
Choreographing security and performance analysis for
Web services (Long version)

Stephen Gilmore1, Valentin Haenel1, Lëıla Kloul2, and Monika Maidl3

1 Laboratory for Foundations of Computer Science, The University of Edinburgh, Scotland.
2 PRiSM, Universit́e de Versailles, 45, avenue des Etats-Unis, 78000 Versailles, France

3 Siemens AG, CT IC3, Otto-Hahn-Ring 6, 81739 München, Germany

Abstract. We describe a UML-based method which supports model-driven devel-
opment of service-oriented architectures including those used in Web services.
Analysable content is extracted from the UML models in the form of process
calculus descriptions. These are analysed to provide strong guarantees of satis-
factory security and performance. The results are reflected back in the form of a
modified version of the UML model which highlights points of the design which
can give rise to operational difficulties. A design platform supporting the method-
ology, Choreographer, interoperates with state-of-the-art UML modelling tools
such as Poseidon. We illustrate the approach on an example.

1 Introduction

Web services must deliver secure services to users in order that financial and other
confidential transactions can be conducted without interference. Off-the-shelf solutions
are not available. Web services need to build end-to-end security from the point-to-
point security afforded by standard network protocols. Even if a secure system can be
created, scaling up to large user populations provides a steep challenge. The availability
of many different forms of assistance (caching, stateless session beans, process isolation
and others) means that the challenge of building scalable systems is complicated further
by difficult-to-quantify approaches to system performance tuning.

We have developed a design platform,Choreographer, which seeks to assist with
the development of secure systems with quantified levels of performance. To provide
an accessible entry point for practising Web service developers the methodology which
we support uses the UML. This is a novel feature of our work: we use a modelling lan-
guage where a specification language or process calculus might more often be used to
initiate the analysis. Many UML designs are not analysed either qualitatively or quan-
titatively. Here we provide support for both types of analysis, and illustrate the value of
the analysis via an example.

We use a range of UML diagram types to express the security and performance
considerations of the system. As a principle, we use standard UML notation: there are
no notational extensions or additional diagram types. This decision has two beneficial
consequences. First, a UML modeller using this methodology does not need to learn
any supplementary notation. Second, we are able to use standard UML tools such as
Poseidon [1] to edit the UML diagrams which we use.

We use class diagrams, collaboration diagrams, sequence diagrams and state dia-
grams to describe the system under study in UML terms. Additional diagram types
may be used in the UML project which is accepted as an input to Choreographer. These
can be used for other purposes in model-driven development, such as automatic code
generation, and will not interfere with the analysis process. Our aim is to disrupt exist-
ing model-driven development approaches as little as possible while adding value to the
UML modelling work which would be going on in any case.

Different models can be used for different purposes in the design of an application
and so the methodology supported by our design platform allows modellers to either do
a security analysis alone, or a performance analysis, or both. That is, the annotated ver-
sions of models which result from one run can be used again as inputs to Choreographer
to perform a different type of analysis. The consequence of this is that a modeller using
an established operational procedure to determine satisfactory levels of security (resp.
performance) can use our design platform to do performance (resp. security) analysis
alone. They are not forced to adopt both of the kinds of analysis which we offer if they
do not need both, or already have a preferred way to do one of them.

The original contribution of this paper is to present a UML-based methodology
for integrated security and performance analysis. The method is supported by a well-
engineered tool and set on the formal foundation of dedicated process calculi with cus-
tom analysers. We describe the UML-based methodology which Choreographer sup-
ports and discuss the implementation of the Choreographer platform itself. We describe
its use on a typical Web service creation problem: a Web-based micro-business. We
believe that the Choreographer software tool could also be used for high-level analy-
sis of other service-oriented architecture questions such as the assessment of service
discovery protocols but we do not demonstrate this in the present paper.

Structure of this paper:The paper is structured as follows: the Choreographer analysis
tool is presented in Section 2. The example application is a web-based micro business,
described in Section 3. This is followed by a UML model and its associated perfor-
mance and security models in Sections 4, 5 and 6. Related work and conclusions follow.

2 Choreographer

One feature of the methodology which we support with the Choreographer design plat-
form tool is that modellers are able to express the models which are input to Choreog-
rapher in standard UML. The analysis process is initiated by invoking Choreographer
on a UML project archive. The formal content of the UML model is stored in such
an archive in an XML-based interchange representation (XMI). Software connectors
termedextractorsprocess the XMI representation of the input model and derive an
analysable form of the model expressed in a process calculus. We use different process
calculi for security and performance analysis: LySa [2] for the former and PEPA [3] for
the latter.

Another key feature of the method is that the results of the analysis are reflected
back as a modified version of the original UML model. Thereflectorswhich do this
are also available as software components which take the original UML project and the

results of the analysers as inputs and write their results as complete UML projects in
which the results of the analysis have been incorporated. The purpose of this is to ensure
that the interpretation of the analysis results can be undertaken at the UML level and that
the UML is not being used only as a model description language from which a process
calculus representation is generated.Instead, reflecting the results back to the UML level
centres the analysis on the UML description. We can picture this as in Figure 1.

Fig. 1.Schematic of the Choreographer platform

The Choreographer platform is designed to support UML-centered development but
is flexible enough to accommodate other modes of use in addition. These might simply
be preferred by designers or developers who are using the platform or they might be
needed to support a style of development favoured by the institution or software house
which commissioned the development. Thus, a guiding principle of the design of Chore-
ographer is that the processing of UML models should be made visible to the developer
in order that the mapping between UML diagram elements and constructs of the pro-
cess calculi beneath is transparent. This principle ensures that modellers have access
to the representations which are needed to understand how their diagram elements are
interpreted in the analysis process.

Exposing the functionality of the extractors and reflectors which map UML models
to process calculi and analysis results back into the UML brings additional benefits for
both implementors and users. We detail these in turn.

