
1 / ??

False Concurrency
and the

Foundations of Computer Science

Peter Sewell

University of Cambridge

Milner Symposium
Edinburgh, 15–18 April 2012

2 / ??

3 / ??

Message passing example

4 / ??

int x = 0; bool y = false;

// sender thread // receiver thread

x = 1; while (y==false) {};

y = true; print(x);

Good behaviour: Prints 1

Bad behaviour: Prints 0

Test MP : Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

Message passing failure: ‘smart’ compiler

5 / ??

int x = 0; bool y = false;

// sender thread // receiver thread
int local = x;

x = 1; while (y==false) {};

y = true; print(local);

Bad behaviour: Sometimes prints 0

Message passing failure: ‘smart’ processor

6 / ??

int x = 0; bool y = false;

// sender thread // receiver thread

x = 1; while (y==false) {};

y = true; print(x);

propagates

Bad behaviour: Sometimes prints 0

Message passing failure: ‘smart’ processor

7 / ??

int x = 0; bool y = false;

// sender thread // receiver thread

x = 1; while (y==false) {};

y = true; print(x);

speculates

Bad behaviour: Sometimes prints 0

Message passing fix (1): Power/ARM

8 / ??

int x = 0; bool y = false;

// sender thread // receiver thread

x = 1; while (y==false) {};

lwsync/DMB; isync/ISB;

y = true; print(x);

Good behaviour: Always prints 1

Message passing fix (2): Power/ARM

9 / ??

int x = 0; int *y = NULL;

// sender thread // receiver thread

x = 1; int *local = y;

lwsync/DMB; while (local == NULL) {local = y;};

y = &x; print(*local);

(address dependency, from value of one read to address of the next)

Good behaviour: Always prints 1

Basic Question

10 / ??

What is the concurrency semantics of Power/ARM processors?

We’ve built a model...

[Susmit Sarkar, Jade Alglave, Luc Maranget, Derek Williams, Sewell]

...by a long process of

• generating test cases

• experimental testing of hardware

• talking with IBM and ARM architects

• checking candidate models

Contrasts with Classic Concurrency Theory

11 / ??

Operational abstract-machine model:

• thread-local LTS (speculation)

• storage subsystem LTS (propagation)

• top-level LTS parallel composition of those

SOS? rules? interleaving? observational? obs.cong? mechanised? tools?

Sample Transition Rule

12 / ??

Propagate write to another thread (a τ transition)
The storage subsystem can propagate a write w (by thread tid) that it has
seen to another thread tid′, if:

• the write has not yet been propagated to tid′;

• w is coherence-after any write to the same address that has already
been propagated to tid′; and

• all barriers that were propagated to tid before w (in
s.events_propagated_to (tid)) have already been propagated to
tid′.

Action: append w to s.events_propagated_to (tid′).

Explanation: This rule advances the thread tid′ view of the coher-
ence order to w, which is needed before tid′ can read from w, and
is also needed before any barrier that has w in its “Group A” can be
propagated to tid′.

MP+dmb+fri-rfi-ctrlisb?

13 / ??

Test MP+dmb+fri-rfi-ctrlisb

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

d: W[y]=2

Thread 1

f: R[x]=0

e: R[y]=2

dmb
rf

co

po

rf

ctrlisbrf

Message passing in C/C++11, relaxed

14 / ??

int x = 0; atomic_bool y = false;

// sender thread // receiver thread
x = 1; while (y.load(relaxed)==

y.store(true,relaxed); false) {};

print(x);

Bad behaviour: Can print 0

Message passing fix, C/C++11, rel/acq

15 / ??

int x = 0; atomic_bool y = false;

// sender thread // receiver thread
x = 1; while (y.load(acquire)==

y.store(true,release); false) {};

print(x);

Good behaviour: Always prints 1

Message passing fix, C/C++11, rel/acq

16 / ??

int x = 0; atomic_bool y = false;

// sender thread // receiver thread
x = 1; while (y.load(acquire)==

y.store(true,release); false) {};

print(x);




















Message passing fix, C/C++11, rel/acq

17 / ??

int x = 0; atomic_bool y = false;

// sender thread // receiver thread
x = 1; while (y.load(acquire)==

y.store(true,release); false) {};

print(x);


































 

Basic Question

18 / ??

What is the concurrency semantics of C and C++?

[Mark Batty, Scott Owens, Susmit Sarkar, Tjark Weber, Sewell]

We’ve built a model...

...by a long process of

• formalising draft C++11 standard concurrency

• generating and checking test cases

• proving some facts

• talking with the C/C++ standards committees

• fixing the ISO C11 and C++11 standards
(their text and our math now correspond)

Contrasts with Classic Concurrency and PL Semantics

19 / ??

no operational semantics. Instead, three-phase:

• simple (recursive-on-AST) calculation of sets of candidate exe-
cutions;

• filter by axiomatic memory model;

• check for races

no interleaving. no memory. no global time.

hb reminiscent of true-concurrency causality relations? (but... hb
not transitive, other machinery, per single conflict-free candidate)

Compilation scheme

20 / ??

C11/C++11 operation Power implementation
Non-atomic load ld

Load relaxed ld

Load consume ld (with dependency preservation)
Load acquire ld; cmp; bc; isync

Load seq. cst. sync; ld; cmp; bc; isync

Non-atomic store st

Store relaxed st

Store release lwsync; st

Store seq. cst. sync; st

by Paul McKenney & Raul Silvera
actually, several schemes — and previous one was unsound, in some
sense...

Theorem: that scheme is sound

21 / ??

 













 

 

For any Power abstract-machine trace of the compiled program
there is a C/C++11 execution which is:

• equivalent to the trace (isomorphic reads-from)

• accepted by the original C/C++11 program

[Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, Sewell]

22 / ??

What about all the rest of a compiler?

23 / ??

CompCertTSO: a verified (in Coq) compiler targetting realistic x86
concurrency

building on Leroy’s CompCert compiler for sequential code

[Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli,
Suresh Jagannathan, Sewell]

Again, using the tools from Robin’s workshop: labelled transition
systems, top-level parallel composition, several kinds of simulation
argument,... and a mechanised prover

24 / ??

25 / ??

The Foundations of Computer Science?

26 / ??

The End

27 / ??

P.S. We’re looking for postdocs (advert on the web). As Robin wrote
in a different context, in 1998:

“A combined practico-theoretical group has formed
around this work in Cambridge, and the work is ongoing”.

