
Choreographing security and performance analysis ∗

S. Gilmore V. Haenel

Laboratory for Foundations of
Computer Science

The University of Edinburgh
Scotland

stg@inf.ed.ac.uk,
valentin.haenel@gmx.de

L. Kloul

PRiSM, Université de
Versailles

45, avenue des Etats-Unis
78000 Versailles

kle@prism.uvsq.fr

M. Maidl

Siemens AG, CT IC3
Otto-Hahn-Ring 6
81739 München

monika.maidl@siemens.com

ABSTRACT
We present a novel method of assuring security and performance
demands on systems based on automated analysis of UML model
descriptions. Analysable content is extracted from the UML
models in the form of process calculus descriptions. These are
analysed to provide strong guarantees of satisfactory security
and performance. The results are reflected back in the form of
a modified version of the UML model which highlights points
of the design which can give rise to operational difficulties.
A design platform supporting the methodology,Choreographer,
interoperates with state-of-the-art UML modelling tools such as
Poseidon. We illustrate the approach on an example provided by
our industrial partner.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: To do...; D.2.8
[Software Engineering]: Metrics—complexity measures,
performance measures

General Terms
UML, performance modelling, communications protocols, static
analysis

1. INTRODUCTION
The design of modern networked applications provides a difficult
engineering challenge for those application developers who
work with the programming models and APIs of fully-featured
development platforms. The ever-present wish to make services
and applications accessible over the network strains developers’
abilities to build secure systems which will stand against a
wide range of possible attacks. Another challenge is meeting
the performance requirements demanded by users. Applications

∗(Produces the permission block, copyright information and
page numbering). For use with ACMPROCARTICLE-SP.CLS
V2.6SP. Supported by ACM.

WOSP’05 Palma de Mallorca, Illes Balears, Spain

which are built from reusable high-level components provide real
productivity increases for the development of secure, feature-rich
systems but such components rest on layers of middleware and
must cooperate with security infrastructures on virtual machines
and physical machine networks. From an application performance
point of view, the effect of these layers of support and coordination
is to dampen the responsiveness of the system and cap its peak
efficiency. In this way, security and performance concerns are often
at variance and developers struggle to satisfy both requirements
while also working with ever-changing software development kits,
implementation platforms, management technologies, and APIs.

In the design of challenging applications the greatest profit is
gained by considering security and performance requirements early
in the design phase, identifying problems before they are built into
the system implementation. If such problems are not identified
at the design stage then they might be found by users when
the application is in deployment, perhaps leading to operational
problems with significant financial or legal consequences.

To help to address the problems of designing secure systems
which provide strong guarantees of adequate performance we
have designed and implemented a sophisticated UML-based
design platform. This design platform, named Choreographer,
interoperates with standard UML tools such as the Poseidon
architecture and guides developers through a design methodology
centered on a UML project. Choreographer directs developers in
the application of three categories of utilities: extractors, analysers,
and reflectors. Together these provide access to powerful analysis
techniques which operate on the UML models which they have
created, elevating the analysis to the level of the UML model.
The Choreographer design platform has a flexible and extensible
plug-in architecture which supports its extension with additional
analysis tools, offering other qualitative or quantitative analysis
possibilities.

The contribution of this paper is to present a UML-based
methodology for integrated security and performance analysis,
supported by a well-engineered tool and set on the formal
foundation of dedicated process calculi with custom analysers.
We describe the UML-based methodology which Choreographer
supports and discuss the implementation of the Choreographer
platform itself. We give an example of its use on a typical UML
project.

The paper is structured as follows: the methodology is described

in Section ??. The Choreographer analysis tool is presented
in Section??. The example application is a web-based micro
business, described in Section??. This is followed by a UML
model and its associated performance and security models in
Sections??, ?? and ??. We discuss related work in Section??
and conclude in Section??.

2. METHODOLOGY
The methodology which we seek to support uses a range of
UML diagram types to express the security and performance
considerations of the system. As a principle, we use standard UML
notation: there are no notational extensions or additional diagram
types. This decision has two beneficial consequences. First, a
UML modeller using this methodology does not need to learn any
supplementary notation. Second, we are able to use standard UML
tools such as Poseidon [?] to edit the UML diagrams which we use.