For the implementors the benefits of this design include having the functionality of
the extractors open to inspection and enquiry. This greatly assisted with the problem
of finding and correcting programming errors in the implementation of the extractors,
with commensurate benefits to their implementation quality. The design of the analysis
tools further supports the quality of the implementation of the extractors. The interface
to each of the analysis tools is a formal language which is throughly checked by the tool
before the analysis is carried out. Considering the performance analysis tools, models

with deadlocks or missed synchronisations are rejected by the analysis tool, identifying
errors in the input UML model or the implementation of the extractor which generated
the process calculus representation.

For the users of the platform this has the benefit that it facilitates experimentation
with models at the level of the process calculus, allowing a single UML model to give
rise to a related collection of process calculus models. Here the UML level provides
a much-needed layer of abstraction over the formal details. Such an abstraction would
be useful in presenting a simplified—but consistent and accurate—view of the model
to project managers or customers for whom the full complexity of the detailed process
calculus representation would be a barrier to understanding.

Sophisticated users demand more from applications than raw functionality alone.
The functionality must be presented in an appealing package if it is to attract a substan-
tial user base and build a community of enthusiastic adopters. The issues here include
engineering concerns which complement the scientific ones. Ignoring the engineering
problems would be an unwise practise because the benefit to be derived from scientif-
ically well-founded analysis will not be obtained if the analysers are not used. Within
the engineering concerns are portability issues, user interface design and ease of instal-
lation. Modest problems in each of these areas would not deter the most enthusiastic
adopter but could prevent an interested potential evaluator from trying the Choreogra-
pher platform in the first place.

To this end we worked to minimise engineering annoyances by building on portable,
well-engineered implementation technology. Reasoning that we wanted to build an
integrated development environment we researched a range of generic IDEs includ-
ing Eclipse [4] and NetBeans [5]. Both of these build on the Java platform and provide
generic user-interface and editor components, file system explorers, and other support
for integrated development environments. Either could have been used for our purposes
but we chose NetBeans because we judged that it had superior documentation about
building plug-ins and applications.

NetBeans associatesdata loaderswith file types and the functionality implemented
in a data loader determines the processing which can be performed on the file contents.
We implemented data loaders for each of the modelling languages used in our develop-
ment method: UML (specifically, in its XMI format), PEPA and LySa.

By associated the necessary functionality with a language in this way, the Chore-
ographer design platform guides the user through the modelling process. UML projects
can be opened to obtain their XMI content. Extraction can be applied to the XMI rep-
resentation to obtain a PEPA or LySa model. Performance analysis can be applied to
PEPA models. Security analysis can be applied to LySa models. Results are reflected
back into the UML representation. Choreographer guides the user through the process
(extraction, then analysis, then reflection) and prevents “mode errors” such as trying to
apply security analysis to a PEPA model, as could occur in a less structured modelling
approach.

In terms of its appearance, the Choreographer platform follows the conventional
design of an IDE, as seen in Figure 2. The main design area divides into an explorer
on the left, an editor on the right, and a message console beneath these. The explorer
provides a view onto the local file system which is structured in order to group related

Fig. 2.The Choreographer user interface

documents into logical projects. The editor is language-aware with contextual modes:
we have implemented editors for the process calculi which we use in the security and
performance analysis process. The console is used to feed back to the user information
about the progress of commands or analyses which have been launched from the appli-
cation menus. Concise summaries of the analyses are printed into the console to allow
information about the outcome to be obtained without having to initiate the reflection
process and render the results in the Poseidon UML modelling tool.

When driving the performance and security analysis from the UML model exclu-
sively, the editor pane in the Choreographer UI acts simply as a viewer, only used to
display the extracted process calculus models. As we indicated earlier, an alternative
is to work directly at the process calculus level. Working in this way, modellers either
compose process calculus models directly, or modify ones which have been extracted
from UML diagrams. Here we provide the expected level of formal language support
with syntax highlighting, background lexical analysis and parsing, and context-sensitive
diagnostic error reporting. Figure 3 shows Choreographer identifying an error in a PEPA
model, calling the user’s attention to the relevant part of the model and reporting the
fault in the console below.

3 The web-based business system

The case study provided by our industrial partner is a business-to-business Web ser-
vice to enable e-business based on a peer-to-peer authentication and communication

Fig. 3.Using Choreographer as a process calculus workbench

Service Provider

Service Provider

Service Provider

Service Provider

Customer

Customer

Customer

Customer

Portal

transaction

publish

search

register

search

transaction

register

Fig. 4.Architecture of the web-based business system

paradigm. The objective of this system is to provide support to micro web-based busi-
nesses which do not themselves have the capability to develop proprietary solutions for
e-business.

The service is accessible through both wired Internet connections and mobile devices
using standard protocols such as the wireless application protocol. The system will
present the various services offered by the service providers according to a coherent
layout and will provide an interface for service access. While users should be able to
process their transactions on a peer-to-peer basis, it is necessary to provide a central
portal at which users register and can search for services. Registration and searching
for services can be handled by UDDI.

The system naturally decomposes into three parts: the portal, service providers and
customers (Figure 4). The upper part of Figure 4 describes that part of the functionality
which involves the portal. The lower part concerns the peer-to-peer functionality.

The portal The portal enables remote data search and service navigation. Moreover
it constitutes the interface between the customers and the service providers during the
on-line business transactions. The e-business data management provides access to dis-
tributed products and services catalogues. The portal supports a significant number of
concurrent sessions while providing end-to-end security of the transactions.

The service providerA new service provider joining the system first must register at
the portal. A registered service provider can publish its services onto the portal dynam-
ically. The list of its services can be accessed by any customer through the portal. Each
provider will be able to modify its published services list by adding a new product;
changing the characteristics of an existing one; or removing a service from the list. At
any moment, a service provider can quit the system by unregistering from the portal.

The service provider can also handle transactions directly with customers who have
registered at the service provider.

