

Higher-order

Processes can be transmitted in
communications

Recent Developments I

30

Higher-order

Processes can be transmitted in
communications

Recent Developments I

30

Higher-order

Processes can be transmitted in
communications Already possible

Recent Developments I

30

Higher-order

Processes can be transmitted in
communications

A received process can be
executed

Already possible

Recent Developments I

30

Higher-order

Processes can be transmitted in
communications

A received process can be
executed

Already possible

Requires extension

Recent Developments I

30

Higher-order

Processes can be transmitted in
communications

A received process can be
executed

Process definitions

Already possible

Requires extension

Recent Developments I

30

Higher-order

Processes can be transmitted in
communications

A received process can be
executed

Process definitions

Already possible

Requires extension

A(x)⇐ bx . c(x) . A(x)

31

run MNew syntax M is any data term

31

run M

M ⇐ P

New syntax

Process definitions

Determined by assertions!
Can be global

local
dynamic
parameterised
communicated

M is any data term

31

run M

M ⇐ P

M⇐P P
α−→P �

run M
α−→P �

New syntax

Process definitions

New semantic rule
(assertions elided)

Determined by assertions!
Can be global

local
dynamic
parameterised
communicated

M is any data term

32

M⇐P P
α−→P �

run M
α−→P �

Now re-prove all the theory!

32

M⇐P P
α−→P �

run M
α−→P �

Now re-prove all the theory!

With Isabelle: took a day and a night

Recent Developments II

33

Broadcast communication

Recent Developments II

33

Broadcast communication

One transmission : many listeners
Channels with dynamic connectivity

Recent Developments II

33

Broadcast communication

One transmission : many listeners
Channels with dynamic connectivity

Six new semantic
rules, two new
kinds of action

Quite hard to get it right

Broadcast Psi-calculi with an Application to Wireless Protocols 7

BrOut
Ψ � M

.
≺ K

Ψ ✄ M N . P
!K N−−−→ P

BrIn
Ψ � K

.
� M

Ψ ✄ M(λey)N . P
?K N [ey:=eL]−−−−−−−→ P [ey := eL]

BrMerge
ΨQ ⊗ Ψ ✄ P

?K N−−−→ P � ΨP ⊗ Ψ ✄ Q
?K N−−−→ Q�

Ψ ✄ P | Q
?K N−−−→ P � | Q�

BrCom
ΨQ ⊗ Ψ ✄ P

!K (νea)N−−−−−−→ P � ΨP ⊗ Ψ ✄ Q
?K N−−−→ Q�

Ψ ✄ P | Q
!K (νea)N−−−−−−→ P � | Q�

ea#Q

BrOpen
Ψ ✄ P

!K (νea)N−−−−−−→ P �

Ψ ✄ (νb)P
!K (νea∪{b})N−−−−−−−−−→ P �

b#ea, Ψ, K
b ∈ n(N)

BrClose
Ψ ✄ P

!K (νea)N−−−−−−→ P �

Ψ ✄ (νb)P
τ−→ (νb)(νea)P �

b ∈ n(K)

b#Ψ

Table 2 Operational broadcast semantics. A symmetric version of BrCom is

elided. In rules BrCom and BrMerge we assume that F(P) = (νebP)ΨP and

F(Q) = (νebQ)ΨQ where ebP is fresh for P,ebQ, Q, K and Ψ , and that ebQ is fresh for

Q,ebP , P, K and Ψ .

names �a fresh in K. As before, we omit (ν�a) when �a is empty, and in ex-
amples we omit N when it is not relevant. The transitions of well-formed
agents are defined inductively in Tables 2 and 1, where we let α range over
both unicast and broadcast actions.

The rule BrOut allows transmission on a broadcast channel K that the
subject M of an output prefix is out-connected to. Similarly, the rule BrIn

allows input from a broadcast channel K that the subject M of an input
prefix is in-connected to. When two parallel processes both receive a broad-
cast on the same channel, the rule BrMerge combines the two actions.
This rule is necessary to ensure the associativity of parallel composition.
After a broadcast communication using BrCom, the resulting action is the
original transmission. This is different from the unicast Com rule, where a
communication yields an internal action τ . The BrOpen rule allows broad-
cast communication of data containing scoped names. Rule BrClose states
that a broadcast transmission does not reach beyond its scope. This allows
for broadcasting on restricted channels. Dually, the Res rule (of Table 1) en-
sures that broadcast receivers on restricted channels cannot proceed unless
a message is sent. The Par rule allows for broadcasts to bypass a process,
as in most other broadcast calculi for wireless systems.

Benefit of Isabelle

34

What about combining broadcast
and higher-order?

Re-prove all theory yet again, or
just say ”these extensions don’t
interact” (wild handwaving)

Benefit of Isabelle

34

What about combining broadcast
and higher-order?

Re-prove all theory yet again, or
just say ”these extensions don’t
interact” (wild handwaving)

With Isabelle, took half
a day and a cup of tea

Robin was unique.
Look at this, from just before he got the Turing
award. I was about to visit for a postdoc and
was worried about the house I would live in.

35

	 	 Joachim,
We	 went	 to	 see	 your	 house	 (Mrs	 Cameron),	 whose	 husband	 is	 the	 (church)
minister	 at	 Liberton.	 	 They	 are	 very	 nice,	 and	 Lucy	 and	 I	 think	 that	 the
house	 would	 do	 you	 well.	 	 It's	 comfortable	 but	 not	 beautiful,	 I'd	 say.	

.

.