We use class diagrams, collaboration diagrams, sequence diagrams
and state diagrams to describe the system under study in UML
terms. Additional diagram types may be used in the UML project
which is accepted as an input to Choreographer. These can be
added as descriptive material documenting other aspects of the
system, such as user modelling, and will not interfere with the
analysis process.

The performance and security analyses which are supported within
the methodology are fully automatic, so that there is no need
for user intervention at any stage throughout the process between
commiting the input model for analysis and inspecting the results.

Different models can be used for different purposes in the design
of an application and so the methodology supported by our design
platform allows modellers to either do a security analysis alone, or
a performance analysis, or both. That is, the annotated versions
of models which result from one run can be used again as
inputs to Choreographer to perform a different type of analysis.
The consequence of this is that a modeller using an established
operational procedure to determine satisfactory levels of security
(resp. performance) can use our design plaform to do performance
(resp. security) analysis alone. They are not forced to adopt both
of the kinds of analysis which we offer if they do not need both, or
already have a preferred way to do one of them.

3. CHOREOGRAPHER
One feature of the methodology which we support with the
Choreographer design platform tool is that modellers are able to
express the models which are input to Choreographer in standard
UML. The analysis process is initiated by invoking Choreographer
on a UML project archive. The formal content of the UML
model is stored in such an archive in an XML-based interchange
representation (XMI). Software connectors termedextractors
process the XMI representation of the input model and derive an
analysable form of the model expressed in a process calculus. We
use different process calculi for security and performance analysis:
LySa [?] for the former and PEPA [?] for the latter.

Another key feature of the method is that the results of the analysis
are reflected back as a modified version of the original UML
model. Thereflectorswhich do this are also available as software
components which take the original UML project and the results
of the analysers as inputs and write their results as complete UML
projects in which the results of the analysis have been incorporated.
The purpose of this is to ensure that the interpretation of the

analysis results can be undertaken at the UML level and that the
UML is not being used only as a model description language from
which a process calculus representation is generated. Instead,
reflecting the results back to the UML level centres the analysis
on the UML description.

3.1 Design
The Choreographer platform is designed to support UML-centered
development but is flexible enough to accommodate other modes
of use in addition. These might simply be preferred by designers
or developers who are using the platform or they might be needed
to support a style of development favoured by the institution or
software house which commissioned the development. Thus,
a guiding principle of the design of Choreographer is that the
processing of UML models should be made visible to the developer
in order that the mapping between UML diagram elements and
constructs of the process calculi beneath is transparent. This
principle ensures that modellers have access to the representations
which are needed to understand how their diagram elements are
interpreted in the analysis process.

Exposing the functionality of the extractors and reflectors which
map UML models to process calculi and analysis results back into
the UML brings additional benefits for both implementors and
users. We detail these in turn.

For the implementors the benefits of this design include having
the functionality of the extractors open to inspection and enquiry.
This greatly assisted with the problem of finding and correcting
programming errors in the implementation of the extractors, with
commensurate benefits to their implementation quality. The
design of the analysis tools further supports the quality of the
implementation of the extractors. The interface to each of the
analysis tools is a formal language which is throughly checked
by the tool before the analysis is carried out. Considering the
performance analysis tools, models with deadlocks or missed
synchronisations are rejected by the analysis tool, identifying errors
in the input UML model or the implementation of the extractor
which generated the process calculus representation.

For the users of the platform this has the benefit that it facilitates
experimentation with models at the level of the process calculus,
allowing a single UML model to give rise to a related collection
of process calculus models. Here the UML level provides a
much-needed layer of abstraction over the formal details. Such
an abstraction would be useful in presenting a simplified—but
consistent and accurate—view of the model to project managers
or customers for whom the full complexity of the detailed process
calculus representation would be a barrier to understanding.