The customerLike the service providers, new customers have to register at the portal
before being able to use its services. The registered customers are informed by the portal
about available services, the newly published services, and the modified or removed
ones. The user may perform on-line transactions via the portal to buy products he is
interested in by selecting them from the list. The customers’ order requests are then
routed by the portal to the appropriate service provider. Alternatively, a customer can
choose to communicate peer-to-peer with a chosen service provider after registering
directly with this service provider.

Performance and security requirementsThere are many conceivable measures which
one could apply to the quality of service which is to be ensured by the portal. These
could include setting limits on the latency of the system, guaranteeing the responsive-
ness of the portal under typical operational conditions. Other measures could bring
together performance and dependability elements to specify the required functional
availability of the system. One of the reasons to target a well-supported performance
modelling formalism such as PEPA for the performance analysis is that analysis tools
are available for the computation of passage-time quantiles (namely the Imperial PEPA
Compiler [6]) and for custom performability verification using model-checking (via the
PEPA support provided by PRISM [7]). For the present study, however, we focus on
performance evaluation based on the computation of throughput at the portal.

The security of the system is also crucial: Correct authentication at the portal and
between service providers and buyers is required to prevent misuse by identity theft.
The user data, in particular the transactions between service providers and customers,
and also information associated to the operations to a user on the portal, should remain
confidential, and integrity should be preserved. As all these data are transmitted wireless
or via the web, strong security measures are required to meet these requirements.

4 UML model of the system

We turn now to our model of the above system. The performance model of the sys-
tem consists of a collaboration between sequential object instances which undertake
timed activities either individually, or in collaboration with other objects. Thus the
UML diagram types which are used to describe this model are class diagrams (iden-
tifying the kinds of the objects in the system), state diagrams (detailing the behaviour
of the objects) and collaboration diagrams (introducing an operational configuration of
the system with named object instances collaborating on sets of activities).

4.1 Performance information

Performance analysis of the system is conducted via the generation and solution of a
continuous-time Markov chain (CTMC) representation of the system, thus the durations

Buyer Buyer1 Buyer2

Buyer3

new_request / rate(r)

update_request / rate(T)

get_product_list / rate(T)

select_product / rate(r1)

restart / rate(r2)

select_product / rate(r1)

restart /

check_out / rate(r3)

Fig. 5.State diagram of the Buyer in the Web-based micro-business model

of all of the activities in the system are quantified by providing the parameter to a
negative exponential distribution.

Considering the arrival of new purchase requests into the system, we would repre-
sent this on the state machine diagram using an arc adornment of the formnew request/rate(r).
This form of adornment indicates that the performing object is sendingnew request
messages at rater. This activity occurs in another form also. The recipient of the
new request message indicates that they are ready to receive such a message (but does
not control how quickly they recur) with an arc adornment of the formnew request/rate(>).
The> symbol indicates passive participation in this way. The effect is to mandate a syn-
chronisation point between the two object instances with the asymmetry being used to
model the caller/callee distinction between the object which sends the message and the
object which receives it.

The state diagram which represents a buyer in the system is shown in Figure 5.

The diagram respects the UML meaning that object instances of this class are in one
of the identified states of the system at all times and to transition fromS1 to S2 there
must be an arc which connectsS1 to S2 leading in the direction fromS1 to S2. Choices
between different alternatives are indicated by having more than one outgoing arc from
a state.

The relationship between the rate and the activity name in an arc adornment of the
form a/rate(r) is that the average duration of an activity of typea is 1/r. Thus, if
that arc leads from stateS1 to S2 then the average duration of that transition is1/r.
The relative probabilities of the choices of successor states from a state can be obtained
by renormalising the weights of the rate labels. Thus, if there are two outgoing arcs,
one labelleda/rate(2r) and the other labelledb/rate(r) then thea-labelled arc will be

followed twice as often as theb-labelled one (probability2/3 versus probability1/3, as
expected).

Other components in the model are not much more complex than that of the buyers.
Figure 6 shows that the model of the service providers in the system have common syn-

Provider

Provider0

Provider1

Provider2

update_request / rate(s)

transmit_order / rate(T)
get_own_list / rate(T)

add_product / rate(s1)

delete_product / rate(s2)

change_value / rate(r3)

quit / rate(s4)

process_order / rate(s5)

Fig. 6.State diagram of the Provider in the Web-based micro-business model

chronisation points with the buyers (reflecting exchanges which are not routed through
the central portal in the system, for reasons of scalability). Where these synchronisation
points occur, one of the interacting components specifies the rate of occurrence of the
activity and the other passively co-operates with these activities.

The collaboration diagram in Figure 7 depicts an operational instance of the system
with only two buyers (b1 andb2) and only two providers (p1 andp2).

Fig. 7.Collaboration diagram for the Web-based micro-business model with annotations showing
the grouping of objects of the same class

The collaboration diagrams which we use contain two important types of associa-
tions between object instances: associations between objects of the same class and asso-

ciations between objects of different classes. Associations between objects of the same
class have higher priority and should be thought of as grouping collections of correlated
objects (even if these objects do not actually synchronise on any of their activities). We
have suggested this grouping visually on the diagram by adding a dashed box around
the grouped object instances. Thus we can think of the collaboration diagram as record-
ing associations between the buyers in the system considered as a group, the providers
in the system considered as a group, and the portal.

The associations in the system are labelled with the name of a set of activities.
The end points of the association identify instances or groups of objects which are
required to synchronise on the activities contained in the set, and not to synchronise on
the activities which are not contained in the set.

The extraction of an analysable process calculus representation of this model is
obtained by using Prowse’s algorithm [8]. This is an efficient topological traversal of
the collaboration diagram association graph, which performs alphabet inference on the
associated component instances and builds a structured PEPA cooperation model of
these on-the-fly. We extended the implementation of Prowse’s algorithm in the PEPA
extractor with a worklist-following phase utilising a stack of associations, and the con-
cept of priority groups of object instances. These modifications mean that the algorithm
retains the same low asymptotic complexity but is now able to process component repli-
cations with associations, which it was previously unable to do.

