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Abstract. We present a software tool platform which facilitates secu-
rity and performance analysis of systems which starts and ends with
UML model descriptions. A UML project is presented to the platform
for analysis, formal content is extracted in the form of process calculi
descriptions, analysed with the analysers of the calculi, and the results
of the analysis are reflected back into a modified version of the input
UML model. The design platform supporting the methodology, Chore-
ographer, interoperates with state-of-the-art UML modelling tools. We
illustrate the approach with a well known protocol.

1 Introduction

The safety and reliability of networked global computing applications becomes a
highly significant matter as such systems play an ever-increasing role in society
and public life. Global computing applications win the trust of users by being
secure against attack and by remaining available and responsive under increasing
workload. Security and quality-of-service valuations such as these give rise to
subtle and complex questions about these complex systems. Determining the
answers to these questions necessitates careful modelling and analysis of these
systems in well-founded formal calculi. Such reasoning is both too detailed and
too arduous to be undertaken by hand and so modelling and design tools play
a crucial role in designing and evaluating the global computing applications of
today and tomorrow.

Choreographer is an integrated design platform for coherent and consistent
qualitative and quantitative modelling of software systems. It processes UML
models as its input, and writes modified versions of these as its output. The
architecture of the tool is to consider the interface to a specification environment
(SENV) and a processing interface to a verification environment (VENV). Mod-
els which are input for analysis are channelled from the SENV to the VENV via
software connectors known as extractors. The extracted formal content is passed
to the VENYV for analysis. The results of the analysis are recombined with the



input model and channelled from the VENV back to the SENV via software
connectors known as reflectors. In the specific configuration of the architecture
which we discuss here the SENV is the Poseidon UML platform from Gentle-
ware [1] and both the LySatool [2] and the PEPA Workbench [3, 4] are VENVs.
The software tool chain which is formed when these are connected is depicted
in Figure 1.
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Fig. 1. Software architecture of the tool chain used by Choreographer

The qualititative analysis is deployed to investigate the security of the com-
munication protocols used in the application. The analysis guarantees there are
no successful attacks on the authentication of the communicated messages. In
the case where authentication may be breached the analysis reports where the
breach may occur.

The quantitative analysis which is provided is a performance analysis of
the system model. This identifies components which are under-utilised or over-
utilised indicating poor deployment of computational resources.

In the development of the Choreographer platform we were concerned to
support not only the UML notation but the UML design process in order that
UML developers would be comfortable with working with the platform. That is,
we devoted considerable effort in the design of the extractors to ensuring that
the UML was being used as more than just a graphical syntax for the process
calculi beneath.

2 Protocols and authentication

The usual remedy to protect network protocols from intervention by malicious
attackers is to apply cryptography so that parts of the messages may be kept
outside the control of the attacker. Many security properties such as confidential-
ity, authenticity, non-repudiation, etc. are of interest when considering whether



a protocol is well-behaved or not. Here, we focus on checking an authentica-
tion property, namely that “messages protected by encryption should only be
decrypted at the right places”.

The verification technique we use builds on the modelling of protocols in
LySa, a process calculus in the m-calculus tradition, specifically tailored to model
central aspects of security protocols [5]. A protocol is modelled in LySa in sce-
nario with several kinds of principals: an initiator of the protocol, a responder,
and a server, referred to as a trusted third party, a key distribution centre, a cer-
tificate authority, etc. Besides, there can be many principals acting as initiators
and as responders.

To specify the authentication property that encrypted messages end up at the
right places, the LySa process is annotated: each encryption and decryption point
is named /£, ¢, etc., and is furthermore annotated with its intended destinations
and origins.

Our verification relies on a control flow analysis [5,6] of LySa that tells
whether the authentication properties are satisfied for all executions of the
annotated LySa process, executed in parallel with an arbitrary attacker pro-
cess. The analysis reports all possible breaches of the authentication properties
in an error component v: a pair (¢,¢') in ¢ means that something encrypted at
£ was decrypted at ¢’ breaking the specified authentication property. The anal-
ysis computes over-approximations of 1, i.e. it may report an error that is not
actually there: [5] also illustrates why this is not a big problem in practice. To
model security protocols in UML consistently, we have defined a specific pro-
file [2]. The profile introduces stereotypes for core concepts like principals, keys,
and messages, and for the concepts needed for the analysis.

