
Graphical modelling of process algebras with
DrawNET

Stephen Gilmore
Laboratory for Foundations of Computer Science

University of Edinburgh

Marco Gribaudo
Dipartimento di Informatica

Universit̀a degli Studi di Torino

I. I NTRODUCTION

High-level languages for performance modelling are
often complex to use. Further, they are unfamiliar to the
people who would most directly benefit from using them,
namely practising software engineers and application
developers. One approach to reducing the difficulty of
using these languages is to equip them with a graphical
syntax which is more intuitive than the more unfamiliar
languages of process algebras and other state-based
modelling formalisms.

We have extended the DrawNET modelling tool to
facilitate the design of PEPA net models [1] in addition
to its existing support for Petri net-based formalisms and
fault trees. This work is part of an ongoing programme to
extend DrawNET to support a very wide range of graph-
ical modelling formalisms. Other candidate modelling
formalisms for future incorporation include queueing
networks.

DrawNET is a framework which can be used to edit
models which are expressed in graph-based modelling
formalisms. It is based on a two-level structure in which
one level is used to describe the modelling language
itself and the other is used to describe models in this
language. One of the key features of DrawNET is that
it is a modern software tool which utilisies current
implementation technology such as Java and XML. In
this way both the application code and its data are
immediately portable across a wide range of systems.

The current focus of the DrawNET tool is on model
composition, delegating analysis and solution of the
models to other tools, such as the PEPA Workbench
or GreatSPN. This is the way in which we have used
DrawNET here. Using DrawNET as a model composi-
tion tool is a very appropriate use for the PEPA nets
formalism in particular. Used in this way, DrawNET
provides a level of abstraction from the concrete syntax
which is used by the PEPA net tools and the PEPA tools.
The PEPA nets modelling language is supported directly
by the PEPA Workbench for PEPA nets and by the PEPA
net compiler. The compiler compiles PEPA net models to
equivalent models in the PEPA stochastic process algebra

(which can be seen as a sublanguage of the PEPA nets
language). Through the use of the PEPA nets compiler,
PEPA net models can also be processed by any of the
PEPA tools and, thanks to the efforts of several groups
of developers and users, PEPA is supported by a wide
range of tools. These include the PEPA Workbench [2]
itself, but also the M̈obius multi-paradigm modelling
framework (see [3] and [4]), the PRISM probabilistic
model checker [5] and the Imperial PEPA compiler
(see [6] and [7]) which compiles PEPA models to the
modelling language of DNAmaca [8]. Using DrawNET
as a model editor whose output is preprocessed into the
input formats of the PEPA tools allows us to eliminate
the effect of small differences in concrete syntax between
the PEPA tools. This is achieved by building knowledge
of these small differences into the DrawNET model
unparser, rather than requiring every PEPA user to master
them.

The novelty in the current work is in using a graph-
based tool to compose the process algebra models which
are usually expressed in a textual concrete syntax. In
addition, the unusual challenge afforded to DrawNET
by the PEPA nets language is the hierarchical compo-
sition of sub-models which are expressed in different
formal languages. A PEPA net uses a Petri net super-
structure to compose related PEPA models. These PEPA
models are themselves a composition of a collection of
sequential PEPA components. This structure is faithfully
represented in our encoding of PEPA nets in DrawNET.

II. A GRAPHICAL LANGUAGE FOR PROCESS

ALGEBRAS

In this section we discuss the design of the graph-
ical representation for PEPA nets in DrawNET. An
important motivation for the PEPA nets language was
to take advantage of the intuitive reading of graph-
based formalisms such as Petri nets. In designing a
corresponding graphical representation for the process
algebra sublanguage we wished to keep faith both with
the design of the PEPA nets modelling language and the
principles on which the PEPA stochastic process algebra
is founded [9]. PEPA is a compact formal language with



a small number of carefully chosen concepts. To reflect
this we wished to use a limited number of graphical
objects with clearly defined roles.