Altogether	 we	 feel	 (not	 knowing	 the	 price)	 that	 you	 would	 do	 well	 to
take	 it	 if	 it	 doesn't	 seem	 too	 expensive.	 	 I	 think	 it's	 pleasant	 and
convenient.	 	 Let	 me	 know	 if	 I	 can	 check	 on	 anything.	 	 I'm	 prepared
to	 take	 it	 in	 your	 name	 if	 that	 seems	 appropriate;	 	 no	 doubt	 you'll
discuss	 that	 by	 phone	 with	 the	 Camerons.

Happy	 1989	 -‐-‐	 Robin.	 	

 PLAN

      ~~~  ~~   ~~~~         ~~   ~~~ 
  |                                                      |
  |             (garden of people upstairs; they         |     N  
<---->  S
  |               have stairs leading down to it)        |
-----
-----
----------
kitchen
/
/
\
--------------------------------------------------      ---
sitting
room
\
\
   ---------------------             --------------------      -----
  |                     |<...2m...> |                    |      :
  | <.......3.5m.......>|           | <....3.5m........> |      :
  |                    /             \                   |      :
  |      sitting      /               \                  |      :
  |          room       |   /       |    bedroom         |     4m
  |                     |---    ----|                    |      :
  |                     |  porch    |                    |      :
  |                     |   /       |                    |      :
   -------------------------     -------------------------     ---
  |                                                      |
  |                                                      |
  |                                                      |
  |                                                      |
  |                                                      |
  |                                                      |
  |                                                      |
  |               front garden                           |
  |                                                      |
  |                                                      |
  |                                                      |
  |                                                      |
   --------------------|           |---------------------

                      STREET



36

	  	  Joachim,
We	  went	  to	  see	  your	  house	  (Mrs	  Cameron),	  whose	  husband	  is	  the	  (church)
minister	  at	  Liberton.	  	  They	  are	  very	  nice,	  and	  Lucy	  and	  I	  think	  that	  the
house	  would	  do	  you	  well.	  	  It's	  comfortable	  but	  not	  beautiful,	  I'd	  say.	  

.

.

Altogether	  we	  feel	  (not	  knowing	  the	  price)	  that	  you	  would	  do	  well	  to
take	  it	  if	  it	  doesn't	  seem	  too	  expensive.	  	  I	  think	  it's	  pleasant	  and
convenient.	  	  Let	  me	  know	  if	  I	  can	  check	  on	  anything.	  	  I'm	  prepared
to	  take	  it	  in	  your	  name	  if	  that	  seems	  appropriate;	  	  no	  doubt	  you'll
discuss	  that	  by	  phone	  with	  the	  Camerons.

Happy	  1989	  -‐-‐	  Robin.	  	  

                           PLAN

      ~~~  ~~   ~~~~         ~~   ~~~ 
 | |
 | (garden of people upstairs; they | N
<----> S
 | have stairs leading down to it) |

kitchen
/
/
\
-- ---
sitting
room
\
\
 --------------------- -------------------- -----
 | |<...2m...> | | :
 | <.......3.5m.......>| | <....3.5m........> | :
 | / \ | :
 | sitting / \ | :
 | room | / | bedroom | 4m
 | |--- ----| | :
 | | porch | | :
 | | / | | :
 ------------------------- ------------------------- ---
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | front garden |
 | |
 | |
 | |
 | |
 --------------------| |---------------------

 STREET

37

	 	 Joachim,
We	 went	 to	 see	 your	 house	 (Mrs	 Cameron),	 whose	 husband	 is	 the	 (church)
minister	 at	 Liberton.	 	 They	 are	 very	 nice,	 and	 Lucy	 and	 I	 think	 that	 the
house	 would	 do	 you	 well.	 	 It's	 comfortable	 but	 not	 beautiful,	 I'd	 say.	

.

.

Altogether	 we	 feel	 (not	 knowing	 the	 price)	 that	 you	 would	 do	 well	 to
take	 it	 if	 it	 doesn't	 seem	 too	 expensive.	 	 I	 think	 it's	 pleasant	 and
convenient.	 	 Let	 me	 know	 if	 I	 can	 check	 on	 anything.	 	 I'm	 prepared
to	 take	 it	 in	 your	 name	 if	 that	 seems	 appropriate;	 	 no	 doubt	 you'll
discuss	 that	 by	 phone	 with	 the	 Camerons.

Happy	 1989	 -‐-‐	 Robin.	 	

 PLAN

      ~~~  ~~   ~~~~         ~~   ~~~ 
  |                                                      |
  |             (garden of people upstairs; they         |     N  <---->  S
  |               have stairs leading down to it)        |
-----
-----
----------
kitchen
/
/
\
--------------------------------------------------      ---
sitting
room
\
\
   ---------------------             --------------------      -----
  |                     |<...2m...> |                    |      :
  | <.......3.5m.......>|           | <....3.5m........> |      :
  |                    /             \                   |      :
  |      sitting      /               \                  |      :
  |          room       |   /       |    bedroom         |     4m
  |                     |---    ----|                    |      :
  |                     |  porch    |                    |      :
  |                     |   /       |                    |      :
   -------------------------     -------------------------     ---
  |                                                      |
  |                                                      |
  |                                                      |
  |                                                      |
  |                                                      |
  |                                                      |
  |                                                      |
  |               front garden                           |
  |                                                      |
  |                                                      |
  |                                                      |
  |                                                      |
   --------------------|           |---------------------

                      STREET

Manually typed 
in by Robin just 
to assure me 
that my house 
would be good 
enough for my 
family.



38

Photo from Jan. 1986