4.2 Security information

In the UML design, security relevant information is specified by the ForLySa profile [9],
which provides the means to annotate class diagrams and sequence diagrams with
security-specific data. More precisely, ForLysa allows us to specify cryptographic secu-
rity protocols with two participants (A andB) who typically exchange a new session
key. Such protocols use cryptographic concepts like cryptographic keys and nonces,
which are provided by two classes in the ForLysa profile: the classMsg for messages
and the classPrincipal for participants of the protocol. The classMsg has attributes
holding the sender and receiver of the message and the encrypted and unencrypted pay-
loads of the message; the latter are objects of appropriate classes, and these classes con-
tain methods for encrypting and decrypting data. The classPrincipal contains attributes
for the private/public keys or symmetric keys associated with a principal, and specifies
methods for sending and checking of messages.

As an example, we show the UML design in Choreographer of the cryptographic
security protocol described in Section 6, consisting of a class diagram and a sequence
diagram. The class diagram, shown in Figure 8, specifies two principalsA andB, as
subclasses ofPrincipal, which have attributes to hold the data generated or acquired
during a run of the protocol.

The sequence diagram in Figure 9 describes the exchange of messages between
A andB which defines the protocol. For each message, first the sender prepares and
encrypts the content in methodpremsgby providing values for the attributes of a vari-
able out of classMsg. When receiving a message, the recipient checks its contents
(eg. correct addresses) with methodcheckmsg, then decrypts the encrypted parts with
methodpostmsg. This assigns a value to the attribute which holds the decrypted content

Principal

+ PK+:PublicKey
−PK−:PrivateKey
+ cert :Certificate
−ID:Document

+ msg (p:Msg):
+ checkmsg ():void
+ checkdecrypt ():void

<< principal >>

A

−NA:Nonce
−Key:SessionKey
−vcertB:Certificate
−vPKB:PublicKey
−vSKB:int
−vNB:Nonce

+ premsg1 ():void
+ postmsg2 ():void
+ premsg3 ():void

<< principal >>

B

−NB:Nonce
−vKey:SessionKey
−vCertA :Certificate
−vEKA:PublicKey
−vPKA:int
−vNA:Nonce

+ postmsg1 ():void
+ presmg2 ():void
+ postmsg3 ():void

Fig. 8.The class diagram for the principals involved in secure transactions

i:A j:B

 : msg(out)

 : postmsg1

 : checkdecrypt

 : premsg2

 : msg(out)

 : premsg

 : postmsg2

 : checkdecrypt

 : checkmsg

 : premsg3

 : msg(out)

 : checkmsg

 : postmsg3

 : checkdecrypt

cryptoPointA

cryptoPointB

Fig. 9.The sequence diagram of the protocol for the principals involved in secure transactions

of the message. The decrypted part is then analysed incheckdecryptwhere the receiver
checks that the content has the required format. Figure 8 shows the call sequence for
these methods, while the body of each method is specified by constraints which are not
visible in the diagram.

5 Performance analysis

The performance analysis of the above UML project proceeds by extracting a perfor-
mance model in Hillston’s Performance Evaluation Process Algebra (PEPA) [3]. This
extraction is performed automatically by the Choreographer design platform.

5.1 The PEPA model

The objects whose behaviour is specified by state diagrams in the UML model give
rise to PEPA components in the process algebra model. The first component,Portal,
models the behaviour of the interface between the service providers and the customers.
The second component,Provider, models any provider registered in the system. The
last component,Buyer, is used to model the behaviour of a customer. Note that in this
model, we assume that both buyers and providers are already known to the system: they
have already registered.

ComponentBuyer In an on-line transaction, the system user starts by sending a request
to the portal about a specific product he is interested in—for example, books. This can
be done by a simple click on the icon titled “Books” in the main pages of available prod-
ucts provided by the portal. This is modelled by action typenewrequest. The response
of the portal is to send to the customer the catalogue or list of books available with all
characteristics. We model this using action typeget product list. Once the customer has
the targeted list, he can select all the items he wants (actionselectproduct) and then go
to the check out (actioncheckout). This last step allows the buyer to place an order for
selected items. At any moment the customer can change his mind and stop the process.
This is modelled using action typerestart. Note that action typeget product list has an
unspecified rate in componentBuyerbecause the rate is defined by the portal which will
send the list of products at his rhythm.

Buyer
def= (new request, r).Buyer1 + (update request,>).Buyer

Buyer1
def= (get product list,>).Buyer2

Buyer2
def= (select product, r1).Buyer3 + (restart, r2).Buyer

Buyer3
def= (select product, r1).Buyer3 + (restart, r2).Buyer

+ (check out, r3).Buyer

Component Provider Once a service provider is registered, he may either send a
request to the system to update the list of products or services he has published or
receive an order from the portal. The former is modelled using action typeupdaterequest
and the latter using action typetransmit order. In the first case, he will receive the list
of services he owns (actionget own list) and can then make all of the changes which he

wants to using action typesadd product, deleteproductandchangevalues. Once he is
finished with the updates he can leave the system (action typequit). In the second case,
he will consider the customer order and do what is necessary to satisfy the request. This
is modelled using action typeprocessorder.

Provider
def= (update request, s).P rovider0 + (transmit order,>).P rovider2

Provider0
def= (get own list,>).P rovider1

Provider1
def= (add product, s1).P rovider1 + (delete product, s2).P rovider1

+ (change values, s3).P rovider1 + (quit, s4).P rovider

Provider2
def= (process order, s5).P rovider

Component Portal The portal manages both the buyers and the providers. All activ-
ities of componentPortal are synchronizing activities, either with the buyers or the
providers.

