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1 Introduction
The Unified Modelling Language (UML) [1] is an effective
and popular notation which is used to capture high-level de-
signs for software systems. However, one aspect of software
system design which is not typically captured in a UML docu-
ment is a record of the likely (or desired) rate of performance
of the major activities of the system. When this information
is not included in the initial UML description of a system it
increases the likelihood that the performance of the software
system being developed will not be considered until very late
in the software development process. At this stage, errors in
the design will be very costly to repair and will require signif-
icant re-engineering.

Our aims in this paper are twofold:

1. to show how UML models enhanced with performance
information can be mapped onto an existing perfor-
mance modelling notation, Performance Evaluation Pro-
cess Algebra (PEPA) [2]; and

2. to show how the results of the performance analysis of
the PEPA models which are produced by this process
can be presented to the UML modeller in the terms of
their model.

The work reported here forms an early part of the DEGAS
project. DEGAS stands for Design Environment for Global
ApplicationS, and the project’s overall goal is to make so-
phisticated formal analysis techniques available to designers
of global applications – that is, of sofware systems that run
on wireless networks and may involve mobile code – in a way
which is congruent with their normal way of working. Per-
formance prediction has been identified as an important area
where such formal analysis techniques might be able to make
a significant contribution to the quicker design of better appli-
cations.

Designers in the DEGAS partner companies (Motorola and
OMNYS) and throughout the industry have adopted UML
as their main software design notation. UML is a diagram-
matic notation for recording the design of systems, especially
object-oriented software systems. A UML model is repre-
sented by a collection of diagrams describing parts of the sys-
tem from different points of view; there are seven main dia-
gram types. For example, there will typically be a static struc-
ture diagram (or class diagram) describing the classes and
interfaces in the system and their static relationships (inher-
itance, dependency, etc.) State diagrams, a variant on Harel
state charts, can be used to record the dynamic behaviour
of particular classes. Interaction diagrams, such as sequence
diagrams, are used to illustrate the way objects of different
classes interact in a particular scenario. In this work we con-
centrate on state diagrams, which provide a behavioural de-
scription in automata-theoretic terms which is also familiar
from process algebras and protocol specifications.

Our aim in working with UML in the performance mod-
elling process is to introduce the benefits of performance anal-

ysis with process algebras without the complexities and con-
ceptual challenges which are normally associated with formal
description techniques such as these. To this end, we deploy
the PEPA stochastic process algebra as an intermediate lan-
guage in the performance analysis process. The UML mod-
eller can compose models and solve these for performance
results without needing to understand the PEPA language, its
formal definition or even how their model is represented in
PEPA. At the same time, we avoid requiring the designer
to develop a model specifically for performance analysis; in-
stead, we work directly with the UML model which is being
developed for other purposes.

Structure of this paper: In the next section we intro-
duce the PEPA stochastic process algebra. Section 3 discusses
modelling with UML and PEPA. In Section 4 we describe
how performance measures such as utilisation can be obtained
directly from our results. In Section 5 we discuss the software
architecture of our tool set and describe the four principal soft-
ware packages which are involved. In Section 7 we present a
simple example. Following this we present a larger case study
in Section 8. In Section 9 we discuss related work on UML,
PEPA and performance modelling. We present our conclu-
sions in Section 10.

2 Performance Evaluation Process
Algebra

PEPA extends classical process algebra with the capacity to
assign rates to the activities which are described in an abstract
model of a system. Taken together, the information about the
rates of performance of activities and the definition of the out-
come of performing an activity specify a stochastic process
and thus PEPA is said to be a stochastic process algebra. The
PEPA language has been applied as a modelling language for
distributed computer and telecommunications systems such
as mobile telephone systems and for components of flexible
manufacturing systems such as robotic workcells.

The PEPA language provides a small set of combinators.
These allow language terms to be constructed defining the be-
haviour of components, via the activities they undertake and
the interactions between them. The syntax may be formally
introduced by means of the grammar shown in Fig. 1. In the
grammar S denotes a sequential component and P denotes a
model component which executes in parallel. C stands for a
constant which denotes either a sequential or a model compo-
nent, as defined by a defining equation. C when subscripted
with an S stands for constants which denote sequential compo-
nents. The component combinators, together with their names
and interpretations, are presented informally below: further
information is in the appendix.

Prefix: The basic mechanism for describing the behaviour of
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S :: � (sequential components)
�
α � r ��� S (prefix)

�
S � S (choice)

�
CS (constant)

P :: � (model components)

P �
	
L

P (cooperation)
�

P � L (hiding)
�

C (constant)

Fig. 1: The syntax of PEPA

a system is to give a component a designated first ac-
tion using the prefix combinator, denoted by a full stop.
For example, the component

�
α � r ��� S carries out activity�

α � r � , which has action type α and an exponentially dis-
tributed duration with parameter r, and it subsequently
behaves as S. Sequences of actions can be combined to
build up a life cycle for a component.

Choice: The life cycle of a sequential component may be
more complex than any behaviour which can be ex-
pressed using the prefix combinator alone. The choice
combinator captures the possibility of competition or se-
lection between different possible activities. The com-
ponent P � Q represents a system which may behave ei-
ther as P or as Q. The activities of both P and Q are
enabled. The first activity to complete distinguishes one
of them: the other is discarded. The system will then
behave as the derivative resulting from the evolution of
the chosen component.

Constant: It is convenient to be able to assign names to pat-
terns of behaviour associated with components. Con-
stants provide a mechanism for doing this. They are
components whose meaning is given by a defining equa-
tion.

Hiding: The possibility to abstract away some aspects of a
component’s behaviour is provided by the hiding opera-
tor, denoted by the division sign in P � L. Here, the set L
of visible action types identifies those activities which
are to be considered internal or private to the compo-
nent. These activities are not visible to an external ob-
server, nor are they accessible to other components for
cooperation. Once an activity is hidden it only appears
as the unknown type τ; the rate of the activity, however,
remains unaffected.

