“Types are the leaven of computer
programming: they make it digestible.”
- R. Milner

Types a la Milner

Benjamin C. Pierce

University of Pennsylvania

April 2012

Type inference
Abstract types

Types a la Milner

Types for interaction

(Types for differential privacy)

Milner and me

® Last ML postdoc at Edinburgh

* and first-generation at Cambridge

® Happy ML user

® Pi-calculus type systems (with Davide Sangiorgi, Dave
Turner)

® Pict programming language (with Dave Turner) ‘

lambda-calculus __ pi-calculus
ML, Haskell, Scheme, ... - Pict
e Local type inference = ZScala POPL

e POPLMark and Software Foundations mark

A Theory of Type Polymorphism in Programming

RoBIN MILNER

Computer Science Department, University of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm %"~ which enforces the
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot ‘“go wrong’’ and a Syntactic Soundness Theorem
states that if #~ accepts a program then it is well typed. We also discuss extending these

results to richer languages; a type-checking abased on ¥ is in fact already

implemented and working, for the metalanguage) the Edinburgh LCF system.

LCF

l

Edinburgh ML

/

LeLisp ML Standard ML

|

CaML v
| SML 90

Caml-Light

/ +

OCaml — F# SML 9/

A Theory of Type Polymorphism in Programming

RoBIN MILNER

Computer Science Department, University of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,

entails defining procedures which work well on objects of a wide variety. We present a
ormal type discipline for such polymorphic procedures i the context of a simple pro-
gramming language, and a compite time type-checking algorithm %~ which enforces the
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot ‘“go wrong’’ and a Syntactic Soundness Theorem
states that if #~ accepts a program then it is well typed. We also discuss extending these
results to richer languages; a type-checking algorithm based on # is in fact already

implemented and working, for the metalanguage ML in the Edinburgh LCF system.

Consider the list mapping function:

letrec map(f, m) = if null (m) then nil

else cons (f (hd(m)), map (f, ti(m)))
For example:

map(square, [1,2,3]) =[1.4.9]

A good type for map is:
(e — B) X o list) — B list

Type inference

It is remarkably conven-
ient in interactive programming to be relieved of
the need to specify types, with assurance that
badly-typed phrases will be caught, reported, and
not evaluated.

A Metalanguage for interactive proof in LCF
M. Gordon, R. Milner, L. Morris, M. Newey, C.Wadsworth

(POPL 1982)

A Theory of Type Polymorphism in Programming

RoBIN MILNER

Computer Science Department, University of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphi peedures re—context of a simple pro-
gramming language, and a compile timé type-checkmg algorithm % which enforces the
discipline. A Semantic Soundness Theorem (basedom al semantics for the language)
states that well-type programs cannot ‘“go wrong’’ and a Syntactic Soundness Theorem
states that if #~ accepts a program then it is well typed. We also discuss extending these
results to richer languages; a type-checking algorithm based on # is in fact already
implemented and working, for the metalanguage ML in the Edinburgh LCF system.

letrec map(f, m) = if null (m) then nil
else cons (f (hd(m)), map (f, ti(m)))

Omap = Of X Om — P
Onul = Om — bool
Ohd — Om P2

Ou — Om —pP3

Ofr = P2pP4
Omap — Of X P3 2 Ps
Ocons = P4 X P52 Pe
Onil = Ps

P11 = Pe

letrec map(f, m) = if null (m) then nil
else cons (f (hd(m)), map (f, ti(m)))

Omap — Of X Om P Onul = T list = bool
Onul = Om — bool Onil = Tlist
Ohd = Om P2 Ohd = Telist > B
Ou = Om —pP3 Ou = Ttlist = Malistt
Of = P2 P4 Ocons — (06 X s listy) = Tslist
Omap — Of X P3 2 Ps
Ocons — P4 X P5 Ps¢
Gl = De Most general solution
P1 = Pes

Omap = (Om —P4) X Omlist = p4list

Principal type Omap — ()’ —> 8) X Y list — o list

LCF

l

Edlnburgh ML

-~ -
.....
~ . -y,
- -
~~
~ i "~
-~
~ N -
~ -~ -
~a -, i
.....
~ -
-~ -
.....
- .n

LeLisp ML Standard ML eranda P|ct etc

|

CaML v
| SML 90

Caml-Light

/ ;

OCaml —, F# SML97 Haskell Scala

Local Type Inference

® Problem: How to combine
* impredicative polymorphism
* subtyping
* type inference
® |dea:Abandon full type inference

* just infer “locally best types” where possible

® When type arguments are omitted:

e Compare actual and expected types of provided term arguments to
yield a set of subtyping constraints on missing type arguments

* Choose solution that satisfies these constraints while making the
result type of the whole application as small (informative) as possible

$Scala

What to call it?

37k google hits

Hindley-Milner?

. | 3k hits
Damas-Milner?

4k hits
Damas-Hindley-Milner?