Portal
def= (new request,>).Portal1 + (update request,>).Portal3
+ (select product,>).Portal1 + (restart,>).Portal
+ (check out,>).Portal2 + (get product list, v1).Portal1

Portal1
def= (get product list, v1).Portal1 + (select product,>).Portal1
+ (restart,>).Portal + (check out,>).Portal2
+ (new request,>).Portal1

Portal2
def= (transmit order, v).Portal + (select product,>).Portal2
+ (restart,>).Portal2 + (check out,>).Portal2
+ (new request,>).Portal2 + (get product list, v1).Portal2

Portal3
def= (get list, v2).Portal3 + (add product,>).Portal3
+ (delete product,>).Portal3 + (change values,>).Portal3
+ (quit,>).Portal

The complete system:The behaviour of the actors of the online system and their
interactions between each other are captured by componentWeb Business which is
defined as follows:

Web Business
def=

(Buyer ��
K

. . . ��
K

Buyer) ��
L

(
(Provider|| . . . ||Provider) ��

M
Portal

)
where the synchronising sets are defined as follows:
K = {update request}
L = {new request, get product list, select product, restart, check out,

update request}
M = {update request, get own list, transmit order, add product,

delete product, change values, quit}
Remark: The use of actionupdaterequestin componentBuyerensures that during

the updates of a product list by its owner, the buyers do not have access to this list. As
all components of the model must synchronise onupdaterequest, it will not be enabled
unless all occurrences of componentBuyerare in their initial state.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1 2 3 4 5 6 7 8 9 10

th
ro

u
g

h
p

u
t

(r
e

q
u

e
st

s/
s)

Arrival rate (r)

"Total throughput"
"Transmit"

(a) Total throughput

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

st
s/

s)

Arrival rate (r)

"get_own_list"

(b) Throughput for provider requests

Fig. 10.Throughput computation

5.2 Numerical results

In this section we give an idea of the performance measures which we can compute in
the context of such an application. We are mainly interested in the throughput of the
portal. We consider a system composed of five buyers and one provider. This simple
system allows us to retain intellectual control of the behaviour of the throughput in a
system with a portal based architecture. All curves are plotted as a function of the arrival
rater of the requests of one buyer.

– Figure 10(a) depicts the total throughput of the portal in terms of buyer’s requests
to get a product list and to select a product from a list, and the provider’s requests to
get its own list. This figure also gives the throughput part related to the transmission
of the orders to the provider. As we can see, the transmission of the buyer’s orders is
a very small part of the throughput of the system. This may be explained by the fact
that the buyers spend the greater part of their time selecting products. Moreover,
once an item is selected, a buyer may decide to abandon or restart. Thus not all
buyers end up checking out with purchases.

– Figure 10(b) shows the behaviour of the part of the portal throughput related to the
provider requests (get own list). Unlike what we have seen in Figure 10(a), this
throughput decreases as the arrival rate increases. As we have more requests from
the buyers, the portal spends more time dealing with these requests, and thus less
time with the provider requests.

6 Security analysis

The security of a networked service depends heavily on the ability of users to send
confidential messages via wireless or Internet connections, and to confirm the identity
of the partner in their message exchange. Cryptographic techniques are usually used
both to ensure the confidentiality of messages and for authentication.

But cryptography is not a magic wand to make everything all right. The main issue
is that sending encrypted messages is only safe if only the authorized parties have the
corresponding key. So data security becomes a key management problem [10], and the
main task consists of designing an appropriate protocol forauthenticated key exchange.
Such a protocol allows two or more participants to exchange a cryptographic session
key in such a way that the participants are assured that only the intended parties obtain
the session key. Confidentiality and integrity of data is then guaranteed by encrypting
all data with the session key. The main tool for providing proper authentication in such
a key-exchange protocol is again cryptography, and hence an analysis tool must be
able to deal with cryptographic concepts. Before describing the LySatool [2] used by
Choreographer, we first discuss the security requirements of the web-based business
system, and show the key exchange protocol chosen for the project. The protocol can
be realised by the use of WS-Security, which provides all of the necessary mechanisms.

6.1 Security analysis for the web-based business system

In the case study, all communication should be encrypted to guarantee data confiden-
tiality and integrity. This means that before starting a data exchange, a service provider
and a customer or the portal and a user have to use a protocol for authenticated session
key exchange.

For this protocol, there is a choice between using either symmetric cryptography or
public key cryptography in a protocol for authenticated key exchange. When using sym-
metric key cryptography, the communication has to be conducted via a central server,
and all users have to share initial symmetric keys with the server. The design goal of the
project of providing peer-to-peer communication between service providers and cus-
tomers would be violated if communication between users necessarily involved a cen-
tral server. Moreover, initial distribution of secret symmetric keys is difficult to achieve
in a practical way. Hence a protocol based on public key cryptography is used. In order
to link a user identityU to a public key, it is essential to use certificatescertU , e.g.
X.509 certificates, which are signed by some trusted certification authority.

(1) A → B: A, certA
(2) B→ A: {B, NB}:K+

A, certB
(3) A → B: {A, NB, KAB}:K+

B

The aim of the protocol is to provide authenticated key exchange betweenA andB,
i.e. after the exchange bothA andB are assured that only they know the new session
key KAB . More precisely, correct authentication is achieved by the protocol ifA can
be sure that message (3) can only be decrypted byB, while B knows that message (3)
can only be sent byA.

6.2 LySa model of the protocol

The informal notation of the protocol used above leaves implicit a number of assump-
tions and does not completely describe actions such as decrypting with a certain key,

comparing nonces, and checking certificates. Moreover it is crucial to specify the envi-
ronment in which the protocol is executed, i.e. the actions which potential attackers can
perform.

For a formal analysis, these assumptions have to be specified. LySa provides a for-
mat for this, which is essentially a process algebra, enriched by cryptographic notions
such as encryption and decryption, symmetric keys, public and private keys, allowing it
to model authenticated key exchange protocols. More precisely, LySa is based on theπ-
calculus. The main difference from theπ-calculus and the Spi-calculus is that there are
no channels: messages can be arbitrarily intercepted and redirected. Moreover, pattern
matching is used to check that a message contains expected values (such as nonces),
and to bind values to free variables. Each participant in the protocol (in our caseA and
B) is modelled by a separate process. Each message of the protocol corresponds to two
actions: one performed by the sender who encrypts and sends the message, and one per-
formed by the receiver who decrypts the message, checks the content, and might store
parts of it.