Cooperation: Most systems are comprised of several com-
ponents which interact. In PEPA direct interaction, or

cooperation, between components is represented by the
butterfly combinator. The set which is used as the sub-
script to the cooperation symbol determines those activ-
ities on which the cooperands are forced to synchronise.
Thus the cooperation combinator is in fact an indexed
family of combinators, one for each possible coopera-
tion set L. When cooperation is not imposed, namely
for action types not in L, the components proceed inde-
pendently and concurrently with their enabled activities.
However if a component enables an activity whose ac-
tion type is in the cooperation set it will not be able to
proceed with that activity until the other component also
enables an activity of that type. The two components
then proceed together to complete the shared activity.
The rate of the shared activity may be altered to reflect
the work carried out by both components to complete
the activity.
In some cases, when an activity is known to be carried
out in cooperation with another component, a compo-
nent may be passive with respect to that activity. This
means that the rate of the activity is left unspecified and
is determined upon cooperation, by the rate of the activ-
ity in the other component. All passive actions must be
synchronised in the final model.
If the cooperation set is empty, the two components pro-
ceed independently, with no shared activities. We use
a compact notation—with the two cooperands separated
by parallel lines—to represent this case.

PEPA is a high-level notation for Markov modelling because
it is possible to generate directly from a PEPA model a
continuous-time Markov process which faithfully encodes the
behavioural (same number of states; same transitions between
states) and temporal (same rates on the transitions) aspects of
the PEPA model. Through the analysis and solution of this
Markov process the modeller can undertake an experimental
investigation of the system which the model represents.

3 Modelling with UML and PEPA
The PEPA notation is more than simply a concrete syntax for
describing Markov processes. Central to the design of the lan-
guage is the identification and representation of compositional
structure within a model. This structure proves to be valuable
both in gaining confidence that a given model correctly repre-
sents the intended system under investigation and also when
seeking a solution for the corresponding Markov process.

One reason to fix on a formal notation for a task such as
performance modelling is to avoid misunderstanding and mis-
interpretation of a model. Of course, even when a notation is
carefully defined, as PEPA is, there may still be errors of mis-
representation of parts of the system within the model but all
of the users of the model can at least agree on the correct in-
terpretation of a given model through recourse to the formal
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definition of the language. Another reason to fix on a formal
notation for performance modelling is to be able to interface
to other tools which perform other services in the manipula-
tion and checking of models, and that is our topic here.

We bring the UML and PEPA notations together by form-
ing a bridge between two existing applications which sup-
port these languages, the ArgoUML modelling tool [3] and
the PEPA Workbench [4]. UML designs which are built us-
ing ArgoUML can be exported as XML Metadata Interchange
documents (XMI) [5] as a standard part of the ArgoUML
tool. The XMI format is used to represent UML models
when exchanging them with other tools, as here, and facil-
itates the analysis and manipulation of UML models using
standard XML tools [6]. We have developed an application
which automatically converts the XMI documents generated
by ArgoUML into the input file format of the PEPA Work-
bench. Fig. 2 shows screenshots of two ArgoUML designs
of simple communicating state machines together with the
equivalent descriptions in the PEPA stochastic process alge-
bra. With a slight abuse of notation we show the rates of the
transitions as UML actions. Thus a � rate

�
r � is used to repre-

sent the information that the activity a is performed at rate r
which is not the usual event/actions syntax for arc adornments
in UML state diagrams.

When it is provided with an input PEPA model the PEPA
Workbench explores the model to generate its full state space.
This state space is used to form a CTMC representation of the
system which is solved to find its steady-state probability dis-
tribution. As is usual with interleaving models of concurrent
systems, the size of the state space of the system as a whole
is bounded by the product of the state spaces of the individ-
ual PEPA components which are composed in parallel. Sim-
ply presenting this large probability vector back to the UML
modeller as the result of the analysis would be unlikely to
provide any insights into the long-run operation of the model,
or hotspots or bottlenecks in the system. For this reason we
look for an alternative means of communicating performance
measures.

4 Performance measures

The most general way to describe performance measures is
to build a reward structure on the model. However, associat-
ing locations in the equilibrium probability distribution with
syntactic states of the model exposes details of the representa-
tion such as orderings of components in the PEPA system de-
scription. Such an approach would generally require the UML
modeller to face much of the complexity of working directly
with Markov Chains. Higher-level description languages for
specifying performance measures exist, such as PMLµ [7] and
CSL [8], but these notations would be formidable for a typical
UML developer to use.

For this reason we aggregate the state space of the system

� ��� �
P1
��� a � r 	�
 P2; P2

��� b � s 	�
 P1

� ��� �
P3
��� a �
��	�
 P4;

P4
��� b � t 	�
 P3 � � c � r 	�
 P5; P5

��� b � s 	�
 P3

Fig. 2: Screenshots of UML designs in ArgoUML with PEPA
equivalents

over the local states of each PEPA component. This has two
beneficial effects:

1. it avoids the need for any descriptions of state-space rep-
resentations, whether high-level or low-level; and

2. instead of working with a large set of very small num-
bers the modeller works with a small set of numbers
which are orders of magnitude larger.

Our approach to specifying performance measures is to define
UML components which expose the configurations of interest
in the model. Behaviourally, such components may be re-
dundant, but they are necessary for expressing performance
measures over the model. Typically such components will
specify that they passively witness activites which have been
performed and change state in order to reflect this informa-
tion. By programming such components carefully it is possi-
ble that they do not increase the state space of the underlying
Markov Chain but allow the modeller to observe that some se-
quence of activities has happened, and to learn the probability

4



of this. We term such components witnesses or witness com-
ponents. Thus a model of a system will be comprised of com-
ponents which capture the dynamics of the system and wit-
nesses which are introduced to allow the expression of perfor-
mance measures over the system. We have used this approach
previously [9].

