False Concurrency
and the
Foundations of Computer Science

Peter Sewell
University of Cambridge

Milner Symposium
Edinburgh, 15-18 April 2012

1/ 77

1r

w%
HA T CONCURRENT SYSTEM
S

WE UNDERSTAND 7

3/ 17

Message passing example

int x = 0; bool y = false;

// sender thread || // receiver thread

x = 1; while (y==false) {};
y = true; print (x) ;
Thread 0 Thread 1
Good behaviour: Prints 1 a: W{X]=1 c: R]y]=1
rf
- . : po po
Bad behaviour: Prints O —
b: W[y]=1 f d: R[x]=0

Test MP : Allowed 4/ 77

Message passing failure: ‘smart’ compiler

int x = 0; bool y = false;

// sender thread || // receiver thread

int local = x;

x = 1; while (y==false) {};
y = true; print(local);

Bad behaviour: Sometimes prints O

5/ 177

Message passing failure: ‘smart’ processor

int x = 0; bool y = false;

// sender thread || // receiver thread

tes
pPropROe ==false) {I};
y = true, print (x) ;

x = 1;

Bad behaviour: Sometimes prints O

6/ 77

Message passing failure: ‘smart’ processor

int x = 0; bool y = false;

// sender thread eiver thread
x = 1; (y==false) {};
y = true; print (x) ;

Bad behaviour: Sometimes prints O

7/ 17

2

Message passing fix (1): Power/AR

int x = 0; bool y = false;

// sender thread || // receiver thread

x = 1; while (y==false) {};
lwsync/DMB; | isync/ISB;
y = true; print (x) ;

Good behaviour: Always prints 1

8/ 17

Message passing fix (2): Power/ARM
int x = 0; int *xy = NULL;
// sender thread || // receiver thread
x = 1; int *local = y;
lwsync/DMB; || while (local == NULL) {local = y;};
y = &x; print(*local);

(address dependency, from value of one read to address of the next)

Good behaviour: Always prints 1

9/ 77

Basic Question

What is the concurrency semantics of Power/ARM processors?
We've built a model...
[Susmit Sarkar, Jade Alglave, Luc Maranget, Derek Williams, Sewell]

...by a long process of
e generating test cases
e experimental testing of hardware
e talking with IBM and ARM architects

e checking candidate models

10 / 77

Contrasts with Classic Concurrency Theory

Operational abstract-machine model:
e thread-local LTS (speculation)
e storage subsystem LTS (propagation)

e top-level LTS parallel composition of those

Thread oo Thread
Write request A A
Read request Read response
Barrier request y Barrier ack y

Storage Subsystem

SOS? rules? interleaving? observational? obs.cong? mechanised? tools?

11/ 72

Sample Transition Rule

Propagate write to another thread (a r transition)
The storage subsystem can propagate a write w (by thread tid) that it has
seen to another thread t¢id', if:

e the write has not yet been propagated to tid’;

e w IS coherence-after any write to the same address that has already
been propagated to tid’; and

e all Dbarriers that were propagated to +t¢id before w (in

s.events_propagated_to (tid)) have already been propagated to
tid'.

Action: append w to s.events_propagated_to (tid').

Explanation: This rule advances the thread t:d’ view of the coher-
ence order to w, which is needed before tid’ can read from w, and
is also needed before any barrier that has w in its “Group A” can be
propagated to tid'. 12 / 77

MP-+dmb-+fri-rfi-ctrlisb?