3.2 Implementation
Sophisticated users demand more from applications than raw
functionality alone. The functionality must be presented in an
appealing package if it is to attract a substantial user base and
build a community of enthusiastic adopters. The issues here
include engineering concerns which complement the scientific
ones. Ignoring the engineering problems would be an unwise
practise because the benefit to be derived from scientifically well-
founded analysis will not be obtained if the analysers are not
used. Within the engineering concerns are portability issues, user
interface design and ease of installation. Modest problems in
each of these areas would not deter the most enthusiastic adopter

but could prevent an interested potential evaluator from trying the
Choreographer platform in the first place.

To this end we worked to minimise engineering annoyances by
building on portable, well-engineered implementation technology.
Reasoning that we wanted to build an integrated development
environment we researched a range of generic IDEs including
Eclipse [?] and NetBeans [?]. Both of these build on the Java
platform and provide generic user-interface and editor components,
filesystem explorers, and other support for integrated development
environments. Either could have been used for our purposes but we
chose NetBeans becauseinsert plausible reason here.

NetBeans associatesdata loaders with file types and the
functionality implemented in a data loader determines the
processing which can be performed on the file contents. We
implemented data loaders for each of the modelling languages used
in our development method: UML (specifically, in its XMI format),
PEPA and LySa.

By associated the necessary functionality with a language in this
way, the Choreographer design platform guides the user through
the modelling process. UML projects can be opened to obtain their
XMI content. Extraction can be applied to the XMI representation
to obtain a PEPA or LySa model. Performance analysis can be
applied to PEPA models. Security analysis can be applied to LySa
models. Results are reflected back into the UML representation.
Choreographer guides the user through the process (exraction, then
analysis, then reflection) and prevents “mode errors” such as trying
to apply security analysis to a PEPA model, as could occur in a less
structured modelling approach.

programmed menus using NetBeans’XML layers

4. THE WEB-BASED BUSINESS SYSTEM
The case study provided by our industrial partner is a web-based
service to enable e-business based on a peer-to-peer authentication
and communication paradigm. The objective of this system is to
provide a support to micro web-based businesses that do not have
by themselves the capability of developing proprietary solutions
for e-business [?]. The system is accessible through both wired
internet connections and mobile devices using standard protocols
such as the wireless application protocol. The system will present
the various services offered by the service providers according
to a coherent layout and will be provide an interface for service
access. While users should be able to process their transactions on
a peer-to-peer basis, it is necessary to provide a central portal at
which users register and can search for services. Hence the system
naturally decomposes into three parts: the portal, services providers
and customers (Figure??). The upper part of Figure?? describes
the part of functionality that involves the portal, while the lower
part concerns the peep-to-peer functionality.

The portal
It enables remote data search and service navigation. Moreover
it can constitutes the interface between the customers and the
service providers during the on-line business transactions. The e-
business data management provides access to distributed products
and services catalogues. The portal allows an important number of
concurrent accesses whereas providing an end-to-end security of
the transactions.

The service provider

Portal

Customer

search

ServiceProvider

ServiceProvider

Customer

Customer

ServiceProvider ServiceProvider

Customer

publish

search

transaction

register

register

transaction

Figure 1: Architecture of the web-based business system

A new service provider joining the system has first to register itself
to be known by the portal. A registered service provider has then
the possibility to publish dynamically its services onto the portal.
The list of its services can be accessed by any customer through the
portal. Each provider will be able to modify its published services
list by adding a new product, changing the characteristics of an
existing one or removing a service from the list. At any moment,
a service provider can quit the system by unregistering from the
portal. The service provider can also handle transactions directly
with customers who have registered at the service provider.

The customer
Like the service providers, new customers have to register at
the portal before being able to use its services. The registered
customers are informed by the portal about available services,
the newly published services and the modified or removed ones.
The user may perform on-line transactions via the portal to buy
products he is interested in by selecting them from the list. The
customers order requests are then routed by the portal to the
appropriate service provider. Alternatively, a customer can choose
to communicate peer-to-peer with a chosen service provider after
registering directly at this service provider.