We illustrate the use of this method with a resource exam-
ple and a queue example. One performance measure which
is typically of interest is the calculation of the utilisation of
resources in the system. To do this the modeller need only ex-
press the resource as a simple component as described below
and the utilisation can be directly read from the model solu-
tion as the percentage of time that the component spends in the
Busy state. This points to resources which are under-utilised,
or over-utilised.

��� An idle resource can be acquired � �
Idle

def� �
acquire � r1 ��� Busy

��� A busy resource can be released � �
Busy

def� �
release � r2 ��� Idle

Taking the idea a little further, a finite-capacity M/M/n queue
can be specified in PEPA with a list of component definitions
ending with the following one.

��� no arrivals are allowed when the queue is full � �
Queuen

def� �
serve � µ ��� Queuen � 1

The percentage of time that the queue will be full can be read
off directly from the updated UML description. This points to
the possibility of clients sending requests faster than they can
be serviced by a server.

5 Software architecture
In this section we describe the architecture of our application.
We have built on two existing software tools, ArgoUML and
the PEPA Workbench. We have used ArgoUML with no mod-
ifications, so (up to minor XMI version differences) it could
be replaced by any other XMI-capable UML tool. We mod-
ified the PEPA Workbench to make communication between
the two tools easier. We begin by first describing these two
tools for the benefit of readers who are not familiar with them.
The architecture of the system is summarised in Fig. 3.

.xmi

.xmi

.pepa

.xml

Extractor

Reflector

Argo PEPA
Workbench

UML

Fig. 3: Software architecture of the tool

5.1 ArgoUML

ArgoUML is a modelling tool which supports software devel-
opers who are producing software designs using UML. It pro-
vides many features which are familiar from existing CASE
tools. Examples of these are editors for graphical notations
such as class diagrams and state diagrams.

In addition, one of the distinctive features of ArgoUML
is that it provides good support for the cognitive aspects of
design, including supporting informal note-taking on “To Do”
lists and other creativity aids. In all, it provides a professional
and thoughtfully-engineered UML development platform.

As with most modern UML tools, ArgoUML exports UML
models in the XMI document format, and loads saved models
from the same XMI format. This provides the import and
export formats for our other tools. The XMI document writ-
ten by ArgoUML is read by our Extractor tool. The same
XMI document and the results from processing by the PEPA
Workbench (in XML format) are read by the Reflector tool
to provide an updated input document which is loaded by
ArgoUML.

5.2 The PEPA Workbench

The PEPA stochastic process algebra is supported by a range
of tools including the PEPA Workbench [4], the Möbius
Modeling Framework [10], the PRISM probabilistic symbolic
model checker [11] and others [12]. We have used the PEPA
Workbench so far in this work but the design of our compan-
ion Extractor and Reflector tools is general-purpose so that
it would be possible to adapt our work to use either Möbius
or PRISM instead. Both Möbius and PRISM offer capabili-
ties which the PEPA Workbench does not. Möbius supports
multi-paradigm modelling where PEPA models are combined
with SANs or ball-and-bucket models as used by MARCA.
PRISM provides probabilistic symbolic model checking al-
lowing models to be checked against CSL formulae. Both of
these tools could be valuable in our ongoing work but an engi-
neering challenge would remain to allow the UML modeller
to access their powerful capabilities without first needing to
master their technical foundations.

The PEPA Workbench exists in two distinct versions. The
first version is an experimental research tool which is coded in
the functional programming language Standard ML [13]. The
second is a re-implementation of this in the Java programming
language. These are known as “the ML edition” and “the Java
edition” respectively.

We adapted the Java edition of the PEPA Workbench to in-
teroperate with our Extractor and Reflector tools. The Java
edition provides a graphical user interface to assist the PEPA
modeller in working with models, accessing tools such as the
state finder tool, the simulator or the walkabout utility and
choosing between a range of steady-state and transient solvers
and a range of output formats. It would be impractical to use
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this user interface together with the ArgoUML application so
we added a command-line interface to the PEPA Workbench,
allowing it to be configured with a range of command-line
switches. One of these switches requests the Workbench to
aggregate the performance results of the model over the lo-
cal states of each PEPA component. Each such component is
a simple sequential state machine which corresponds directly
to a UML state diagram. Each of these has a very small state
space relative to the state space of the model as a whole, mak-
ing the result set much more compact. Of course this com-
pactness is necessarily achieved at the expense of losing in-
formation about particular states of the global state space.

The PEPA Workbench processes an input PEPA model
which the Extractor generates from an input UML model in
XMI format. It writes its results as an XML document which
is processed by the Reflector tool.

The PEPA Web page at http://www.dcs.ed.ac.uk/
pepa is the download site for the PEPA Workbench and sup-
porting software and papers.

5.3 The extractor and reflector tools

The extractor and reflector for PEPA also exist in two distinct
versions.

The extractor and reflector were first implemented as stand-
alone applications in the Python programming language [14].
These versions of these tools allow a UML modeller to ac-
cess the PEPA tools as an alternative back end to their UML
modelling tools. This provides a type of UML model analysis
(computation of steady state residence probabilities) which is
not currently available in the UML tools.

The extractor and reflector are also available as Java pack-
ages within the Java edition of the PEPA Workbench. This
implementation allows PEPA modellers to use the UML tools
as an alternative front end to the PEPA modelling tools. This
provides a type of PEPA model representation (graphical de-
scriptions of communicating state machines) which is not cur-
rently available in the PEPA tools.

Further descriptions of these extractors and reflectors now
follow.

