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ABSTRACT
We present a software tool platform which facilitates secu-
rity and performance analysis of systems which starts and
ends with UML model descriptions. A UML project is
presented to the platform for analysis, formal content is
extracted in the form of process calculi descriptions, anal-
ysed with the analysers of the calculi, and the results of
the analysis are reflected back into a modified version of
the input UML model. The design platform supporting the
methodology, Choreographer, interoperates with state-of-
the-art UML modelling tools. We illustrate the approach
with a well known protocol.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques;
I.6 [Simulation and modeling]: Model Development—
Modeling methodologies; D.2.8 [Software Engineering]:
Metrics—complexity measures, performance measures; C.2
[Computer-communication networks]: Network Pro-
tocols—Protocol verification

General Terms
UML, performance modelling, communications protocols,
static analysis

1. INTRODUCTION
Choreographer is an integrated design platform for coher-
ent and consistent qualitative and quantitative modelling
of software systems. It processes UML models as its input,
and writes modified versions of these as its output. The
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architecture of the tool is to consider the interface to a
specification environment (SENV) and a processing inter-
face to a verification environment (VENV). Models which
are input for analysis are channelled from the SENV to
the VENV via software connectors known as extractors.
The extracted formal content is passed to the VENV for
analysis. The results of the analysis are recombined with
the input model and channelled from the VENV back to
the SENV via software connectors known as reflectors. In
the specific configuration of the architecture which we dis-
cuss here the SENV is the Poseidon UML platform from
Gentleware [1] and both the LySatool [2] and the PEPA
Workbench [3, 4] are VENVs.

The qualititative analysis is deployed to investigate the
security of the communication protocols used in the appli-
cation. The analysis guarantees there are no successful
attacks on the authentication of the communicated mes-
sages. In the case where authentication may be breached
the analysis reports where the breach may occur.

The quantitative analysis which is provided is a perfor-
mance analysis of the system model. This identifies com-
ponents which are under-utilised or over-utilised indicat-
ing poor deployment of computational resources.

In the development of the Choreographer platform we
were concerned to support not only the UML notation
but the UML design process in order that UML develop-



ers would be comfortable with working with the platform.
That is, we devoted considerable effort in the design of the
extractors to ensuring that the UML was being used as
more than just a graphical syntax for the process calculi
beneath.

2. ENGINEERING ISSUES
Our functional requirements for the Choreographer
design platform were that it should provide access to
the analysis procedures of the PEPA performance analy-
sis tool (the PEPA Workbench in both its ML and Java
editions [3, 4]) and the LySa security analysis tool (the
LySatool [2]). In addition, it needs to interoperate with a
fully-featured UML tool.

Our non-functional requirements on the platform were
that we wanted to develop a professional quality tool in
a constrained time, with a modest budget for developer
effort. We also had the requirement that the tool should
be available across platforms (in our case, Windows and
Linux). We evaluated the generic IDEs of Eclipse and Net-
Beans and the Argo/UML, XDE, MagicDraw and Poseidon
UML tools. We took the decision to build the Choreogra-
pher platform on top of NetBeans on the Java platform
and have it interoperate with Poseidon. This decision was
a complex engineering compromise between a number of
conflicting tensions. Our choice went a considerable way
towards addressing portability concerns but the portabil-
ity issue was impacted also by the availability of the anal-
ysers and UML drawing tools we wanted to integrate with.

We wanted Choreographer to have two dimensions of
portability. The first is the most obvious one, that it
should run successfully on both Windows and Linux. This
requirement for code portability has been successfully
addressed. The second dimension of portability was that
we wanted the Choreographer platform to interoperate
with many UML tools via the standard XML Interchange
format (XMI) for UML diagrams. Choreographer needs
to deal with these because it reads from and writes into
this import/export format. This data portability require-
ment was the more difficult problem, and one which we
have not been able to solve perfectly. There are many ver-
sions of the XMI standard for UML, and different UML
tools implement their chosen version to a more or less sat-
isfactory extent. Some releases of the UML tools which
we tried wrote non-well-formed XMI output, even accord-
ing to their own criteria. Such inconsistency makes inter-
operation essentially a matter of writing a custom read-
er/writer pair for every version of every UML tool with
which one wants to interoperate, which is the trap which
standards such as XMI were intended to prevent develop-
ers falling into.