4.1 Performance and security requirements
In order to provide an attractive service it is important that the
response time of the portal is limited: The high-level requirements
state that a user request via mobile phone should be served within
10 seconds while a request via the internet should be served with
in 5 seconds on average. The security of the system is also crucial:
Correct authentication at the portal and between service providers
and buyers is required to prevent misuse by identity theft. The
user data, in particular the transactions between service providers
and customers, and also information associated to the operations
to a user on the portal, should remain confidential, and integrity
should be preserved. As all these data are transmitted wireless or
via the web, strong security measures are required to meet these
requirements.

5. UML MODEL OF THE SYSTEM
6. THE PERFORMANCE MODEL
The on-line transaction system can be modelled using three PEPA
components. The first componentPortal models the behaviour of
the interface between the service providers and the customers. The
second componentProvider models any provider registred in the

system whereas the last componentBuyer is used to model the
behaviour of a customer.

Note that in this model, we assume that both buyers and providers
are already know by the system; they have already registred
themselves.

ComponentBuyer
In an on-line transaction, the system user starts by sending a request
to the portal about a specific product he is interested in like books
for example. This can be done by a simple clic on the icon titled
“Books” in the main pages of available products provided by the
portal. This is modelled by action typenewrequest. The response
of the portal is to send to the customer the catalogue or list of books
available with all characteristics. We model this using action type
get product list. Once the customer has the targetted list, he can
select all the items he wants (actionselectproduct) and then go to
the check out (actioncheckout). This last step allows the buyer
to place an order for selected items. At any moment the customer
can change his mind and stop the process. This is modelled using
action typerestart. Note that action typeget product list has an
unspecified rate in componentBuyerbecause the rate is defined by
the portal which will send the list of products at his rythm.

Buyer
def
= (new request, r).Buyer1

+ (update request,>).Buyer

Buyer1
def
= (get product list,>).Buyer2

Buyer2
def
= (select product, r1).Buyer3

+ (restart, r2).Buyer

Buyer3
def
= (select product, r1).Buyer3

+ (restart, r2).Buyer
+ (check out, r3).Buyer

ComponentProvider
Once a service provider is registered, he may either send a request
to the system to update the list of products or services he has
published or receive an order from the portal. The former is
modelled using action typeupdaterequestand the latter action
type transmit order. In the first case, he will receive the list of
services he owns (actionget own list) and can then make all the
changes he wants using action typesadd product, deleteproduct
and changevalues. Once he is finished with the updates he can
leave the system (action typequit). In the second case, he will
consider the customer order and do the necessary to satisfy the
request. This is modelled using action typeprocessorder.

Provider
def
= (update request, s).P rovider0

+ (transmit order,>).P rovider2

Provider0
def
= (get own list,>).P rovider1

Provider1
def
= (add product, s1).P rovider1

+ (delete product, s2).P rovider1

+ (change values, s3).P rovider1

+ (quit, s4).P rovider

Provider2
def
= (process order, s5).P rovider

ComponentPortal
The portal manages both the buyers and the providers. All activities
of componentPortal are synchronizing activities, either with the

buyers or the providers.

Portal
def
= (new request,>).Portal1
+ (update request,>).Portal3
+ (select product,>).Portal1
+ (restart,>).Portal
+ (check out,>).Portal2
+ (get product list, v1).Portal1

Portal1
def
= (get product list, v1).Portal1
+ (select product,>).Portal1
+ (restart,>).Portal
+ (check out,>).Portal2
+ (new request,>).Portal1

Portal2
def
= (transmit order, v).Portal
+ (select product,>).Portal2
+ (restart,>).Portal2
+ (check out,>).Portal2
+ (new request,>).Portal2
+ (get product list, v1).Portal2

Portal3
def
= (get list, v2).Portal3
+ (add product,>).Portal3
+ (delete product,>).Portal3
+ (change values,>).Portal3
+ (quit,>).Portal

The complete system:The behaviour of the actors of the online
system and their interactions between each other are captured by
componentweb business which is defined as follows:

web business
def
= (Buyer ��

K
Buyer ��

K
...Buyer) ��

L(
(Provider|| . . . ||Provider) ��

M
Portal

)
where the synchronising sets are defined as follows:

K = {update request}
L = {new request, get product list, select product,

restart, check out, update request}
M = {update request, get own list, transmit order,

add product, delete product, change values,
quit}

Remark: The use of actionupdaterequestin componentBuyer
ensures that during the updates of a product list by its owner, the
buyers do not have access to this list. As all components of the
model must synchronise onupdaterequest, it will not be enabled
unless all occurrences of componentBuyerare in their initial state.