Thread O Thread 1
a: W[x]=1 c: R[y]=1
f

dmb PO
\ 4 \/
b: W[y]=1 > d: W[y]=2
Y] o Y]
f
\4
e: R[y]=2
- R[X]=0

Test MP+dmb+fri-rfi-ctrlisb

13 / 77

Message passing in C/C++11, relaxed

int x = 0; atomic_bool y = false;
// sender thread // receiver thread
x = 1; while (y.load(relaxed)==
y.store(true,relaxed) ; false) {};
print (x) ;

Bad behaviour: Can print 0

14 / 72

Message passing fix, C/C++11, rel/acq

int x = 0; atomic_bool y = false;
// sender thread // receiver thread
x = 1; while (y.load(acquire)==
y.store(true,release); false) {};
print (x) ;

Good behaviour: Always prints 1

15 / 72

Message passing fix, C/C++11, rel/acq

int x = 0; atomic_bool y = false;

// sender thread
x = 1;
y.store(true,release);

W x=0

sb

WLy=faIse

W
sb v\}
y=true

// receiver thread

while (y.load(acquire)==
false) {};

print (x) ;

sb= sequenced-before

16 / 77

Message passing fix, C/C++11, rel/acq

int x = 0; atomic_bool y = false;
// sender thread // receiver thread
x = 1; while (y.load(acquire)==
y.store(true,release); false) {};
print (x) ;

sb= sequenced-before

rf= reads-from

hb= happens-before

17 / 72

Basic Question

What /s the concurrency semantics of C and C++?
[Mark Batty, Scott Owens, Susmit Sarkar, Tjark Weber, Sewell]
We’ve built a model...

...by a long process of
e formalising draft C++11 standard concurrency
e generating and checking test cases
e proving some facts
e talking with the C/C++ standards committees

e fixing the ISO C11 and C++11 standards
(their text and our math now correspond) 18 / 77

Contrasts with Classic Concurrency and PL Semantics

no operational semantics. Instead, three-phase:

e simple (recursive-on-AST) calculation of sets of candidate exe-
cutions;

e filter by axiomatic memory model;

e check for races

no interleaving. no memory. no global time.

hb reminiscent of true-concurrency causality relations? (but... hb
not transitive, other machinery, per single conflict-free candidate)

19 / 77

Compilation scheme

C11/C++11 operation

Power implementation

Non-atomic load
| oad relaxed
_oad consume
_oad acquire
_oad seq. cst.
Non-atomic store
Store relaxed
Store release
Store seq. cst.

1d

1d

1d (with dependency preservation)
ld; cmp; bc; 1isync

sync; ld; cmp; bc; 1sync
ST

st

lwsync,; st

sync; st

by Paul McKenney & Raul Silvera
actually, several schemes — and previous one was unsound, in some

sense...

20 / 77

Theorem: that scheme is sound

Compilation

C program >» Power code
threadwise operational |
opérational semantics
semantics |

observationally Y
equivalent
— trace

~— reconstruction _——

For any Power abstract-machine trace of the compiled program
there is a C/C++11 execution which is:

e equivalent to the trace (isomorphic reads-from)
e accepted by the original C/C++11 program

[Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, Se;/}/?ll]7

3

Proving Compiler Correctness
In @ Mechanized Logic

R. Milner and R. Weyhrauch

Computer Science Department
Stanford University

Abstract

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ArLGor-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown

store. Algebraic methods are used to give structure to the proof, which is
S 22 / 77

What about all the rest of a compiler?

CompCertTSO: a verified (in Coq) compiler targetting realistic x86
concurrency

building on Leroy’s CompCert compiler for sequential code
[Jaroslav Sevéik, Viktor Vafeiadis, Francesco Zappa Nardell,

Suresh Jagannathan, Sewell]

Again, using the tools from Robin’s workshop: labelled transition
systems, top-level parallel composition, several kinds of simulation
argument,... and a mechanised prover

23 / 77

’ Jl'
WHA T CONCURRENT SYSTEMS 2

WE UNDERSTAND 7

These we SORT-OF
understan !

SR These
we Do undmiml!

24 / 77

The Foundations of Computer Science?

26 / 77

P.S. We’'re looking for postdocs (advert on the web). As Robin wrote
In a different context, in 1998:

“A combined practico-theoretical group has formed
around this work in Cambridge, and the work is ongoing’.

27 / 7?