5.3.1 The Extractor as a Python module

The Extractor application has been implemented as a Python
module. It reads in the XMI file generated when saving a
UML model with ArgoUML (or a similar tool) and returns
the corresponding input file for the PEPA Workbench.

We use the Minidom XML parser to parse the XMI file.
Once we have converted the XMI file stream into a DOM ob-
ject, we can then access the individual tags by name. The
document is represented as a tree structure. When processing
the XMI file we look for all the elements that we will need to
provide in the PEPA model which we produce as output.

We have developed five different modules:

� Extractor, to extract information from a UML model;
� PEPA Extractor, to extract information specific to

PEPA;
� StateMachine, to extract information related to statema-

chines and their components;
� Collaboration, to extract information related to collabo-

ration diagrams; and
� Cooperation, to generate the PEPA system equation

(from the collaboration diagram).

An object of class Extractor can perform a number of fun-
demental operations. The two key methods are parse() and
get element().

The PEPA Extractor class defined in this module is a sub-
class of the Extractor class. All methods of the Extractor class
are inherited.

The most significant method of this class is gener-
ate PEPA(). It calls three further methods (generate rates(),
generate terms() and generate system equation()) to fill an
array PEPA output with the PEPA syntax corresponding to
the current model.

The classes StateMachine and Collaboration call a con-
structor that accepts an object of class Extractor which is later
used to retreive elements from the DOM model.

The class StateMachine provides methods and functions to
extract information related to state machines and their com-
ponents from the model.

The class Collaboration provides a method which is named
get associations. This returns an array containing pairs of as-
sociated instances.

The Cooperation module contains the definitions for two
classes: Node and Leaf. When the PEPA Extractor is gener-
ating the system equation, it builds a tree consisting of nodes
and leaves. A Node represents a cooperation ( �
	 ), consisting
of left and right branches, and a set of synchronisers. A Leaf
contains a state, and the class instance from the collaboration
diagram that it represents.

Now, we have all we need in order to write a PEPA Work-
bench input. First, we print each rate. Then, we print for
each state machine a defining PEPA expression of the fol-
lowing form: #source=(workload,rate).target+... For
each state, if it is a source, we find its transitions with the
correct workload, rate and target.

Taking the information from a UML collaboration diagram
as shown in Figure 4 we can assemble a collaboration line
(e.g. P1<a,b>P3). We look for the initial states using the
matching of context and classifier role, and then look for the
activity names in the synchronisation set.

5.3.2 The Reflector as a Python module

The Reflector takes as its parameter the original XMI file and
the XML file that contains all the results from the PEPA Work-
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� ��� �
A �
	�

a � b � B

Fig. 4: UML collaboration diagram

bench. It returns a modified XMI file, which when loaded in
ArgoUML will show the modified model.

We use Minidom to parse the original XMI file and also
to build the modified XMI file by creating the branches and
leaves of the document. The xml.dom.minidom module sup-
ports a very simple interface for adding new XML tags and
data to an XML document.

We parse the XMI file corresponding to the UML model
and the XML file corresponding to the PEPA Workbench re-
sults. When processing the PEPA Workbench results file, for
each state, we look for the probability tag and identify its
value. Then we modify our original XMI file where for each
statemachine, for each state, we add the corresponding
probability.

5.3.3 The Extractor as a Java package

There are two primary classes in the extractor package: Ex-
tractor and PEPA Extractor.

The class Extractor performs file handling, DOM parsing,
and provides convenient methods to make certain information
in the DOM tree more accessible.

The parse() method takes an object of class File. If the file
is a compressed archive (Zargo) file, it will locate the XMI file
within the archive using the java.util.zip package. The XMI
file is parsed using the javax.xml.parsers.DocumentBuilder
DOM parser resulting in a Document object put into dom doc.
The file will be put into xmi file. A successful parse will re-
turn true, otherwise false will be returned.

The getElement() method will return the Element from the
DOM tree whose xmi.id attribute matches the given string
value. This can be quite time consuming, and so a cache table
is maintained called dom element cache.

The getName() static method locates the “name” child of
the specified node. The value of this node is returned. Any
existing performance annotations are ignored.

The getChild() static method will return the child of the
specified node, whose tag name matches the given string
value.

The getByRef () method uses getChild() to locate the named
child of the specified node. The child of this node will have
an attribute xmi.idref. Using the getElement() method, the
node with the matching xmi.id attribute is returned. The
getAllByRef () method returns all such referenced nodes.

The getOwned() static method uses getChild() to locate the
“ownedElement” child of the specified node. All children of
this child are returned.

The class PEPA Extractor is a subclass of the class Extrac-
tor. It extracts from the DOM tree the information needed to
generate a corresponding PEPA model. As it does so, an ab-
stract syntax is generated which is then converted into a con-
crete, string representation.

There are a number of methods used to locate specific ele-
ments in the model or parts of it, in particular State Diagrams
and Collaboration Diagrams. Although important, these do
not affect the generation of the PEPA model. (One point
worth noting is that the return type of getAssociations(), a
two-dimensional array of Element objects, represents an ar-
ray of pairs of associated Elements). The methods described
below are used in the generation of the PEPA model.

The generatePEPA() method makes three calls
to getPEPA definitions(), getPEPA rates() and get-
PEPA cooperation() in that order and returns an array
of strings. Although the rates appear before the definitions in
the output, they are generated by getPEPA definitions() and
so the order in which they are called matters.

The getPEPA definitions() method converts to string rep-
resentation the Definition objects returned by generate-
PEPA definitions() which takes a single StateMachine El-
ement object. For each State Element in the state ma-
chine, generatePEPA definitions() produces a Definition ob-
ject, composed of objects from the pepa.process package. The
behaviours in a definition are sorted on target state, and the list
of definitions corresponding to a state machine are sorted with
the initial state first.