As an example, consider message (3), sent fromA to B. The LySa code for sending,
which forms part of the process forA, is shown next. Sending of messages is denoted
by 〈. . .〉.

(newKAB)〈A,B, {|A, vNB ,KAB |} : K+
B〉

The first argument in the〈. . .〉 expression denotes the sender (A), the second the
recipient (B), and the rest is the content of the message. The content in this case consists
of only one, encrypted, part. The terms are either names such asA, B, and KAB , or
variables such asvNB which has been bound to the value ofNB whenA received
message (2). Sending message (3) is preceded by generating a new session keyKAB

which nobody exceptA knows. This is modelled by restriction with the ‘new’ operator.
Input of a message is denoted by(. . .). We show the receiving action associated

with (3), which is performed by processB:

(A,B;x).decryptx as{|A,NB ; vK|} : K−B
An incoming message is matched with an output, whereby the terms before the

semicolon have to match while the variables after the semicolon are bound to values
after successful matching. Accordingly, the first term denotes the sender and the second
term denotes the recipient of the message. Encrypted terms are bound to a free variable
and decrypted in the next step. Pattern matching is again applied to the content of an
encrypted message. In the example,B only accepts the message if the first argument is
A, and the second is the nonceNB which B has chosen for message (2). Note thatB
has to decide with which key to decrypt the message. For message (3), this is the private
keyK−B .

It does not suffice to code only one session between A and B, because attacks might
require parallel sessions in which A or B (or both) participate. LySa offers the possibil-
ity to parameterise the protocol byn to coden+2 participantsI−1, I0, I1, . . . , In, where
I1, . . . , In are the legitimate participants,I−1 is a server (not present in our example)
andI0 models an attacker who acts as legitimate participant. As described, the protocol
consists of two processes: the process for A and the process for B. In the LySa model

shown in Figure 11, every participantIi can act either as A or B. Moreover, the repli-
cation operator! indicates that any pair of participants perform an unlimited number of
possibly concurrent sessions. The first line introduces the public/private keys of some
certification authority, which are used to encrypt and verify certificates. In the second
line, the public/private key pairsPK+i/PK−i of all participantsIi are specified. Data
(initially) not known to the attacker, like private keys, are restricted by using the ‘new’
operator. The attacker can read all messages and has hence access to all data contained
in the unencrypted parts of messages, and if in possession of the corresponding key,
can also decrypt messages. Since the public keys are assumed to be publicly known, we
have to make sure that potential attackers have access to them. This is done by sending
public keys in the clear in the last two lines of the protocol. The attacker built into the
LySa model has the usual powers of the standard Dolev-Yao attacker [11], i.e. can use
all information obtained from messages sent between participants to compose messages
which can be sent to any participant. This means that a participant cannot be sure that
the sender of a message is the one occurring in the first argument of the message, as the
attacker has access to all names and can hence fake the names of sender and recipient
in a message.

6.3 Security analysis with LySa

The analysis performed by the LySatool is to ask whether for multiple runs of the pro-
tocols between a number of participants, and in the presence of a standard (Dolev-Yao)
network attacker, correct authentication is guranteed. The underlying technique is static
analysis, more specifically the Succinct Solver Suite [12] provides the implementa-
tion of the solution procedures which are deployed to effect the analysis. LySa has been
designed to verify correct authentication, and can also check confidentiality of data. The
analysis of correct authentication is based on the use of assertions, which annotate the
points in the protocol at which encryption and decryption takes place (‘cryptopoints’).
At an encryption point these assertions specify the destinations where it is believed that
the complementary decryption can occur. At a decryption point the assertions specify
the points where it is believed that the complementary encryption occurred.

For the key exchange protocol of the web-based business system, the LySa asser-
tions specify that message (3) is correctly authenticated. More precisely, sending of
message (3) is annotated with [ata3i,j destb3i,j] while receiving of message (3) has
annotation [atb3i,j orig a3i,j].

Hence, the assertions state correct (mutual) authentication of the communicating
parties. The LySa tool checks whether an attacker is able to impersonate a legitimate
participant and hence violate correct authentication. If the analysis shows that all asser-
tions are correct in the presence of an attacker, we learn that the protocol guarantees
correct authentication.

We have analysed the key exchange protocol for the web-based business system
with LySa and shown that it provides authenticated key exchange. Moreover, we exper-
imented with variants of the protocol and showed that omitting data from messages in

(new +- KCA)(
(new_{i=1} +- PK_{i})(

/∗ process A∗/
(|_{i=1} |_{j=0\i} !(

/∗ send (1) ∗/
<I_{i},I_{j},{|I_{i},PK+_{i}|}:KCA->.

/∗ receive (2) ∗/
(I_{j},I_{i};v1_{i,j},vcertB_{i,j}).
decrypt v1_{i,j} as {|I_{j};vNB_{i,j}|}:PK-_{i} in
decrypt vcertB_{i,j} as {|I_{j};pB_{i,j}|}:KCA+ in

/∗ send (3) ∗/
(new K_{i,j})(
<I_{i},I_{j},{|I_{i},vNB_{i,j},K_{i,j}|}:pB_{i,j} [at a3_{i,j} dest {b3_{i,j}}]>.0
)))

|
/∗ process B∗/

(|_{j=1} |_{i=0\j} !(
/∗ receive (1) ∗/

(I_{i},I_{j};vcertA_{i,j}).
decrypt vcertA_{i,j} as {|I_{i};pA_{i,j}|}:KCA+ in

/∗ send (2) ∗/
(new NB_{i,j})(
<I_{j},I_{i},{|I_{j},NB_{i,j}|}:pA_{i,j},{|I_{j},PK+_{j}|}:KCA- >.

