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From the speech to Robin Milner on the award of an
Honorary Doctorate, Aarhus University, September 1998

While Computer Science leans on Mathematics, Engineering and Physics, its
theory, principles and methodology, questions on how to structure and manage
the burgeoning world of computation, have to be tackled afresh. The foundational
insights of Professor Robin Milner, theory with a keen eye to potential practice,
have carved out patterns of research fundamental in Programming Languages and
Types, Machine Proof, and Distributed and Mobile Computation. . . .

. . . Robin Milner’s research will have a lasting influence on Computer Science.
After the fact, the main lines of his work on the foundations of computing share
with many great ideas a naturalness and obviousness that belies the hard, detailed
and often very specialised work that preceded them. For many in the field it
is hard to imagine Computer Science without the fundamental contributions of
Robin Milner. What could be a better tribute to a researcher?
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Where Robin stood

Operational vs. Denotational semantics: increasingly towards operational
semantics and away from denotational semantics

Higher-order: increasingly seen as not fundamental

Extensional vs. intensional: extensional

Equational vs. assertional proof: his own work is almost exclusively equational

Theory vs. practice: theory as a prescriptive tool for practice as it might become

Role of Logic: “Paradise lost” (but modern developments in proof theory? Robin
felt a debt to Girard)

Role of Mathematics: mathematics as an essential tool
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Robin Milner and Mathematics

Robin had an early and continuing aptitude for solving problems and Mathematics.

But Mathematics was never the primary goal of his work; his work was CS-
motivated, though not always obviously so.
He didn’t share the view that: get the Maths right and the rest will follow.
He didn’t borrow from deep theories in Mathematics.

Nevertheless,
his ideas are often essentially right and enriching from a mathematical perspective.
His work is likely to have a lasting influence on Mathematics.
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Interactive Theorem Proving

LCF ❀ ML and its types to support secure theorem proving

Descendants:

HOL, hardware verification

Isabelle, a meta-prover

Coq, implementing a powerful constructive logic.
❀ George Gonthier and Benjamin Werner’s Coq proof of the 4-colour conjecture
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(Strong) Bisimilarity and Coinduction
Bisimilarity is a ubiquitous intrinsic equivalence, independent of syntax.

On a suggestion of David Park, Robin’s original strong bisimilarity viz.
�

n∈ω

∼n

via a chain of relations ∼n, was changed to

�

α∈On

∼α

which can be characterised as a greatest post-fixed point. ❀ proof technique: to
show bisimilarity exhibit a bisimulation.

Bisimulation has inspired a variety of methods of coinduction.
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Methods of Coinduction

In coalgebras homomorphisms are functional bisimulations. To show equality in
final coalgebras (e.g. streams) suffices to exhibit a bisimulation. (I think this was
anticipated in work of Arbib&Manes.)

Freyd’s 1990 reformulation of how to solve recursive domain equations led to new
induction and coinduction principles by uncovering ‘bisimulations’ for recursive
domains [Fiore, Plotkin, Pitts].

Non-wellfounded sets [Aczel, Forti, Honsell].

Coinduction is used recently in defining ∞-categories [Lafont, Métayer].
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Weak Bisimilarity

Weak bisimilarity is an intrinsic equivalence capturing the invisibility of internal
actions. Weak bisimilarity is strong bisimilarity wrt transitions

p
τ⇒ q iff p( τ→)∗q and p

a⇒ q iff ∃r, r�. p
τ⇒ r & r

a→ r� & r�
τ⇒ q .

But weak bisimilarity is not a congruence for e.g. CCS. ❀ observation congruence.

In the general open-map development of bisimilarity and weak bisimilarity, the
analogue of observation congruence is primary [Cattani-Fiore-W].
Future techniques for weak equivalences?
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Names in the Pi-Calculus

In the original development of a name-passing calculus by Mogens Nielsen and
Uffe Engberg (based on early joint work of Robin and Mogens) there were both
names and variables (over names).

In the fuller and final development of the Pi-Calculus [RM, Parrow and Walker]
variables are banished and names do double-duty also as variables (Occam’s
razor). A non-traditional deconstruction of the role of variables which has
handicapped traditional denotational semantics of the Pi-Calculus.

But in Andy Pitts’ Nominal Sets there is a similar deconstruction of variables
occurs within Fraenkel-Mostowski set theory. The restriction operator of the Pi-
Calculus can be seen as derived from a new-name abstraction on Nominal Sets.
In recent work Pitts is basing constructions on sets with ‘restriction operators.’
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Concurrency

• The operations of process algebras, Robin’s Calculus of Communicating Systems
(CCS 1979) and Tony’s CSP, can be expressed in terms of universal constructions
for a variety of models, within categories of transition systems, labelled trees,
Petri nets, languages, Mazurkiewicz languages, event structures, ...

E.g. Synchronized parallel compositions of event structures are obtained as a
restriction (equalizer) of a product in a category of event structures.

• Relations between models via adjunctions.

In Robin’s view concurrency brings a fundamental new aspect to computing.
Influence on Mathematics, and other areas?
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Concurrent strategies

The notion of deterministic/nondeterministic strategy
is potentially as fundamental as the notion of function/relation.
The notion needs to be developed in sufficient generality.

Two-party concurrent games: Player (a team of players) against Opponent (a
team of opponents) subject to constraints of the game.
For Player/Opponent read process/environment, proof/refutation, ally/enemy.

First: in a general model for concurrency, event structures
—the concurrency analogue of trees.

Later: a recent more geometrical view
—games as factorization systems.