The getPEPA rates() method produces a number of rate
variable assignments, initialising to a default value all rate
variables encountered while producing the component be-
haviours.

The getPEPA cooperation() method produces a single
PEPA cooperation component, composed of the atomic co-
operations created by generatePEPA cooperations() from
the associations in the Collaboration Diagram. There are
two classes used to represent cooperations: CoopNode and
CoopLeaf. An object of the CoopLeaf class has two
field values determining its identity: the components ini-
tial State Element object and an Element representing the
ClassifierRole (a particular instance of a class). There is a
difference worth noting between the two contains() methods
in both classes. One takes a CoopLeaf object as an argument,
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the other an State Element object. The former will return
true iff the CoopNode or CoopLeaf on which it is called con-
tains an exact match, or is itself an exact match of the given
instance. The latter will return true if there is another in-
stance of the same class present. This makes it possible to
successfully insert repeated components.

The writePEPA() method calls the generatePEPA()
method, and writes the model that is returned to a .pepa file.
The filename is determined from the input filename, simply
replacing the .xmi or .zargo with .pepa and writing the file
to the same directory.

5.3.4 The Reflector as a Java package

There is one class in this package called Reflector. This sim-
ple class has two static fields which store the original XMI
or compressed archive (Zargo) file that was parsed using the
PEPA Extractor, and the XML file that holds the results gen-
erated by the PEPA Workbench.

The static method reflect() then performs the reflection.
The two files are parsed using the parse() method of the Ex-
tractor class, the parsed Document objects being returned us-
ing its getDocument() method. The results contained within
the XML file are extracted to a hashtable containing probabil-
ities indexed by the states they represent. The XMI model is
then updated with the results by annotating each state name
with the probability associated to it. All state names must be
unique. The PEPA Workbench will fault any model in which a
component has more than one definition as being semantically
ill-formed and print a diagnostic error message explaining the
fault.

The modified model is then written back to file. If the
original file had the suffix .xmi, the suffix of the reflected
model will be .reflected.xmi. Similarly with a compressed
archive file. This ensures the original model is not actually al-
tered.

5.3.5 Using the Java packages

These two packages become pepa.extractor and
pepa.reflector respectively. The two methods of invo-
cation either instantiate the pepa.gui.jpwb class or the
pepa.tty.JPWBtty class. The former is an interactive version
of the Workbench, which allows the modeller to use any
of the PEPA Workbench analysis methods, for example
computing transient analysis measures, simulating the model
or single-stepping through it with the debugger. This version
is best suited for PEPA modellers who are using the UML
tools as a graphical editor for PEPA. The latter performs
the loading and solving at the command line, computing
steady-state probabilities for the model. This version is best
suited for UML modellers who are using the PEPA tools to
provide an analyser for their UML model.

In both cases, before the point at which the model is loaded
in the method loadmodel(), before the filename is processed
further by the PEPA Workbench, a check is performed to de-
termine if the input file is an XMI or a compressed archive
file. If it is indeed one of these, the PEPA Extractor is instan-
tiated, the model parsed, and the PEPA model generated. The
filename of this new .pepa file is then passed on for loading
into the PEPA Workbench.

When the PEPA Extractor successfully parses a model,
the File object is passed to the Reflector using its static se-
tOriginal() method. Similarly, when the PEPA Workbench
solves a model and produces an XML results file, a File
object is passed to the Reflector using its static setResults()
method. The latter call is performed by solve() method of the
pepa.pepa.Peparoni class.

Once the Reflector has the two files it needs to proceed with
reflection, the static reflect() method is called, again by the
solve() method of the pepa.pepa.Peparoni class. If reflection
is not intended to occur, at least one of the File objects will
remain at its default value of null and the method will fail
safe.

6 The extractor algorithm
In this section, and in Fig. 5, 6 and 7, we describe the algo-
rithm for extracting PEPA models from UML state diagrams
and collaboration diagrams.

The algorithm for generating definitions of sequential com-
ponents from state machines is relatively simple and involves
traversing the transitions of the state diagrams and accumulat-
ing behaviours which are presented as choices in the defini-
tion of the component. The generate definitions algorithm is
presented in Fig. 5.

1: terms � empty list
2: for each statemachine S do
3: for each state s (of S) do
4: beh � empty list
5: for each outgoing transition t (of s) do
6: w � name of trigger event of t
7: r � contents of “rate(...)” expression of t
8: target � name of target state of t
9: beh � beh + “(w, r).target”

10: end for
11: n � name of state s
12: terms � terms + “# n = beh0 [ + beh1 [ + ... ] ]”
13: end for
14: end for
15: return terms

Fig. 5: Algorithm generate definitions

Transforming the diagrammatic representation of a sequen-
tial state machine into the textual description of a sequential
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PEPA component is the most straightforward part of the ex-
traction process. The more complex part is the extraction of
the instances of these machines which are composed in par-
allel in the PEPA system equation. These components are in-
stantiated by cooperation sets which specialise their behaviour
and define the patterns of communication between instances.

The algorithm to generate the PEPA system equation tra-
verses the collaboration diagram (an undirected graph) in or-
der to generate an abstract syntax tree of the system equa-
tion. The nodes in this tree are cooperations between a left
cooperand and a right cooperand over a set of activity names.
Either of the left or right cooperand might be other nodes or
they might be leaves containing instances of the sequential
components extracted from the state diagrams.