To specify a protocol in UML so that the extractor [6] can feed the anal-
yser [2], the designer exploits the stereotypes in a class diagram presenting
the structure of the protocol, with the intended communications, the involved
messages, and the local information of each principal, like private keys, session
keys, and temporary storage, and their operation to build and dissect messages.
Besides, the structure of each message is specified in distinct diagrams, one per
message type and includes the decorations needed to specify the authentication
property. Conceptually, the information in the UML diagrams corresponds to
what is modelled by a LySa process and the decorations specifying the authen-
tication property corresponds to annotation of the LySa process.

The dynamics of the protocol is given in a sequence diagram, which describes
the typical run on the protocol. Each message exchange is divided into three
steps: 1. the sender packages the message, 2. the message is communicated, and
3. the recipient processes the incoming message. The operations are specified via
post-condition constraints on the state of the principal. The places mentioned
by the authentication properties are specified as notes associated to the mes-
sages in steps 1 and 3 above. These notes are placeholders that will support the
notification of eventual errors resulting from the analysis. If the analysis reports
an error being the pair (¢,¢') in v, the note introducing ¢ will be modified by
the reflector to list ¢/, thereby signalling the error reported by the analysis.



3 Performance evaluation

Despite impressive improvements in the computational power which is now avail-
able to end-users of computer systems, computer equipment is still expensive to
purchase and maintain. Consequently, owners are often motivated to make the
best use of their available resources. The analysis of computer systems through
construction and solution of descriptive models is a hugely profitable activity:
brief analysis of a model can provide as much insight as hours of simulation and
measurement [7].

Simple models of a computer system can be constructed without any explicit
notational support. However, as computer systems become more complex so
do their models and the use of a high-level language to aid in their expres-
sion becomes necessary. Jane Hillston’s Performance Evaluation Process Algebra
(PEPA) [8] is an expressive formal language for modelling distributed systems.
PEPA models are constructed by the composition of components which perform
individual activities or cooperate on shared ones. To each activity is attached
an estimate of the rate at which it may be performed.

Using such a model, a system designer can determine whether a candidate
design meets both the behavioural and the temporal requirements demanded of
it. That is: the protocol may be secure, but can it be executed quickly enough
to complete the message exchange within a specified time bound, with a given
probability of success?

Rather than composing process calculus models directly—although Chore-
ographer also supports this mode of operation—we extract these from UML
class, state and collaboration diagrams. For the purposes of performance anal-
ysis we extract a process calculus model in PEPA. The extractor for PEPA is
documented in [9)].

The relationship between the process algebra model and the CTMC rep-
resentation is the following. The process terms (P;) reachable from the initial
state of the PEPA model by applying the operational semantics of the language
form the states of the CTMC (Xj;). For every set of labelled transitions between
states P; and P; of the model {(a1,71),. .., (an, )} add a transition with rate r
between X; and X; where r is the sum of rq,...,r,. The activity labels («;) are
necessary at the process algebra in order to enforce synchronisation points, but
are no longer needed at the Markov chain level.

Under conditions on the form of the model where every state is positive-
recurrent, every such CTMC has a stationary probability distribution over the
states of the chain. Knowing the rates associated with the activities of the sys-
tem this stationary probability distribution can be obtained using procedures of
numerical linear algebra such as Gaussian elimination, conjugate gradient meth-
ods, or over-relaxation methods such as Jacobian over-relaxation or successive
over-relaxation.

Such a stationary probability distribution is rarely the desired end result of
the performance analysis process but meaningful performance measures such as
throughput and utilisation can be directly calculated from the stationary dis-
tribution. State-space generation and numerical solution is the computationally



expensive part of performance analysis. The size of the state-space of the sys-
tem is bounded by the product of the sizes of the sequential components in the
model and thus modelling with continuous-time Markov chains is subject to the
familiar state-space explosion problem.

4 Methodology

The methodology which we follow is to first attempt a security analysis and then,
if this is successful, progress to a performance analysis. The reasoning behind
this methodology is that the security analysis rests on static analysis procedures
which have a lower asymptotic complexity than the state-space generation and
iterative numerical procedures which are needed for the performance analysis.
Thus, ordering them in this way potentially gives a significant saving in the
overall computation time by avoiding the performance analysis of an erroneous
protocol.