Milner’s contribution

® Defined algorithm W

* Generate a set of equational constraints from a program and use
Robinson’s unification algorithm to solve them

e Generalize variables appropriately at let-bindings

® Proved soundness

* Gave a (standard) denotational model for core ML

e Showed that well-typed terms do not denote the special element
wrong in the model

e Showed that algorithm W finds some type for every well-typed
term (and no ill-typed term)

® Conjectured completeness

Milner, A Theory of Type
Polymorphism in Programming, 1978

Damas’s contribution

® Proof of the completeness of Algorithm W

* For every well-typed term, the algorithm finds a
principal type, from which all other types for the term
can be derived as instances

Damas and Milner, Principal Type
Schemes for Functional Programs, 1982

Hindley’s contribution

® Algorithm for inferring principal type schemes
for terms in combinatory logic (S-K terms)

* Also relied on Robinson’s algorithm for solving
equality constraints

Hindley, The Principal Type-scheme of an
Object in Combinatory Logic, 1969

Curry’s contribution

® |[ndependent proof of Hindley’s main result

* ...but not relying directly on Robinson’s algorithm

...and don’t forget Morris ’68!
...or Newman ’43!

Curry, Modified basic functionality in
combinatory logic, 1969

What to call it?

® Hindley-Milner (or Curry-Hindley-Milner-Morris-
Newman!)

* for unification-based type inference

® Milner

* for the extension to let-polymorphism

e Damas-Milner

* for the proof of completeness (principal types) for the
let-polymorphism extension

Types in LCF

In ICF we give the user the freedam to write his own
tactics (in ML) but the type-checker ensures that
these cannot perform faulty proofs - at worst a
tactic can lead to an unwanted theorem (for example
which does not achieve the desired goal).

The principal aims then in designing ML were
to make it impossible to prove non-theorems yet
easy to program strategies for performing proofs.

Gordon, Milner, Morris, Newey, and

Wadsworth, A Metalanguage For
Interactive Proof in LCF, 1977

An abstract type of theorems

LCF is basically a programming language (ML) with
a predefined abstract type of theorems
abstype thm with

ASSUME : formula » thm €& ASSUME f
. thm - thm constructs a proof of
GEN X w TRANS wl w2
constructs a proof of constructs a proof of
[+ vx.f [+tl=t3
from a proof of I |- f from a proof wl of [F tI=t2
provided x is not free in and a proof w2 of [F t2=t3

An abstract type of theorems

LCF is basically a programming language (ML) with
a predefined abstract type of theorems

abstype thm with
ASSUME : formula -» thm

GEN : thm -» thm
TRANS ¢+ thm » thm -» thm

Code outside of the
abstype’s implementation
can only build theorems by

calling these functions!

lambda-calculus

core calculus of functional
computation

everything is a function
* all arguments and results of
functions are functions

all computation is function
application

common data and control
structures encodable

pi-calculus

core calculus of concurrent
processes, communicating with
messages over channels

everything is processes and channels

* the only thing processes do is
communicate over channels

* the data exchanged when
processes communicate is just a
tuple of channels

all computation is communication

common data and control structures
encodable... including functions!

Pi-calculus

PQ =0 inert process
P|Q P and Q in parallel
'P arbitrarily many copies of P in parallel

x!(Y1...yn). P read yi...yn from channel x and continue as P
x!(yi...yn). P send yi... yn along channel x and continue as P

vx. P private channel x in P

(X! (yi..yn). P) | (X! (21...20). Q) = P | ([yr... yn/z1...2] Q)

Milner’s sort system

® Fach channel is associated with a subject sort

® Each subject sort is associated with an object sort, which is
a tuple of subject sorts

® A process is well typed if, at every send and receive, the
object sort of the channel used for communication
matches the subject sorts of the channels being sent or
received

{ NAT — (SUCC,ZERO), SUCC — (NAT), ZERO +— () }
-

{ NAT*+— (SUCC;ZERO), SUCC‘+ (NAT), ZERO +— () }

Milner, The Polyadic Pi-Calculus:A Tutorial, 1991

Structural types for pi

® associate each channel binder directly with a type

® make recursion explicit

T = ch(T...Th) channel carrying (T)...Tn)
UX. T recursive type
X type variable

{ NAT — (SUCC,ZERO), SUCC +— (NAT), ZERO +— () }

uX. ch(ch(X), ch())

(P + Sangiorgi)

Polymorphic pi

® On each communication, pass a tuple of types and a
tuple of channels

e Analogous to full 2"%-order lambda-calculus

T = ch(X... Xy, T1...Th) channel carrying types (X... Xi)
and channels (T}...Tn)
UX. T recursive type
X type variable

e.g., ch(X, ch(X))
ch(X,Y, ch(X,ch(Y)), list X, list Y)
where list X = ch(ch(X), ch())

Pi + subtyping

® Separate read and write capabilities

e cf Reynolds’s treatment of refs in Forsythe

T = ch(T..Th) read and write capabilities
for channel carrying (T)...Tn)
in(Th...Th) read capability only
out(T}...Th) write capability only