1: cooperations � empty list
2: for each association a (of the collaboration diagram) do
3: left inst � left element of a
4: right inst � right element of a
5: left sm � statemachine of the class of left inst
6: right sm � statemachine of the class of right inst
7: left � Leaf (initial state of left sm, left inst)
8: right � Leaf (initial state of right sm, right inst)
9: sync � (events in left sm) � (events in right sm)

10: cooperations � cooperations + Node(left, sync, right)
11: end for
12: root � first element in cooperations
13: remove first element from cooperations
14: while cooperations is not empty do
15: counter � 0
16: for each cooperation c (in cooperations) do
17: root � insert(root, c) /* see Fig.7 for insert */
18: if root has changed then
19: remove c from cooperations
20: counter � counter + 1
21: end if
22: end for
23: if counter is still 0 then
24: break while /* fixed-point found */
25: end if
26: end while
27: sys eqn � convert root to string
28: return sys eqn

Fig. 6: Algorithm generate system equation

The algorithm generate system equation, presented in
Fig. 6, traverses the collaboration diagram graph in an arbi-
trary order to build a list of pairwise collaborations between
instances of sequential components. Synchronisation sets are
inferred for these pairings. The synchronisation set which is
inferred is the set of actions which are common to both the
left cooperand and the right cooperand.

The list of collaboration pairs which is produced by this

insert(root, new, times � 0)

1: if root is a Leaf and new is a Leaf then
2: return Node(root, [], new)
3: else if root is a Leaf then
4: return new
5: else if new is a Leaf then
6: if root � left contains a new instance then
7: new left � insert(root.left, new)
8: return Node(new left, root � actions, root � right)
9: else if root � right contains a new instance then

10: new right � insert(root.right, new)
11: return Node(root � left, root � actions, new right)
12: else
13: return root unchanged
14: end if
15: end if
16: if root � left contains new � left and root � right contains

new � right then
17: new actions � root � actions � new � actions
18: return Node(root.left, new actions, root.right)
19: else if root � left contains new � left then
20: if root � right contains a new � right instance then
21: if new.actions � root.actions then
22: new right � insert(root.right, new.right)
23: return Node(root.left, root.actions, new right)
24: end if
25: end if
26: new left � insert(root.left, new)
27: return Node(new left, root.actions, root.right)
28: else if root � right contains new � right then
29: if root � left contains a new � left instance then
30: if new.actions � root.actions then
31: new left � insert(root.left, new.left)
32: return Node(new left, root.actions, root.right)
33: end if
34: end if
35: new right � insert(root.right, new)
36: return Node(root.left, root.actions, new right)
37: end if
38: if times � 0 then
39: return root unchanged
40: end if
41: swap left and right leaves of new
42: return insert(root, new, 1)

Fig. 7: Algorithm insert

process is then folded to build the system equation. This is
achieved by repeated inserting a new collaboration into an ex-
isting (initially empty) system equation.

The algorithm to perform this insertion is surprisingly com-
plex (Fig. 7). Most of the complexity stems from the com-
monly occurring case where a model contains more than one
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instance of a given sequential component. For example, a
model of a system which has two servers and ten clients would
have two instances of the Server component and ten instances
of the Client component.

In building the system equation for such a system it is
essential that the repeated copies of a component definition
are not forced to synchronise on all of their common actions.
Since all of their actions are common, this would force them
to operate in lockstep, instead of as independent replicated
instances of a component. If a modeller wished to represent
two instances of a component operating in lockstep then they
would represent this explicitly in the collaboration diagram
with a collaboration link between the two instances.

The operation of the insert algorithm is complex, but the
key to understanding its operation is to know that it is check-
ing for repeated instances of components within a system
equation and avoiding the accidental capture of one compo-
nent’s behaviour by the synchronisation sets governing the
behaviour of another copy of this component.

7 A simple example

We demonstrate our method on a simple generic example
model. The model is formed by a composition of a two-state
component and a three-state component. To make this generic
example more concrete, the two-state component might rep-
resent a client which requests a service and receives a reply
and the three-state component might represent a proxy server
which sometimes replies directly but at other times connects
to another server before replying.

Fig. 2 shows the original UML model used for our exam-
ple. When this UML model is saved in ArgoUML, an XMI
file is generated. If we use the Extractor with this XMI file,
we obtain the PEPA model which is shown in Fig. 8 in the
concrete syntax of the PEPA Workbench. This is used as the

%r = 2.0;
%s = 2.0;
%t = 2.0;
#P4 = (c,r).P5 + (b,t).P3;
#P5 = (b,s).P3;
#P3 = (a,infty).P4;
#P1 = (a,r).P2;
#P2 = (b,s).P1;
P1 < a,b > P3

Fig. 8: PEPA model generated by the Extractor tool

input for the PEPA Workbench which then produces its re-
sults in an XML file. We can now use the Reflector to modify
the original XMI file, and make the probability of each state
appear on the UML diagrams (see Fig. 9).

� ��� �
P1 : 50 
 0% � P2 : 50 
 0%

� ��� �
P3 : 50 
 0% � P4 : 25 
 0% � P5 : 25 
 0%

Fig. 9: Screenshots of ArgoUML incorporating PEPA results

8 Case study: a location tracking
system

As an example here we consider the problem of modelling a
system where the location of people and equipment within a
building is monitored by a central tracking system. The James
Clerk Maxwell Building at The University of Edinburgh is no-
toriously confusing to navigate and a tracking system would
be helpful in finding those visitors who get lost in the maze
of corridors. The system would also help secretaries find pro-
fessors who may be in any number of teaching and meeting
rooms or colleagues’ offices and would be an invaluable aid in
the hunt for the (non-networked) laptop computers which can
be borrowed for the secure preparation of examination papers.

Location tracking systems such as these are implemented
by the use of active badges, credit-card sized devices which
transmit unique infra-red signals which are detected by net-
worked sensors. Systems such as these are already in use in
several European universities and in research laboratories in
the USA. The battery life of such a device has typically been
found to be around a year [15] so it is necessary to tune the
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Fig. 10: The state diagram for a person

performance of the system by adjusting the rate at which reg-
istration is performed in order to conserve battery power while
simultaneously ensuring that the system gives accurate loca-
tion information.