A configuration which we considered for Choreographer
was XDE and Eclipse together. The XDE UML tool is
provided as an Eclipse plug-in, so this is a natural cou-
pling. We rejected this combination because the XDE tool
is not available in a Linux release. We chose not to inter-
operate with MagicDraw because it is not freely available.
We could not work with Argo/UML because it did not rep-
resent some aspects of the UML diagrams in the XMI
format, thus crippling its use as an import/export model

exchange format.

A potential source of non-portability might have been the
formal analysis tools which we used. These had been
implemented in Java or the functional programming lan-
guage Standard ML. However, we discovered that the
Standard ML of New Jersey compiler which we used
had very closely conforming versions for Linux and Win-
dows, making the portability of these formal analysis tools
essentially only a matter of working around small differ-
ences in the versions of the standard library for the two
platforms. This level of minor tuning is also required for
application development in the Java language, which has
given more effort to ensuring cross-platform portability
than perhaps any other programming language.

3. PROTOCOLS AND AUTHENTICATION
The usual remedy to protect network protocols from inter-
vention by malicious attackers is to apply cryptography so
that parts of the messages may be kept outside the control
of the attacker. Many security properties such as confi-
dentiality, authenticity, non-repudiation, etc. are of inter-
est when considering whether a protocol is well-behaved
or not. Here, we focus on checking an authentication
property, namely that “messages protected by encryption
should only be decrypted at the right places”.

The verification technique we use builds on the modelling
of protocols in LySa, a process calculus in the π-calculus
tradition, specifically tailored to model central aspects of
security protocols [5]. A protocol is modelled in LySa in
scenario with several kinds of principals: an initiator of
the protocol, a responder, and a server, referred to as a
trusted third party, a key distribution centre, a certificate
authority, etc. Besides, there can be many principals act-
ing as initiators and as responders.

To specify the authentication property that encrypted
messages end up at the right places, the LySa process is
annotated: each encryption and decryption point is named
`, `′, etc., and is furthermore annotated with its intended
destinations and origins.

Our verification relies on a control flow analysis [5, 6] of
LySa that tells whether the authentication properties are
satisfied for all executions of the annotated LySa process,
executed in parallel with an arbitrary attacker process.
The analysis reports all possible breaches of the authen-
tication properties in an error component ψ: a pair (`, `′)
in ψ means that something encrypted at ` was decrypted
at `′ breaking the specified authentication property. The
analysis computes over-approximations of ψ, i.e. it may
report an error that is not actually there: [5] also illus-
trates why this is not a big problem in practice. To model
security protocols in UML consistently, we have defined a
specific profile [2]. The profile introduces stereotypes for
core concepts like principals, keys, and messages, and for
the concepts needed for the analysis.

To specify a protocol in UML so that the extractor cite-
ForLySa can feed the analyser [2], the designer exploits
the stereotypes in a class diagram presenting the struc-
ture of the protocol, with the intended communications,



the involved messages, and the local information of each
principal, like private keys, session keys, and temporary
storage, and their operation to build and dissect messages.
Besides, the structure of each message is specified in dis-
tinct diagrams, one per message type and includes the
decorations needed to specify the authentication property.
Conceptually, the information in the UML diagrams cor-
responds to what is modelled by a LySa process and the
decorations specifying the authentication property corre-
sponds to annotation of the LySa process.

The dynamics of the protocol is given in a sequence dia-
gram, which describes the typical run on the protocol.
Each message exchange is divided into three steps: 1. the
sender packages the message, 2. the message is commu-
nicated, and 3. the recipient processes the incoming mes-
sage. The operations are specified via post-condition con-
straints on the state of the principal. The places men-
tioned by the authentication properties are specified as
notes associated to the messages in steps 1 and 3 above.
These notes are placeholders that will support the notifi-
cation of eventual errors resulting from the analysis. If
the analysis reports an error being the pair (`, `′) in ψ, the
note introducing ` will be modified by the reflector to list
`′, thereby signalling the error reported by the analysis.

4. PERFORMANCE EVALUATION
Despite impressive improvements in the computational
power which is now available to end-users of computer
systems, computer equipment is still expensive to pur-
chase and maintain. Consequently, owners are often moti-
vated to make the best use of their available resources.
The analysis of computer systems through construction
and solution of descriptive models is a hugely profitable
activity: brief analysis of a model can provide as much
insight as hours of simulation and measurement [7].

Simple models of a computer system can be constructed
without any explicit notational support. However, as com-
puter systems become more complex so do their models
and the use of a high-level language to aid in their expres-
sion becomes necessary. Jane Hillston’s Performance
Evaluation Process Algebra (PEPA) [8] is an expressive
formal language for modelling distributed systems. PEPA
models are constructed by the composition of components
which perform individual activities or cooperate on shared
ones. To each activity is attached an estimate of the rate
at which it may be performed.