6.1 Numerical results
In this section we give an idea of the performance measures that we
can compute in the context of such an application. We are mainly
interested in the throughput of the portal. We consider a system
composed of five buyers and one provider. This simple system
allows us to already have an idea of the behaviour of the throughput
in a system with a portal based architecture. All curves are plotted
as a function of the arrival rater of the requests of one buyer.

• Figure?? depicts the total throughput of the portal in terms
of buyers requests to get a product list and to select a product
from a list, and the provider requests to get its own list.
This figure gives also the throughput part related to the
transmission of the orders to the provider. As we can see,

the transmission of the buyers orders is a very small part of
the throughput of the system. This may be explained by the
fact that the buyers spend time selecting product. Moreover
once the items selected, a buyer may decide to abandon or
restart. Thus all buyers do not end up making the checking
out process.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1 2 3 4 5 6 7 8 9 10

th
ro

u
g

h
p

u
t
(r

e
q

u
e

st
s/

s)

Arrival rate (r)

"Total throughput"
"Transmit"

Figure 2: Total throughput

• Figure ?? shows the behaviour of the part of the portal
throughput related to the provider requests (get own list).
Unlike what we have seen in Figure??, this throughput
decreases as the arrival rate increases. As we have more
requests from the buyers, the portal spends more time dealing
with these requests, and thus less time with the provider
requests.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

st
s/

s)

Arrival rate (r)

"get_own_list"

Figure 3: Throughput for provider requests

7. SECURITY ANALYSIS
The security of a networked service depends heavily on the ability
of users to send confidential messages via wireless or Internet
connections, and to confirm the identity of the partner in their
message exchange. Cryptographic techniques are usually used both
to ensure the confidentiality of messages.

But cryptography is not a magic wand to make everything all
right. The main issue is that sending encrypted messages is only
safe if only the authorized parties have the corresponding key.
So data security becomes a key management problem [?], and
the main task consists in designing an appropriate protocol for
authenticated key exchange. Such a protocol allows two or more
participants to exchange a cryptographic session key in a way that
the participants are assured that only the intended parties obtain the
session key. Confidentiality and integrity of data is then guaranteed
by encrypting all data with the session key. The main tool for
providing proper authentication in such a key-exchange protocol
is again cryptography, and hence an analysis tool must be able

to deal with cryptography concepts. Before describing the tool
LySa [?] that is used by Choreographer, we first discuss the security
requirements of the web-based business system, and show the key
exchange protocol chosen for the project.

7.1 Security analysis for the web-based
business system

In the case study, all communication should be encrypted to
guarantee data confidentiality and integrity. This means that before
starting a data exchange, a service provider and a customer or the
portal and a user have to use a protocol for authenticated session
key exchange.

For this protocol, there is a choice between using either
symmetric cryptography or public key cryptography in a protocol
for authenticated key exchange. When using symmetric key
cryptography, the communication has to be conducted via a central
server, and all users have to share initial symmetric keys with the
server. The design goal of the project of providing peer-to-peer
communication between service providers and customers would
be violated if communication between users necessarily involved
a central server. Moreover, initial distribution of secret symmetric
keys is difficult to achieve in a practical way. Hence a protocol
based on public key cryptography is used. In order to link a user
identity U to a public key, it is essential to use certificatescertU ,
which are signed by some trusted certification authority.

(1) A → B: A, certA
(2) B→ A: {B, NB}:K+

A, certB
(3) A → B: {A, NB, KAB}:K+

B

The aim of the protocol is to provide authenticated key exchange
betweenA andB, i.e. after the exchange bothA andB are assured
that only they know the new session keyKAB . More precisely,
correct authentication is achieved by the protocol ifA can be sure
that message (3) can only be decrypted byB, while B knows that
message (3) can only be sent byA.