Therefore, having described the protocol using a UML sequence diagram we
apply the For-LySa extractor to generate a LySa model which we analyse with
the LySatool. If the LySatool detects errors in the protocol, indicating that it is
insecure, the results are reflected back to the UML level, so that we can view the
results in the Poseidon tool. Having identified these flaws we can repair the pro-
tocol and continue with performance analysis. Here, we extract a PEPA process
algebra model from the UML input. We solve this for its equilibrium probabil-
ity distribution using successive over-relaxation (SOR), then reflect. The infor-
mation returned from the analysis quantifies the percentage of time that the
principals and the server spend in their local states, pointing to performance-
related problems such as under- or over-utilisation, starvation, bottlenecks, or
hotspots in the system. We can investigate the potential benefits to be obtained
by improving the implementation of the activities in the system, thereby iden-
tifying the place or places where it will be most profitable to spend developer
effort.

Evidently, it is possible to discover at this stage that the required improve-
ments in the execution of the activities of the system might be infeasible to
achieve, especially in the setting of weak computing devices such as smartcards
or low-end PDAs or in a thin client context with intermittent or very narrow
bandwidth connections between devices. If this is the case, then a developer
working at the early modelling stage of the system development process would
need to revisit the initial protocol design and perhaps re-design this to involve
fewer message exchanges or reduce the amount of asymmetric cryptography used.
This will initiate another cycle of security analysis and performance analysis in
pursuit of the levels of security and performance demanded of the system.



5 Example: checking a simple authentication protocol

As a simple example, we apply Choregrapher to analyse variations on the Wide-
Mouthed-Frog protocol, which was originally presented as a toy example of an
authentication protocol in [10].

The protocol describes key exchange between two principals (A and B)
through a trusted server. A and B have no prior communication history with
each other but both have previously contacted the server and have retained keys
K 5g and K pg respectively. The protocol has three steps.

1. Principal A sends a message to the server including the name of B and the

new session key K 4p, encrypted under K 4g.

. The server decrypts this and sends the name of A and the new key K 4p
to B, encrypted under K gg.

. Principal A sends a message to B encrypted under K 4.

The first step in checking such a protocol which Choregrapher is to formalise
the protocol in a UML model, using a sequence diagram to express the protocol.
We then open this UML model in Choregrapher and extract a LySa process
calculus representation of the protocol, and apply the LySatool to analyse the
flow of information through the protocol as shown in Figure 2. The LySatool
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Fig. 2. Invoking the LySatool on a security model

detects errors in the protocol, so we return to the Poseidon UML modelling
tool to investigate the errors as described in the UML context. The output



from Choregrapher is a modified version of the UML input. We have circled the
changes in the screenshot in Figure 3 to indicate the differences from the input.
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Fig. 3. Viewing the results from the LySatool in Poseidon

The LySatool identifies points in the protocol where the attached assertions
can be violated. From this the modeller can modify the protocol description in
UML and re-run the analysis until the analyser is no longer able to find errors
in the protocol.

At this point the user is able to continue with a performance analysis of
the model. Again, the process calculus representation is extracted by Choregra-
pher from the UML model and processed by the analysis tool (in this case, the
PEPA Workbench). The Workbench derives the reachability graph underlying
the process algebra model, interprets this as a continuous-time Markov chain
and computes the stationary probability distribution for this chain. The com-
mentary from the Workbench on this calculation can be seen in the tabbed pane
at the bottom of the screenshot in Figure 4. These results can again be reflected
back to the UML level.

Viewed in the Poseidon modelling tool, the results of the analysis tell the user
the probability of being in each of the local states of each of the components of the
process algebra model. Each such component has been described by a UML state
diagram, and a UML collaboration diagram has described a parallel composition
of a number of instances of these sequential components. A screenshot of the
Poseidon modelling tool describing this information can be seen in Figure 5.
The changes from the input state diagram are again circled. Each state now is
tagged with a record of the probability of being in this state in the long run.
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At this point the modeller is able to consider the consequences of these rela-
tive probabilities and decide they indicate acceptable levels of performance with
respect to these rates of performance of the activities of the model.

6 Engineering issues

Our functional requirements for the Choreographer design platform were that
it should provide access to the analysis procedures of the PEPA performance
analysis tool (the PEPA Workbench in both its ML and Java editions [3,4])
and the LySa security analysis tool (the LySatool [2]). In addition, it needs to
interoperate with a fully-featured UML tool.