Using such a model, a system designer can determine
whether a candidate design meets both the behavioural
and the temporal requirements demanded of it. That is:
the protocol may be secure, but can it be executed quickly
enough to complete the message exchange within a speci-
fied time bound, with a given probability of success?

Rather than composing process calculus models directly—
although Choreographer also supports this mode of
operation—we extract these from UML class, state and
collaboration diagrams. For the purposes of performance
analysis we extract a process calculus model in PEPA. The
extractor for PEPA is documented in [9].

The relationship between the process algebra model and
the CTMC representation is the following. The process
terms (Pi) reachable from the initial state of the PEPA
model by applying the operational semantics of the lan-
guage form the states of the CTMC (Xi). For every set
of labelled transitions between states Pi and Pj of the
model {(α1, r1), . . . , (αn, rn)} add a transition with rate r
between Xi and Xj where r is the sum of r1, . . . , rn. The
activity labels (αi) are necessary at the process algebra in
order to enforce synchronisation points, but are no longer
needed at the Markov chain level.

Under conditions on the form of the model where every
state is positive-recurrent, every such CTMC has a sta-
tionary probability distribution over the states of the
chain. Knowing the rates associated with the activities
of the system this stationary probability distribution can
be obtained using procedures of numerical linear algebra
such as Gaussian elimination, conjugate gradient meth-
ods, or over-relaxation methods such as Jacobian over-
relaxation or successive over-relaxation.

Such a stationary probability distribution is rarely the
desired end result of the performance analysis process
but meaningful performance measures such as through-
put and utilisation can be directly calculated from the sta-
tionary distribution. State-space generation and numeri-
cal solution is the computationally expensive part of per-
formance analysis. The size of the state-space of the sys-
tem is bounded by the product of the sizes of the sequen-
tial components in the model and thus modelling with
continuous-time Markov chains is subject to the familiar
state-space explosion problem.

5. METHODOLOGY
The methodology which we follow is to first attempt a
security analysis and then, if this is successful, progress
to a performance analysis. The reasoning behind this
methodology is that the security analysis rests on static
analysis procedures which have a lower asymptotic com-
plexity than the state-space generation and iterative
numerical procedures which are needed for the perfor-
mance analysis. Thus, ordering them in this way poten-
tially gives a significant saving in the overall computation
time by avoiding the performance analysis of an erroneous
protocol.

Therefore, having described the protocol using a UML
sequence diagram we apply the For-LySa extractor to gen-
erate a LySa model which we analyse with the LySatool. If
the LySatool detects errors in the protocol, indicating that
it is insecure, the results are reflected back to the UML
level, so that we can view the results in the Poseidon tool.
Having identified these flaws we can repair the protocol
and continue with performance analysis. Here, we extract
a PEPA process algebra model from the UML input. We
solve this for its equilibrium probability distribution using
successive over-relaxation (SOR), then reflect. The infor-
mation returned from the analysis quantifies the percent-
age of time that the principals and the server spend in
their local states, pointing to performance-related prob-
lems such as under- or over-utilisation, starvation, bottle-
necks, or hotspots in the system. We can investigate the



potential benefits to be obtained by improving the imple-
mentation of the activities in the system, thereby identi-
fying the place or places where it will be most profitable to
spend developer effort.

Evidently, it is possible to discover at this stage that the
required improvements in the execution of the activities of
the system might be infeasible to achieve, especially in the
setting of weak computing devices such as smartcards or
low-end PDAs or in a thin client context with intermittent
or very narrow bandwidth connections between devices.
If this is the case, then a developer working at the early
modelling stage of the system development process would
need to revisit the initial protocol design and perhaps re-
design this to involve fewer message exchanges or reduce
the amount of asymmetric cryptography used. This will
initiate another cycle of security analysis and performance
analysis in pursuit of the levels of security and perfor-
mance demanded of the system.

6. RELATED WORK
Tool support for the automated analysis of security
requirements in the UMLsec framework [10] is described
and accessible at [11]. The relevant elements of the UML
specification are translated in the input language of the
model-checker SPIN and the dynamic property to be ver-
ified is translated in Linear Temporal Logic. The UML
models are stored in a MDR library, and accessed via the
generated JMI interface.

Work which is similar in spirit to our own approach is
that of Petriu and Shen [12] where a layered queueing
network model is automatically extracted from an input
UML model with performance annotations in the format
specified by a special-purpose UML profile [13]. We do not
follow the same UML profile because it is not supported
by our modelling tool. Additionally, the performance eval-
uation technology which we deploy (process algebras and
BDD-based solution) is quite different from layered queue-
ing networks.