7.1.0.1 LySa model of the protocol
The informal notation of the protocol used above leaves implicit
a number of assumptions and does not completely describe the
internal actions taken by the principals like decrypting with a
certain key, comparing nonces and checking certificates. Moreover
it is crucial to specify the environment in which the protocol is
executed, i.e. the actions that potential attackers can perform.

For a formal analysis, these assumptions have to be specified, and
LySa provides a format for that, which is essentially a process
algebra, enriched by cryptographic notions such as encryption and
decryption, symmetric keys, public and private keys, so that it is
possible to model an authenticated key exchange protocol. More
precisly, LYSA is based to theπ-calculus. The main difference to
the π-calculus and the Spi-calculus is that there are no channels:
messages can be arbitrarily intercepted and redirected. Moreover,
pattern matching is used to check that a message contains expected
values (like nonces), and to bind values to free variables. Each
participant in the protocol (in our case A and B) are modelled by
a separate process. Each message of the protocol corresponds to
two actions: one performed by the sender who encrypts and sends
the message, and one performed by the receiver, who decrypts the
message, checks the content and might store parts of it.

As example, consider message (3) of the protocol, which is sent
from A to B. The Lysa code for sending, which forms part of the
process for A, is shown next; sending of messages is denoted by
〈. . .〉.

(newKAB)〈A, B, {|A, vNB, KAB |} : K+
B〉

The first argument in the〈. . .〉 expression denotes the sender, the
second the recipient and the rest is the content of the message,
which in this case consists of only one part, which is encrypted.
The terms are either names, like A, B, KAB , or variables, like
vNB, which has been bound to the value of NB when A received
message (2). Sending of message (3) is preceeded by generating
a new session keyKAB that nobody except A knows. This is
modelled by restriction with the ‘new’ operator.

Input of a message is denoted by(. . .); we show the receiving
action associated with (3), which is performed by process B:

(A, B; x).decryptx as{|A, NB; vK|} : K−B

An incoming message is matched with an output, whereby the
terms before the semicolon have to match while the variables
after the semicolon are bound to values after successful matching.
Accordingly, the first term denotes the sender and the second term
denotes the recipient of the message. Encrypted terms are bound
to a free variable and decrypted in the next step. Again pattern
matching is applied to the content of an encrypted message. In the
example, B only accepts the message if the first argument is A, and
the second is the nonce NB which B has chosen for message (2).
Note that B has to decide with which key to decrypt the message;
for message (3), this is the private keyK−B .

It does not suffice to code only one session between A and B,
because attacks might require parallel sessions in which A or B
(or both) participate. LySa offers the possibility to parameterize
the protocol byn to coden + 2 participantsI−1, I0, I1, . . . , In,
whereI1, . . . , In are the legitimate participants,I−1 is a server
(not present in our example) andI0 models an attacker who masks
as legitimate participant. As described, the protocol consists of
two processes: the process for A and the process for B. In the
LySa model shown in Figure??, every participantIi can act
either as A or B. Moreover, the replication operator! indicates that
any pair of participants perform an unlimited number of possibly
concurrent sessions. The first line introduces the public/private
keys of some certification authority, which are used to encrypt
and verify certificates. In the second line, the public private key
pairs PK +i /PK−i of all participantsIi are specified. The
‘new’ operator gurantees that these keys are not know to attackers.
The attacker can read all messages and has hence access to all
unencrypted parts apart from those restricted by ‘new’, and if in
possession of the corresponding key, can also decrypt messages.
Since the public keys are assumed to be publicly known, we have
to make sure that potential attackers have access to them. This
is done by sending public keys in the clear in the last two lines
of the protocol. The attacker built into the Lysa model has the
usual powers of the standard Dolav-Yao attacker [?], i.e. can use
all information obtained from messages sent between participants
to compose messages which can be sent to any participant. This
means that a participant cannot be sure that the sender of a message

is the one ocurring in the first argument of the message, as the
attacker has access to all names and can hence fake the sender and
recipient part of a message.