In order to reinforce the modeller’s intuition when
drawing sequential process algebra sub-components we
utilised the “blackboard notation” for process algebras in
which • is used to represent a state,• → • represents a
transition and• ← • → • represents a choice. States are
labelled by a descriptive name. Transitions are labelled
by a type name describing the activity (for a queue
this could bearrive or serve) and a rate characterising
the exponentially-distributed delay associated with this
activity. The diagrammatic syntax which we use for
these sequential components can then be read literally
as a drawing of the labelled transition system described
by the component. In our experience of modelling with
PEPA, the sequential components in typical models have
a modest number of states, perhaps less than ten, so a
diagram of a sequential component is practical to draw,
whereas the state transition diagram of the exploded
interleavings of the sequential components would have
perhaps thousands or millions of states and transitions
and would have been entirely impractical to draw. Other
concurrent system modelling tools have adopted the
same approach, for example Holzmann’s SPIN model
checker [10] and Kramer and Magee’s LTSA [11] also
represent sequential components graphically as labelled
transition systems.

We then considered the problem of representing the
concurrent composition of these sequential components
where the composition operator both instantiates and
configures the components through the use of an ex-
plicit synchronisation set. The guiding principle that we
used in this problem was that we wanted to have a
“high-level” representation of concurrent composition.
For example, we rejected the idea that the modeller
would simply have to draw the abstract syntax tree of
the model. The notation which we use instead allows
communicating sequential components to be connected
in an unrestricted graph and is a variant of Milner’sflow
graphs[12].

Milner’s flow graphs present a static structural view
of the system model, showing the components of the
model and their connections to other components. Mil-
ner’s CCS has a typed language of capabilities with
input actions matched by output actions, restricting the
modeller to binary synchronisation only. Capabilities are
represented graphically in his flow graph asports, one
for every action type. A synchronisation point is depicted
by an arc connecting an input port to an output port.
The PEPA language provides different synchronisation
primitives from CCS, offering CSP-style multi-way syn-
chronisation. In our experience in practical modelling

with PEPA, components typically seem to synchronise
over a set of several activity names, with single activity
synchronisation being simply a special case of the more
general use. For this reason we decided to use a variant
of Milner’s flow graph notation for our concurrent com-
position notation. We decorate each connecting arc in
our diagrams with a set of activity names. This has the
effect of reducing clutter in the diagram and mapping
several of Milner’s arcs onto one of ours.

One of the design decisions of the project concerned
which elements to represent only in attributes associ-
ated with graphical elements, not as graphical elements
themselves. In other work on DrawNET [13] marking-
dependent rates are not depicted graphically. It would
be possible to do this but embedding the marking
dependency in the firing rate is preferred to adding
another graphical primitive. We encode PEPA’shiding
combinator in this way, specifying hidden activities as
attributes of a component instance.

III. I MPLEMENTATION IN DRAWNET

In this section we provide more details of the imple-
mentation of the DrawNET tool and of the encoding of
PEPA nets in DrawNET. The underlying theory of the
DrawNET tool is explained in [14], [15], [16]. DrawNET
is applied to the Fluid Stochastic Petri Net formalism
in [13]. Papers on the current state of the tool are [17],
[18], [19].

DrawNET categorizes the modelling primitives into
three categories: nodes, edges and sub-models. The
nodes and edges are the graph components and sub-
models are used to give hierarchical composition in
models. Each of these categories is termed anelement
of the DrawNET language. Each element can have some
properties and in addition the edges can have two kinds
of constraints. The first is that they may constraint the
types of elements which can be connected. The second is
that they can specify the cardinality of incoming edges
and outgoing edges. DrawNET checks the validity of
these constraints as a model is being composed and
will not allow a user to break any constraint which is
specified in the formalism. This incremental approach
to giving diagnostic feedback on errors in models is
better suited to non-expert users than is the traditional
batch-mode approach. In the latter the user is allowed
to compose erroneous models. These are then faulted
with a series of diagnostic error message at the time of
compilation into another representation.