A Markovian stochastic process algebra such as PEPA is
well suited to modelling this system because exponential reg-
istration intervals are used to prevent the repeated collisions
between transmitting badges which would result in lost mes-
sages [16]. This is the same use of randomness as found in
the Aloha packet-switching network: without it, a collision
would inevitably be followed by another collision.

To keep the example small we will consider the simple case
of tracking the progress of a single person around a single
floor of a building. The floor has three corridors which are
numbered 14, 15 and 16, and we assume that there is only a
single sensor in each corridor. The corridors are arranged in
a U-shape so that it is possible to go from the 14 corridor to
the 15 corridor and then to the 16 corridor (and the other way,
of course) but it is not possible to go from the 14 to the 16
corridor directly.

The behaviour of a person P who is wearing an active
badge can be described in terms of their movement from one
corridor to a neighbouring one and the registration of their
badge with the nearest sensor. The UML diagram which de-
scribes this behaviour is shown in Fig. 10.

The PEPA definitions which are extracted from this dia-
gram by the PEPA Extractor are shown below.

P14
def� �

reg14 � r � � P14 � �
move15 � m ��� P15

P15
def� �

move14 � m ��� P14

� �
reg15 � r � � P15

� �
move16 � m ��� P16

P16
def� �

reg16 � r � � P16 � �
move15 � m ��� P15

Sensors accept registration information and report this back
to the central database. The state diagram for the sensor in
the 14 corridor is shown in Fig. 11. The state diagrams for the
other sensors are similar.

The PEPA definitions extracted from the sensor diagrams
are shown below.

S14
def� �

reg14 ��� ��� S �
14

S
�
14

def� �
rep14 � s ��� S14

S15
def� �

reg15 ��� ��� S �
15

Fig. 11: The S14 sensor state diagram

S
�
15

def� �
rep15 � s ��� S15

S16
def� �

reg16 ��� � � S �
16

S
�
16

def� �
rep16 � s ��� S16

For a system with only one person to be tracked the database
need only store the most recently reported position. The
database updates its location information as it receives reports
from the sensors, changing state to store this information. The
state diagram for this component is shown in Fig. 12.

Fig. 12: The database state diagram

The PEPA definitions extracted from the database state di-
agram by the PEPA Extractor are shown below.

DB14
def� �

rep14 ��� ��� DB14 � �
rep15 ��� � � DB15

� �
rep16 ��� ��� DB16

DB15
def� �

rep14 ��� ��� DB14 � �
rep15 ��� � � DB15

� �
rep16 ��� ��� DB16

DB16
def� �

rep14 ��� ��� DB14 � �
rep15 ��� � � DB15

� �
rep16 ��� ��� DB16

In the complete system the badge-wearer will move asyn-
chronously but will register with the sensors. The sensors are
independent but they all report back to the database. There
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is no direct connection between the person and the database.
All flow of information is routed through the sensors in the
system. This structural information about the connectivity of
the system is recorded in the collaboration diagram shown in
Fig. 13.

Fig. 13: The collaboration diagram for the location tracking
system

We can initialise the system in any state we wish, perhaps
with the badge-wearer in the 14 corridor and the database also
recording this. If a PEPA modeller was composing this model
directly without using our Extractor and Reflector tools then
it would be likely that they might express the system equation
for the model as shown below [17]:

P14 � 	�
regi � � S14

�
S15

�
S16 � �
	�

repi � DB14

This expresses the information which is recorded in the col-
laboration diagram (for example, that there is no direct con-
nection between the person and the database, nor are any two
sensors directly linked). However, the actual system equation
which is generated by our Extractor is syntactically different,
but semantically identical. The system equation is obtained
by a graph traversal of the collaboration diagram leading to
the following expression.� �

P14 � 	�
reg14 � S14 � �
	�

reg16 � rep14 � � DB16 � 	�
rep16 � S16 ��� �
	�

reg15 � rep15 � S15

This expression is not as tidy and compact as the one which
an experienced PEPA modeller would produce but it is impor-
tant to remember that the modeller using our Extractor and
Reflector tools need never see this expression. The mode of
operation with the PEPA Workbench is simply to load either
an XMI file or a Zargo archive directly. The corresponding
PEPA file is generated from this and loaded in one step with-
out the need for further intervention. After this model has
been run (to generate its state space) solving it to steady state
solution will generate a modified XMI file or Zargo archive

in the same directory as the original input. The PEPA Work-
bench is shown processing the location tracking system model
in Fig. 14.

Fig. 14: The PEPA Workbench solving the location tracking
system model

9 Related work

Ours is not the first work on using UML with stochastic pro-
cess algebras, nor even the first on using UML with PEPA.
Pooley [18] previously discussed generating PEPA models
from a combination of sequence diagrams, collaboration di-
agrams, and a combined collaboration/state diagram. His
method differs from ours in that more types of diagram are
used and there seems to be no automatic procedure used to
generate the PEPA model from the UML. In contrast, our
method is automatic and can be re-run after changes to the
UML model in order to generate and solve an equivalent up-
dated PEPA model.

Mitton and Holton undertake an alternative mapping be-
tween PEPA and UML statecharts [20] but again their method
does not appear to be automated.

In another paper Thomas, Munro, King and Pooley com-
bine PEPA models with graphical notations for visualising
derivation graphs, PEPA component interfaces and other as-
pects of the system under study [21]. This work provides an
interesting insight into the PEPA modelling language for mod-
ellers who are not familiar with the notation. Their approach
is supported by a prototype tool. Our contribution here dif-
fers in that we are using a standard and widely-understood
modelling language (UML) instead of more specialised, but
necessarily less well-understood bespoke graphical notations.