Another performance engineering method which is sim-
ilar to ours is that of López-Grao, Merseguer and Cam-
pos [14] where UML diagrams are mapped into GSPNs
which can be solved by GreatSPN. We use different UML
diagram types from these authors and, again, a different
performance evaluation technology. Stochastic Petri nets
and stochastic process algebras have different, but com-
plementary, modelling strengths [15].

One feature of our work which is distinctive from both of
the above is the role of a reflector in the system to present
the results of the performance evaluation back to the UML
modeller in terms of their input model. We consider this
to be a strength of our approach. We do not only compile
a UML model into a performance model, we also present
the results back to the modeller in the UML idiom.
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7. APPENDIX A: DEMONSTRATION
As a running example in the demonstration, we will apply
Choregrapher to analyse variations on the Wide-Mouthed-
Frog authentication protocol, which was originally pre-
sented in [16].

This protocol describes key exchange between two princi-
pals (A and B) through a trusted server. A and B have
no prior communication history with each other but both
have previously contacted the server and have retained
keys KAS and KBS respectively. The protocol has three
steps.

1. Principal A sends a message to the server includ-
ing the name of B and the new session key KAB,
encrypted under KAS.

2. The server decrypts this and sends the name of A and
the new key KAB to B, encrypted under KBS.

3. Principal A sends a message to B encrypted
under KAB.

According to the DEGAS methodology, we first attempt a
security analysis. For the sake of demonstration, we try
first with a flawed version, which we then correct and sub-
ject to performance analysis.

In more details, the demo will go through the following
steps.

1. General description of the architecture of the tool and
of the related methodology.

2. Overview of the interface of Choreographer, describ-
ing the main menus, as shown in screenshot.

3. Demonstration of how to ’load’ a UML model (built in
Poseidon) in Choreographer, and to make it available
for analysis, as shown in the screenshot in Figure 1.

4. Overview of the running example UML model, with
respect to security analyis. The essence is a sequence
diagram, of which we offer no screenshot here, since
it is very similar to the one shown below with the
results of the analysis.

5. Demonstration of how to ’extract’ a LySa model, and
invoke the LySatool perform the security analysis, as
shown in the screenshot in Figure 2.

6. ‘Reflecting’ the result of the security analysis back
to UML as shown in the screenshot in Figure 3.
The menus are available in both pop-up and drop-
down form, showing the entries to invoke the extrac-
tion, analysis and reflection operations. During the
analysis, information about its progress is shown
for the knowledgeable designer (in the console in
the lower part of the screenshot in Figure 3). The
reflected UML model is a modified version of the
input with additional annotations which place the
analysis results onto the diagram at the appropriate
places. We have circled the differences between the
input and the result on the Poseidon screenshot in
Figure 4.

7. Interpretation of the results of the security analy-
sis, and identifications of the flaws; time permit-
ting, intervention on the model to fix it (an already
repaired model may be loaded instead, to streamline
the presentation).

8. New security analysis, with no errors.
9. Overview of the running example UML model, with

respect to performance analyis. The essence is a state
machine diagram, for the sequential components, and
a collaboration diagram to describe the operational
instance to be investigated in the performance analy-
sis.

10. Demonstration of how to ’extract’ a PEPA model (Fig-
ure 5).

11. Checking the model (Figure 6) and performing the
performance analysis. During the analysis, informa-
tion about its progress is shown for the knowledge-
able designer (lower half of the screenshot in Fig-
ure 7).

12. Reflecting the results in UML, as shown in Figure 7.
The drop-down menu shows the entries to invoke
these operations.

13. Also in this case, the reflected UML model is a modi-
fied version of the input with additional annotations
which place the analysis results onto the diagram at
the appropriate places. We have circled the differ-
ences between the input and the result on the Posei-
don screenshot in Figure 8.

14. Interpretation of the results of the performance anal-
ysis, and identifications of possible improvements;
time permitting, intervention on the model to assess
one such improvement.

15. Wrap up.



Figure 1: Opening a UML archive in Choregrapher

Figure 2: Invoking the LySatool on a security model



Figure 3: Reflecting the results back to UML

Figure 4: Viewing the results in Poseidon



Figure 5: Extracting a PEPA performance model

Figure 6: Checking well-formedness of the model



Figure 7: Reflecting the results back to UML

Figure 8: A Poseidon screenshot with the changes circled