/∗ receive (3) ∗/
(I_{i},I_{j};x4_{i,j}).
decrypt x4_{i,j} as {|I_{i},NB_{i,j};vK_{i,j}|}:PK-_{j} [at b3_{i,j} orig {a3_{i,j}}] in
0)))

| |_{i=1} <PK+_{i}>.0
| <KCA+>.0
))

Fig. 11.LySa code for the security protocol in the web-based business system

the protocol makes it insecure. As an example, we show an attack which is possible
when omitting the nameA in message (3):

(1) A → B: A, certA
(2) B→ A: {B, NB}:K+

A, certB
(3) A → B: { NB, KAB}:K+

B

After A has started a regular session withB, the attackerI starts a parallel session
with B, and afterwards sends the response ofB instead of the second message in the
first session. Then the intruder intercepts the response ofA in the first session and
misuses it as message (3) in the second session.

(1) A → B: A, certA
(1’) I → B: I, certI
(2’) B → I: {B, NB’ }:K+

I

(2) IB → A: {B, NB’ }:K+
A

(3) A → IB : { NB’, K }:K+
B

(3’) I → B: { NB’, K}:K+
B

The result is thatK is the new session key for the sessionA thinks she is conducting
with B as well as for the session betweenB andI. This means thatI can intercept
messages encrypted byA with the keyKAB and makeB believe that the message
comes fromI.

7 Related work

Other authors have considered performance and security concerns in a unified frame-
work. In [13] the security and performance demands of a secure electronic voting algo-
rithm are considered. For the application of electronic voting, the requirement for a
secure system with good performance and scalability is very compelling but the issue
of integrated performance and security analysis also arises in small devices because of
the cost of computing public and private key cryptographic routines. This is considered
both by those working closely with present-day hardware [14] and by those working at
the algorithmic modelling level [15, 16].

With regard to the performance analysis of UML models there are a range of signifi-
cant prior works which have similarities with the performance-related part of our work.
In many cases, these map UML diagrams of various kinds to other analysable represen-
tations including stochastic Petri nets [17, 18], layered queueing networks [19], gener-
alised semi-Markov processes [20] and others. Some works are particularly noteworthy
for their careful consideration of the role of the UML metamodel in the performance
analysis process [21]. Our work has some similarities with the above, and many differ-
ences (different diagram types, different performance analysis technology). Two things
are unique to our work here: an integrated technology for security analysis and the use
of reflectorsto reflect the results of the analysis back to the UML level.

Other methodologies based on UML have been defined in order to specify security
aspects of designs. UMLsec by Jan Jürjens [22, 23] is a versatile profile that includes
a wide range of high-level security concepts like secrecy, integrity, no-down-flow, fair
exchange etc. and allows the user to specify hardware platforms such as LAN, smart

card, Internet and others. It is however not possible to specify correct authentication,
which is the main security requirement on the key exchange protocols which are part of
the case studies that we have considered. As in the UML content processed by the LySa
extractor, UMLsec protocols are specified by sequence diagrams, and the constraints
used in the sequence diagrams are similar. However, the UML use supported by the
LySa extractor provides a means to specify cryptopoints in sequence diagrams, which is
an essential prerequisite for analysing correct authentication with LySa. Another mod-
eling language for development of secure systems based on UML is SecureUML [24].
This work aims at role-based access control, while the LySatool focuses on authenti-
cated key exchange.

8 Conclusions

We have presented a novel method for analysing security and performance questions
about UML-described systems which follow a modern, open design pattern. The classes
of behaviours understood within the system are described by class and state diagrams.
The interactions between object instances of these classes are described using collab-
oration diagrams and sequence diagrams. The Choreographer design platform auto-
matically processes descriptions of systems structured in this way, and packaged as a
UML project. Process algebra representations of the formal content of the diagrams are
extracted and passed to efficient analysers which check performance and security prop-
erties. The results of these analysers can be inspected directly or reflected back through
the Choreographer design platform in order to present all of the analysis at the UML
level.

The design and implementation of the Choreographer design platform leveraged the
PEPA Workbench and LySatool analysers for the analysis effort and the NetBeans open
IDE for building a custom graphical user interface for the application. The Choreogra-
pher platform has an open, extensible plug-in architecture which we are extending with
other solution tools and model analysers.

We have applied the Choreographer platform to a range of small model examples
and tests and a more substantial case study. We have found that the added richness of
the interface has been appreciated as being an engineering improvement over the pre-
vious generation of analysis tools for process calculi. The representation of security
and performance content is expressed in standard UML notation. As a helpful conse-
quence of this design decision, Choreographer interoperates with standard UML tools
such as Poseidon, without the need for additional diagram types or other extensions to
the UML.

Through the use of the UML as an interface to the security and performance analysis
process we hope that we have an accessible framework which could attract developers
facing difficulties in engineering secure systems with high performance to consider for-
mal analysis as a beneficial complement to their current design practices. There are
many benefits to the use of formal modelling and analysis methods, not the least of
which is the ability to display that due care and attention has been taken in the develop-
ment of secure services which are to be used in business-to-business contexts.

It is not the case that an inexperienced modeller can use our system to compute
any performance measure or test any security question that they wish without need-
ing any understanding of the abstraction, modelling and mathematical analysis at work
in performance prediction and estimation. However, we hope that we have gone some
way to providing automated support for computing simple performance measures and
classical security analyses. Using UML, we circumvent an unnecessary notational hur-
dle which could have been an impediment to the understanding and uptake of modern
performance and security analysis technology.

AcknowledgementsThe work described in the present paper was undertaken while the
authors were supported by the DEGAS (Design Environments for Global ApplicationS)
project IST-2001-32072 funded by the FET Proactive Initiative on Global Computing.
The Choreographer design platform incorporates the PEPA Workbench [25, 26] and the
LySatool [27] as state-space generators and solvers. A modified version of the For-LySa
extractor [9] is used as a component. We thank Matthew Prowse for helpful discussions
on the extraction algorithm for PEPA. The Choreographer design platform is a Java
application which has been successfully tested on Windows and Red Hat Linux systems.
It is available for download from http://www.lfcs.ed.ac.uk/choreographer.