Our non-functional requirements on the platform were that we wanted to
develop a professional quality tool in a constrained time, with a modest bud-
get for developer effort. We also had the requirement that the tool should be
available across platforms (in our case, Windows and Linux). We evaluated the
generic IDEs of Eclipse and NetBeans and the Argo/UML, XDE, MagicDraw
and Poseidon UML tools. We took the decision to build the Choreographer
platform on top of NetBeans on the Java platform and have it interoperate
with Poseidon. This decision was a complex engineering compromise between
a number of conflicting tensions. Our choice went a considerable way towards
addressing portability concerns but the portability issue was impacted also by
the availability of the analysers and UML drawing tools we wanted to integrate
with.

We wanted Choreographer to have two dimensions of portability. The first
is the most obvious one, that it should run successfully on both Windows and
Linux. This requirement for code portability has been successfully addressed.
The second dimension of portability was that we wanted the Choreographer
platform to interoperate with many UML tools via the standard XML Inter-
change format (XMI) for UML diagrams. Choreographer needs to deal with
these because it reads from and writes into this import/export format. This
data portability requirement was the more difficult problem, and one which
we have not been able to solve perfectly. There are many versions of the XMI
standard for UML, and different UML tools implement their chosen version to
a more or less satisfactory extent. Some releases of the UML tools which we
tried wrote non-well-formed XMI output, even according to their own criteria.
Such inconsistency makes interoperation essentially a matter of writing a custom
reader /writer pair for every version of every UML tool with which one wants to
interoperate, which is the trap which standards such as XMI were intended to
prevent developers falling into.

A configuration which we considered for Choreographer was XDE and Eclipse
together. The XDE UML tool is provided as an Eclipse plug-in, so this is a natu-
ral coupling. We rejected this combination because the XDE tool is not available
in a Linux release. We chose not to interoperate with MagicDraw because it is
not freely available. We could not work with Argo/UML because it did not rep-



resent some aspects of the UML diagrams in the XMI format, thus crippling its
use as an import/export model exchange format.

A potential source of non-portability might have been the formal analysis
tools which we used. These had been implemented in Java or the functional
programming language Standard ML. However, we discovered that the Stan-
dard ML of New Jersey compiler which we used had very closely conforming
versions for Linux and Windows, making the portability of these formal analysis
tools essentially only a matter of working around small differences in the ver-
sions of the standard library for the two platforms. This level of minor tuning
is also required for application development in the Java language, which has
given more effort to ensuring cross-platform portability than perhaps any other
programming language.

7 Related work

Tool support for the automated analysis of security requirements in the UMLsec
framework [11] is described and accessible at [12]. The relevant elements of the
UML specification are translated in the input language of the model-checker
SPIN and the dynamic property to be verified is translated in Linear Temporal
Logic. The UML models are stored in a MDR library, and accessed via the
generated JMI interface.

Work which is similar in spirit to our own approach is that of Petriu and
Shen [13] where a layered queueing network model is automatically extracted
from an input UML model with performance annotations in the format specified
by a special-purpose UML profile [14]. We do not follow the same UML profile
because it is not supported by our modelling tool. Additionally, the performance
evaluation technology which we deploy (process algebras and BDD-based solu-
tion) is quite different from layered queueing networks.

Another performance engineering method which is similar to ours is that
of Lépez-Grao, Merseguer and Campos [15] where UML diagrams are mapped
into GSPNs which can be solved by GreatSPN. We use different UML diagram
types from these authors and, again, a different performance evaluation tech-
nology. Stochastic Petri nets and stochastic process algebras have different, but
complementary, modelling strengths [16].

One feature of our work which is distinctive from both of the above is the role
of a reflector in the system to present the results of the performance evaluation
back to the UML modeller in terms of their input model. We consider this to
be a strength of our approach. We do not only compile a UML model into a
performance model, we also present the results back to the modeller in the UML
idiom.

8 Conclusions

Strong and justified belief in the trustworthiness of global applications is engen-
dered via formal analysis using well-founded calculi and tools. Such apparatus



for formal reasoning is often daunting to those who most need to make use
of, and benefit from, formal analysis techniques, namely systems designers and
software developers working on state-of-the-art global applications. To this com-
munity, and their colleagues in project management and product development,
a graphical notation such as the UML has much greater appeal than the blunt,
cold formality of process calculi. By establishing a two-way connection between
the UML and calculi such as LySa and PEPA, the Design Environments for
Global ApplicationS (DEGAS) project has elevated the analysis process to the
UML level, thereby bringing the benefits of the analysis without exposing the
unfamiliar languages used.
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