Sub-models are containers with visibility attributes
and specify constraints on which elements they can
contain. Each sub-model has an associated language
which may be different from the language in which the
enclosing model is expressed. We can exploit this feature



Fig. 1. A hierarchy of models in DrawNET

to allow models to be composed in hybrid modelling lan-
guages. Examples of these include combinations of Petri
nets with other modelling languages such as queueing
networks or process algebras. In the next section we will
see an example of this multi-language composition used
twice. In the first case, sequential PEPA components
are composed into a parallel composition. In the second
case, PEPA contexts are composed into a PEPA net.

IV. EXAMPLE AND SCREENSHOTS

We describe a simple PEPA net model of a mobile
agent system. A mobile agent visits three places,P1, P2
and P3. In placesP1 and P3 the agent interrogates a
network probe for statistical data which it has collected
on patterns of network usage. Having harvested this
data, the agent returns home (to placeP2) and dumps
the gathered information to a master probe. The master
probe then performs a sophisticated analysis of the
data. The structure of the system allows this analysis to
be overlapped with the agent’s transmission time. The

system is illustrated in Figure 1.
Figure 1 composes six screenshots of the DrawNET

graphical interface editing the layers of the mobile agent
PEPA net model. The top of the diagram shows the
net structure itself in classical Petri net notation with
circles for places and vertical bars for transitions. In our
example this specifies three places,P1, P2 andP3 with
the net transitions which move tokens labelled bygo and
return .

The centre of the diagram shows the composition layer
in our diagrammatic syntax which resembles Milner’s
flow graphs. Here sequential component instances are
composed and configured using co-operation sets. These
sub-models represent contents which specify the cells
and the static components at each place in the net.
This notation uses the distinctive PEPA combinator (the
butterfly symbol).

The composition layer of the model also differentiates
static components from tokens. Only those PEPA com-
ponents which are marked as being tokens can circulate



around the net. Components which are static are fixed
in one place and cannot move. The composition layer
also encodes the initial marking of the PEPA net. Two
Boolean variables are associated with each component
for the purpose of recording these two facts (the Boolean
variables are “Marked” and “Static”). The dependency
between these is that only non-Static components can
be Marked. These two variables record the three possi-
bilities.

Finally at the bottom of the diagram we see the
sequential components described by labelled transition
systems using the blackboard notation for process alge-
bra terms. Sequential components define the behaviour
of the Agent token and theMaster and Probe static
components. Activities specify their rate and type.

In all, the three different graphical designs separate
out the layers of the PEPA net model.

V. CONCLUSIONS AND FURTHER WORK

We have extended the DrawNET tool to allow mod-
ellers to compose PEPA net models graphically without
needing to know the details of the concrete syntax of
tools such as the PEPA Workbench, Möbius, PRISM
andipc. We hope that this extension makes the language
more accessible to novice users or (non-technical) read-
ers of PEPA net models.

We found that the design of DrawNET strongly sup-
ports the incorporation of a new graphical formalism
such as our diagrammatic syntax for PEPA nets. The
DrawNET tool has been carefully engineered to provide
generic capabilities which we have been able to reuse
here.

In this paper we have described model composition
but not solution. An obvious next step for further work
is to integrate the solution component with the graphical
user interface in order to present the results of the
solution back to the user in the terms of their model.

Acknowledgments:Stephen Gilmore is supported
by the DEGAS (Design Environments for Global Ap-
plicationS) project IST-2001-32072 funded by the FET
Proactive Initiative on Global Computing. Marco Grib-
audo is supported by the EEC IST project 25434 De-
pAuDE.

REFERENCES

[1] S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. PEPA nets:
A structured performance modelling formalism. To appear in
Performance Evaluation, 2003.

[2] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to
Support a Process Algebra-based Approach to Performance Mod-
elling. In Proceedings of the Seventh International Conference
on Modelling Techniques and Tools for Computer Performance
Evaluation, number 794 in Lecture Notes in Computer Science,
pages 353–368, Vienna, May 1994. Springer-Verlag.