References

[1] Gentleware AG systems. Poseidon for UML web site, November 2004.
http://www.gentleware.com/.

[2] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H.R. Nielson. Automatic validation of
protocol narration. InProc. of the 16th Computer Security Foundations Workshop (CSFW
2003), pages 126–140. IEEE Computer Security Press, 2003.

[3] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

[4] Eclipse.org: open extensible IDE. Eclipse Foundation Web site, November 2004.
http://www.eclipse.org/.

[5] NetBeans.org: open IDE. Web site of the NetBeans project, November 2004.
http://www.netbeans.org/.

[6] J.T. Bradley, N.J. Dingle, S.T. Gilmore, and W.J. Knottenbelt. Derivation of passage-time
densities in PEPA models using IPC: The Imperial PEPA Compiler. In G Kotsis, editor,
Proceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunications Systems, pages 344–351, University of
Central Florida, October 2003. IEEE Computer Society Press.

[7] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with
PRISM: A hybrid approach. In J.-P. Katoen and P. Stevens, editors,Proc. 8th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’02), volume 2280 ofLNCS, pages 52–66. Springer, April 2002.

[8] C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and P. Stevens. Performance modelling
with UML and stochastic process algebras.IEE Proceedings: Computers and Digital Tech-
niques, 150(2):107–120, March 2003.

[9] M. Buchholtz, C. Montangero, L. Perrone, and S. Semprini. For-LySa: UML for authenti-
cation analysis. In C. Priami and P. Quaglia, editors,Proceedings of the second workshop
on Global Computing, volume 3267 ofLecture Notes in Computer Science, pages 92–105,
Rovereto, Italy, 2004. Springer Verlag.

[10] Dieter Gollmann.Computer Security. Wiley, 1999.
[11] D. Dolev and A.C. Yao. On the security of public key protocols.IEEE Transactions on

Information Theory, 22(6):198–208, 1983.
[12] F. Nielson, H.R. Nielson, H. Sun, M. Buchholtz, R.R. Hansen, H. Pilegaard, and H. Seidl.

The Succinct Solver suite. InProceedings of Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2004), volume 2988 ofLNCS, pages 251–265. Springer-
Verlag, 2004.

[13] Nigel Thomas. Performability of a secure electronic voting algorithm. In Jeremy Bradley
and William Knottenbelt, editors,Proceedings of the First International Workshop on Prac-
tical Applications of Stochastic Modelling, pages 81–93, London, September 2004. To
appear in Electronic Notes in Theoretical Computer Science.

[14] Yusuke Matsuoka, Patrick Schaumont, Kris Tiri, and Ingrid Verbauwhede. Java cryptogra-
phy on KVM and its performance and security optimization using hw/sw co-design tech-
niques. In2004 International Conference on Compilers, Architectures and Synthesis of
Embedded Systems (CASES/04), pages 303–311, Washington, September 2004. ACM Press.

[15] C. Boyd and A. Mathuria. Key establishment protocols for secure mobile communications:
a critical survey.Computer Communications, 23:575–587, 2000.

[16] Chiara Bodei, Mikael Buchholtz, Michele Curti, Pierpaolo Degano, Flemming Nielson,
Hanne Riis Nielson, and Corrado Priami. On evaluating the performance of security pro-
tocols. InProceedings of the Second Workshop on Quantitative Aspects of Programming
Languages, 2003.

[17] J.P. Ĺopez-Grao, J. Merseguer, and J. Campos. From UML activity diagrams to stochastic
Petri nets: Application to software performance analysis. InProceedings of the Seventeenth
International Symposium on Computer and Information Sciences, pages 405–409, Orlando,
Florida, October 2002. CRC Press.

[18] Juan Pablo Ĺopez-Grao, Jośe Merseguer, and Javier Campos. From UML activity diagrams
to Stochastic Petri nets: application to software performance engineering. InProceedings of
the fourth international Workshop on Software and Performance, pages 25–36. ACM Press,
2004.

[19] D.C. Petriu and H. Shen. Applying the UML performance profile: Graph grammar-based
derivation of LQN models from UML specifications. InProceedings of Tools’02, number
2324 in LNCS, pages 159–177. Springer-Verlag, April 2002.

[20] C. Lindemann, A. Tḧummler, A. Klemm, M. Lohmann, and O. P. Waldhorst. Performance
analysis of time-enhanced UML diagrams based on stochastic processes. In Tucci [28],
pages 25–34.

[21] S. Bernardi, S. Donatelli, and J. Merseguer. From UML sequence diagrams and statecharts
to analysable Petri net models. In Tucci [28], pages 35–45.

[22] Jan J̈urjens. UMLsec: Extending UML for secure systems development. In5th Intl. Con-
ference on the Unified Modeling Language (UML) 2000, LNCS 2460, 2002.

[23] Jan J̈urjens.Secure Systems Development with UML. Springer, 2004.
[24] Torsten Lodderstedt, Davin Basin, and Jürgen Doser. SecureUML: A UML-based model-

ing language for model-driven security. In5th Intl. Conference on the Unified Modeling
Language (UML), LNCS 2460, pages 426–441, 2002.

[25] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process Algebra-
based Approach to Performance Modelling. InProceedings of the Seventh International
Conference on Modelling Techniques and Tools for Computer Performance Evaluation,
number 794 in Lecture Notes in Computer Science, pages 353–368, Vienna, May 1994.
Springer-Verlag.

[26] N.V. Haenel.User Guide for the Java Edition of the PEPA Workbench—Tabasco release.
LFCS, Edinburgh, October 2003.

[27] Mikael Buchholtz. LySa — a process calculus. Web site hosted by Informat-
ics and Mathematical Modelling at the Technical University of Denmark, April 2004.
http://www.imm.dtu.dk/csLySa/.

[28] Salvatore Tucci, editor.Proceedings of the Third International Workshop on Software and
Performance (WOSP 2002). ACM Press, Rome, Italy, July 2002.