Linear pi

® Track use-once capabilities

T

ch(T1...To)
ch!(T ... Tn)

(Kobayashi, P, Turner)

e cf. linear logic, linear lambda-calculi

ordinary channel

use-once channel

Behavioral consequences

® Fach of these refinements has interesting
effects on behavioral equivalences

e E.g,in the pi-calculus with subtyping, we get
stronger versions of standard theorems

* e.g.a stronger replicator theorem than in the untyped
language

® Validates beta-reduction for the pi-calculus
encoding of CBV lambda-calculus

* (not valid for untyped pi)

Milner’s sort discipline

“— \

polymorphic pi pi+subtyping linear pi

Y v J

7\

session types Choreography types etc,, etc,, etc

Types for Privacy |

Joint work with Jason Reed, Andreas Haeberlen,
Marco Gaboardi, Arjun Narayan, ...

Motivation: querying private data

How many patients
with lung cancer are
heavy smokers?

I can't tell
you! :-(

Database with s &
hospital records _Ej Alice Bob

= A vast trove of data is accumulating in databases

® This data could be useful for many things

Example: Use hospital records for medical studies

= But how to release it without violating privacy!?

Privacy is hard!

- Anonymize the data

"Patient #147,DOB 11/08/1965, zip code 19104, smokes and has lung
cancer"

What fraction of the U.S. population is uniquely identified by their ZIP
code and their full DOB? 63.3%

Another example: Netflix dataset de-anonymized in 2008

- Aggregate the data

"385 patients both smoke and have lung cancer”

Problem: Someone might know that 384 patients smoke + have
cancer, but isn't sure about Benjamin

=" Need a more principled approach!

Approach: Differential privacy

Should I allow my "How many patients smoke + have cancer?"

data to be
included?

384
& Difference l I‘\ Q%
X i - +1;ra]ur]edgr|11$v|§l/girse
[38

5

® |dea: Add a bit of noise to the answer

= "387 patients smoke + have cancer, plus or minus 3"

® Can bound how much information is leaked

= Even under worst-case assumptions!

Problem: How much noise?

" What if someone asks the following:

"What is the number of people in the database who are called
Andreas, multiplied by 1,000,000"

" How do we know...

whether it is okay to answer this (given our bound)?
and, if so, how much noise we need to add?

= Analysis can be done manually...
Example: McSherry/Mironov [KDD'09] on Netflix data

® . but this does not scale!

Each database owner would have to hire a 'privacy expert’
Analysis is nontrivial - what if the expert makes a mistake!?

The Fuzz system

OK to query (db:database) {
answer num = 0;
Ct foreach x&db

if (x.smokes &

< x.hasCancer)
then num ++;

return num;

~ 2

387 Bob

How many patients
with lung cancer are
heavy smokers?

OO

Answer 387
(incl noise)

= We are working on a "programming language for
privacy" called Fuzz

Bob writes question in our language & submits it to Alice
Alice runs the program through our Fuzz system

Fuzz tells Alice whether it is okay to respond...

... as well as a safe answer (including just enough noise)

How does Fuzz do this?

e T hert
r>1 AlFel:m I'kes:m Iihe:n ", D.x:yThe:T oy
var] ®I I'Hinj,e:m + 7 'Xxe:7—o7
| I o e A+TF (e1,e2): 71 @ T2
AbFe :7—T I'kHes:T IziaaThbe:r
'kFe:m @ Az T,yrmbe 7 —E —1
1 ® T2 r T, Y ir T2 . A+THepes: 7 F'tXee:7— 171
o — 7. ')/‘ / -
A+ rl'Flet(z,y) =eine’ : 7 Aber:7—1 TDhrey:r Fke:r
—F _7
I'kep:m 'Ees:m F'kFe:m & 7 A+ocT Feyes:r sTkle:lor
&1 &F rte-
' {(e1,e2) 11 & 1 Fme:T I'ke:ler AzipsThHe 7 e: [ua.t/a]T
< { () B ,U]
Az:T e <! A+rTFlet!lz =eine : 7/ r'_f:(()\l_ée”—
'kte:m + 7 Ax:imobFes:T 'ke:T
' — +F pE
A +rl'F caseeof x.ey | zex: 7T I' - unfolde : [ua.7/a]T
pnoT

® Fuzz uses a type system to infer the relevant
property (sensitivity) of a given query

* If program typechecks, we have a proof that running it won't
compromise privacy

= Solid formal guarantee - no more accidental privacy leaks!

Intuition behind the type system

f(x) = x f(x) =7
Sensitivity 1 Sensitivity 0
|
f(x) = 2*x
Sensitivity 2*1
f(x) =2*x + 7

Sensitivity 2*1 + 0

= Suppose we have a function f(x)=2x+7
= What is its sensitivity?
« Intuitively 2: changing the input by 1 changes the output by 2

Current directions

® Type inference (!)

e Adding dependent types to express more
precise constraints on behavior
* E.g, the fact that the sensitivity of a private k-means

algorithm depends on how many rounds of iteration
you ask it to perform

Thank you!