[3] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M.
Doyle, W. H. Sanders, and P. Webster. The Möbius modeling
tool. In Proc. 9th Int. Workshop on Petri Nets and Performance
Models (PNPM ’01), pages 241–250, Aachen, Germany, Septem-
ber 2001. IEEE Comp. Soc. Press.

[4] G. Clark and W.H. Sanders. Implementing a stochastic process
algebra within the M̈obius modeling framework. In L. de Alfaro
and S. Gilmore, editors,Proceedings of the first joint PAPM-
PROBMIV Workshop, volume 2165 ofLecture Notes in Computer
Science, pages 200–215, Aachen, Germany, September 2001.
Springer-Verlag.

[5] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic
symbolic model checking with PRISM: A hybrid approach. In
J.-P. Katoen and P. Stevens, editors,Proc. 8th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’02), volume 2280 ofLNCS, pages
52–66. Springer, 2002.

[6] J.T. Bradley, N.J. Dingle, S.T. Gilmore, and W.J. Knottenbelt.
Derivation of passage-time densities in PEPA models using the
imperial PEPA compiler (ipc). Submitted for publication, March
2003.

[7] J.T. Bradley, N.J. Dingle, S.T. Gilmore, and W.J. Knottenbelt. Ex-
tracting passage times from PEPA models with the HYDRA tool:
A case study. In S. Jarvis, editor,Proceedings of the Nineteenth
annual UK Performance Engineering Workshop, University of
Warwick, July 2003.

[8] W.J. Knottenbelt. Generalised Markovian analysis of timed
transition systems. Master’s thesis, University of Cape Town,
1996.

[9] J. Hillston. A Compositional Approach to Performance Mod-
elling. Cambridge University Press, 1996.

[10] G. J. Holzmann.The Spin Model Checker: Primer and Reference
Manual. Addison-Wesley, 2003. To appear.

[11] J. Magee and J. Kramer.Concurrency: State Models and Java
Programs. Wiley, 1999.

[12] R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

[13] M. Gribaudo. FSPNEdit: a Fluid Stochastic Petri Net Modeling
and Analysis Tool. InProceedings of Tools of Aachen 2001 Inter-
national Conference on Measuring, Modeling and Evaluation of
Computer and Communication Systems, pages 24–28, September
2001.

[14] M. Gribaudo and A. Valente. Framework for graph-based
formalisms. InProceedings of the first International Conference
on Software Engineering Applied to Networking and Parallel
Distributed Computing 2000, SNPD’00, pages 233–236, May
2000.

[15] M. Gribaudo and A. Valente. Two levels interchange format
in XML for Petri Nets and other graph-based formalisms. In
Proceedings of the 21st International Conference on Application
and Theory of Petri Nets, pages 22–29, June 2000.

[16] M. Gribaudo and D. Sessi. A Multiparadigm Simulation
Framework. InProceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications,
PDPTA’01, pages 1647–1653, June 2001.

[17] G. Franceschinis, M. Gribaudo, M. Iacono, N. Mazzocca,
and V. Vittorini. Towards an Object based Multi-Formalism,
Multi-Solution Modeling Approach. InProceedings of Second
Workshop on Modelling of Objects, Components, and Agents,
(MOCA2002) Aarhus, DK, Aug 2002.

[18] V. Vittorini, G. Franceschinis, M. Gribaudo, M. Iacono, and
C. Bertoncello. DrawNet++: a Flexible Framework for Building
Dependability Models . InProceedings of Tools presentations,
Proc. of the International Conference on Dependable Systems
and Networks (DSN2002), June 2002.

[19] V. Vittorini, G. Franceschinis, M. Gribaudo, M. Iacono, and
N. Mazzocca. DrawNet++: Model Objects to Support Per-
formance Analysis and Simulation of Complex Systems. In
Proceedings of 12th International Conference on Modelling
Tools and Techniques for Computer and Communication System
Performance Evaluation, April 2002.