A work closely related to ours in spirit, if not in detail,
is recent work by Petriu and Shen which maps UML models
via XMI into layered queueing network (LQN) performance
models [22]. This mapping is in one direction only, so that
UML models are mapped into LQN models but there appears
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to be no mapping of the performance results obtained from
the LQN model back up to the UML level. Thus their tool
appears to be similar to our Extractor tool, combined with the
PEPA Workbench, but without an equivalent of our Reflector
tool.

10 Conclusions

We have presented a method of deriving performance infor-
mation from UML models. Our method is unusual in that
it greatly reduces the amount of additional notation and con-
cepts which need to be understood by the modeller when com-
pared to working directly with stochastic process algebras,
Petri nets, queueing networks or other traditional performance
modelling formalisms. The method is supported by a tool set
which comprises some existing modelling tools (ArgoUML
and the PEPA Workbench) and other translators which we
have written to connect them (the Extractor and the Reflec-
tor). The translators which interconnect the applications are
general-purpose and can be adapted to work with other mod-
elling tools.

We have applied our approach to a range of small exam-
ples. We plan to investigate its usefulness when applied to
larger examples.

We have used a bespoke method of adding performance in-
formation to UML models here. We also plan to investigate
more standard ways of representing the performance informa-
tion in UML. This will probably use the Schedulability Per-
formance and Time profile [23], as used by Petriu and Shen,
depending on the availability of appropriate UML tool sup-
port.

Acknowledgements: The authors are supported by the
DEGAS (Design Environments for Global ApplicationS)
project IST-2001-32072 funded by the FET Proactive Initia-
tive on Global Computing.

A Operational semantics and the
underlying CTMC

Model components capture the structure of the system in
terms of its static components. The dynamic behaviour of
the system is represented by the evolution of these compo-
nents, either individually or in cooperation. The form of this
evolution is governed by a set of formal rules which give an
operational semantics of PEPA terms. The semantic rules, in
the structured operational style of Plotkin, are presented in
Fig. 15 without further comment; the interested reader is re-
ferred to [2] for more details. The rules are read as follows: if
the transition(s) above the inference line can be inferred, then
we can infer the transition below the line.

Prefix

�
α � r � � E � α � r �� ����� E

Cooperation

E � α � r �� ����� E
�

E �
	
L

F � α � r �� ����� E
� � 	

L
F

�
α �� L �

F � α � r �� ����� F
�

E �
	
L

F � α � r �� ����� E �
	
L

F
�
�
α �� L �

E � α � r1 �� ����� E
�

F � α � r2 �� �	��� F
�

E �
	
L

F � α � R �� �	�
� E
� �
	

L
F

�
�
α � L �

where R � r1
rα � E �

r2
rα � F �

min
�
rα

�
E ��� rα

�
F � �

rα
�
E � is the apparent rate of α in E

Choice

E � α � r �� �	�
� E
�

E � F � α � r �� ����� E
�

F � α � r �� �	��� F
�

E � F � α � r �� �	��� F
�

Hiding

E � α � r �� ����� E
�

E � L � α � r �� ����� E
� � L

�
α �� L �

E � α � r �� ����� E
�

E � L � τ � r �� ����� E
� � L

�
α � L �

Constant

E � α � r ���� E
�

A � α � r ���� E
�
�
A

def� E �

Fig. 15: The operational semantics of PEPA
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Thus, as in classical process algebra, the semantics of each
term in PEPA is given via a labelled multi-transition system—
the multiplicities of arcs are significant. In the transition sys-
tem a state corresponds to each syntactic term of the language,
or derivative, and an arc represents the activity which causes
one derivative to evolve into another. The complete set of
reachable states is termed the derivative set of a model and
these form the nodes of the derivation graph formed by ap-
plying the semantic rules exhaustively.

The timing aspects of components’ behaviour are not repre-
sented in the states of the derivation graph, but on each arc as
the parameter of the negative exponential distribution govern-
ing the duration of the corresponding activity. The interpreta-
tion is as follows: when enabled an activity a � �

α � r � will de-
lay for a period sampled from the negative exponential distri-
bution with parameter r. If several activities are enabled con-
currently, either in competition or independently, we assume
that a race condition exists between them. Thus the activity
whose delay before completion is the least will be the one to
succeed. The evolution of the model will determine whether
the other activities have been aborted or simply interrupted
by the state change. In either case the memoryless property
of the negative exponential distribution eliminates the need to
record the previous execution time.

When two components carry out an activity in cooperation
the rate of the shared activity will reflect the working capacity
of the slower component. We assume that each component
has a capacity for performing an activity type α, which cannot
be enhanced by working in cooperation (it still must carry out
its own work), unless the component is passive with respect
to that activity type. For a component P and an action type
α, this capacity is termed the apparent rate of α in P. It is
the sum of the rates of the α type activities enabled in P. The
apparent rate of α in a cooperation between P and Q over α
will be the minimum of the apparent rate of α in P and the
apparent rate of α in Q.

The derivation graph is the basis of the underlying Con-
tinuous Time Markov Chain (CTMC) which is used to de-
rive performance measures from a PEPA model. The graph
is systematically reduced to a form where it can be treated as
the state transition diagram of the underlying CTMC. Each
derivative is then a state in the CTMC. The transition rate
between two derivatives P and Q in the derivation graph is the
rate at which the system changes from behaving as component
P to behaving as Q. It is denoted by q

�
P� Q � and is the sum

of the activity rates labelling arcs connecting node P to node
Q. In order for the CTMC to be ergodic its derivation graph
must be strongly connected. Some necessary conditions for
ergodicity, at the syntactic level of a PEPA model, have been
defined [2]. These syntactic conditions are imposed by the
grammar introduced earlier.
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