A generalized domain theory:
Functional programming ❀ Strategical programming
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Event structures

An event structure comprises (E,≤,#), consisting of a set of events E

- partially ordered by ≤, the causal dependency relation, and

- a binary irreflexive symmetric relation #, the conflict relation,

which satisfy {e� | e� ≤ e} is finite and e # e� ≤ e�� ⇒ e # e�� .

The finite configurations, C(E), of an event structure E consist of those subsets
x ⊆ E which are
Consistent: ∀e, e� ∈ x. ¬(e # e�) and Down-closed: ∀e, e�. e� ≤ e ∈ x ⇒ e� ∈ x.
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Concurrent games—basics

Games and strategies are represented by event structures with polarity,
+/− (Player/Opponent).

(Simple) Parallel composition: A�B , by juxtaposition.

Dual, B⊥, of an event structure with polarity B is a copy of the event structure
B with a reversal of polarities; b ∈ B⊥ is complement of b ∈ B, and vice versa.

A (nondeterministic) pre-strategy in game A is a total map S
σ

��

A
i.e. σ preserves polarities and
∀x ∈ C(S). σx ∈ C(A) & ∀s1, s2 ∈ x. σ(s1) = σ(s2) ⇒ s1 = s2.
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Copy-cat—an example

CCA

A⊥ A

a2 � � �������������� ⊕ a2

a1 ⊕

����

�

����

���� � � � � � � � � � � � a1
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Pre-strategies as arrows

A pre-strategy σ : A + �� B, from A to B, is a strategy in A⊥ � B, i.e.

σ : S → A⊥ � B .

It corresponds to a span of event structures with polarity

S
σ1

����
��

��
��

σ2

���
��

��
��

�

A⊥ B

where σ1, σ2 are partial maps of event structures with polarity; one and only one
of σ1, σ2 is defined on each event of S.
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Composing pre-strategies

Two pre-strategies σ : A + �� B and τ : B + �� C as spans:

S
σ1

����
��

��
��

σ2

���
��

��
��

�

A⊥ B

T
τ1

����
��

��
��

τ2

���
��

��
��

�

B⊥ C .

Their composition

T⊙S
(τ⊙σ)1

����
��

��
��

� (τ⊙σ)2

�����������

A⊥ C

where T⊙S =def (S × T � Syn) ↓ Vis where ...
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Strategies

Copy-cat CCA is idempotent:

CCA⊙CCA
∼= CCA .

Strategies are defined to be those pre-strategies σ : A + �� B which “compose
well” with copy-cat:

CCB⊙σ⊙ CCA
∼= σ ,

so those obtained as
CCB⊙σ⊙ CCA ,

for a pre-strategy σ : A + �� B.

❀ a bicategory of concurrent strategies
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A characterization of strategies

A strategy in a game A comprises σ : S → A, a total map of event structures
with polarity, such that
(i) whenever σx ⊆− y in C(A) there is a unique x� ∈ C(S) so that

x ⊆ x� & σx� = y , i.e. x
�

σ
��

⊆ x�
�

σ
��

σx ⊆− y ,

and
(ii) whenever y ⊆+ σx in C(A) there is a (necessarily unique) x� ∈ C(S) so that

x� ⊆ x & σx� = y , i.e. x�
�

σ
��

⊆ x
�

σ
��

y ⊆+ σx .
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Corollary

Defining a partial order — the Scott order — on configurations of A

x �A y ⇐⇒def x ⊇− · ⊆+ · · · ⊇− · ⊆+ y

we obtain a factorization system ((C(A),�A),⊇−,⊆+), i.e.

y

∃!z. x

�

⊇− z .

⊆
+

Theorem Strategies σ : S → A correspond to a discrete fibrations

σ“ : (C(S),�S) → (C(A),�A) , i .e.
∃!x�. x�

�

σ“
��

�S x
�

σ“��

y �A σ“(x) ,

preserving ⊇−, ⊆+ and ∅.
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Games as factorization systems

A rooted factorization system (C, L,R, 0) comprises a small category C on
which there is a factorization system (C, L,R),

so all maps c → c� factor uniquely up to iso as c�

c

����������

L

�� c��
R

��

,

with an object 0 s.t.
0 ←L ·→R · · ·←L ·→R c

for all objects c in C.

Example ( (C(A),�A) , ⊇−, ⊆+, ∅) for a concurrent game A.
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Strategies

A strategy in a rooted factorization system A is a discrete fibration S
F

��

A
from another rooted factorization system S, which preserves L, R maps and 0.
Example: σ“ for a concurrent strategy σ.

A strategy from A to B is a strategy in A⊥�B where

(A, L,R, 0)⊥ =def (Aop, Rop, Lop, 0)

(A, LA, RA, 0A)�(B, LB, RB, 0B) =def (A× B, LA × LB, RA ×RB, (0A, 0B))

Composition: reachable part of profunctor composition.
❀ ‘Venn diagrams’ for games and strategies.
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A similar example: the game of chase

Player: the Hunter, velocity vector h; its moves are changes in velocity ∆h

Opponent: the Prey, velocity vector p; its moves are changes in velocity ∆p

A strategy for Hunter (observed in people): run (towards Prey) so Prey appears
to be moving in a fixed straight line (direction vector d) from Hunter’s viewpoint,
i.e. adjust velocity to maintain the winning condition

p− h = c.d for some non-negative real c

within a game with objects (states) (p,h) and arrows
(p + ∆p,h) →L (p,h) and (p,h→R (p,h + ∆h)).

[BBC Horizon programme “The Unconscious Mind”]
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Lessons from Robin

develop thoroughness, craftsmanship, and careful exposition

have passion for your work

cultivate cleverness, and grounded confidence, to transcend traditional boundaries

seek challenges, and freshness of thought

make research accessible to students and practitioners, write books
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