7.1.0.2 Security analysis with Lysa
The analysis performed by the LySa tool is to ask whether for
multiple runs of the protocols between a number of participants,
and in the presence of a standard (Dolev-Yao) network attacker,
correct authentication is guranteed. LySa has been designed to
verify correct authentication, and can also check confidentiality
of data. The analysis of correct authentication is based on the
use of assertions, which annotate the points in the protocol at
which encryption and decryption takes place (‘cryptopoints’). At
an encryption point these assertions specify the destinations where
it is believed that the complementary decryption can occur. At
a decryption point the assertions specify the points where it is
believed that the complementary encryption occurred.

For the key exchange protocol of the web-based business
system, the LySa assertions specify that message (3) is correctly
authenticated. More precisely, sending of message (3) is annotated
with [at a3i,j dest b3i,j] while receiving of message (3) has
annotation [atb3i,j orig a3i,j], see Figure??.

Hence, the assertions state correct (mutual) authentication of the
communicating parties. The LySa tool checks whether an attacker
is able to impersonate a legitimate participant and hence violate
correct authentication. If the analysis shows that all assertions are
correct in the presence of an attacker, we learn that the protocol
guarantees correct authentication.

We have analysed the key exchange protocol for the web-based
business system with LySa and shown that it provides authenticated
key exchange. Moreover, we experimented with variants of the
protocol and showed that omitting data from messages in the
protocol makes it insecure. As an example, we show an attack that
is possible when omitting the nameA in message (3):

(1) A → B: A, certA
(2) B→ A: {B, NB}:K+

A, certB
(3) A → B: { NB, KAB}:K+

B

After A has started a regular session withB, the attackerI starts
a parallel session withB, and afterwards sends the response of
B instead of the second message in the first session. Then the
intruder intercepts the response ofA in the first session and uses
it as message (3) in the second session.

(1) A → B: A, certA
(1’) I → B: I, certI
(2’) B → I: {B, NB’ }:K+

I

(2) IB → A: {B, NB’ }:K+
A

(3) A → IB : { NB’, K }:K+
B

(3’) I → B: { NB’, K}:K+
B

The result is thatK is the new session key for the sessionA thinks
she is conducting withB as well as for the session betweenB and
I. This means thatI can intercept messages encrypted byA with
the keyKAB and makeB believe that the message comes fromI.

8. RELATED WORK

(new +- KCA)(
(new_{i=1} +- PK_{i})(

/∗ process A∗/
(|_{i=1} |_{j=0\i} !(

/∗ send (1) ∗/
<I_{i},I_{j},{|I_{i},PK+_{i}|}:KCA->.

/∗ receive (2) ∗/
(I_{j},I_{i};v1_{i,j},vcertB_{i,j}).
decrypt v1_{i,j} as {|I_{j};vNB_{i,j}|}:PK-_{i} in
decrypt vcertB_{i,j} as {|I_{j};pB_{i,j}|}:KCA+ in

/∗ send (3) ∗/
(new K_{i,j})(
<I_{i},I_{j},{|I_{i},vNB_{i,j},K_{i,j}|}:pB_{i,j} [at a3_{i,j} dest {b3_{i,j}}]>.0
)))

|
/∗ process B∗/

(|_{j=1} |_{i=0\j} !(
/∗ receive (1) ∗/

(I_{i},I_{j};vcertA_{i,j}).
decrypt vcertA_{i,j} as {|I_{i};pA_{i,j}|}:KCA+ in

/∗ send (2) ∗/
(new NB_{i,j})(
<I_{j},I_{i},{|I_{j},NB_{i,j}|}:pA_{i,j},{|I_{j},PK+_{j}|}:KCA- >.

/∗ receive (3) ∗/
(I_{i},I_{j};x4_{i,j}).
decrypt x4_{i,j} as {|I_{i},NB_{i,j};vK_{i,j}|}:PK-_{j} [at b3_{i,j} orig {a3_{i,j}}] in
0)))

| |_{i=1} <PK+_{i}>.0
| <KCA+>.0
))

Figure 4: Lysa code for the security protocol in the web-based business system

• Gorrerieri

• UMLsec

• performance + UML stuff

9. CONCLUSIONS
Acknowledgements
The authors are supported by the DEGAS (Design Environments
for Global ApplicationS) project IST-2001-32072 funded by the
FET Proactive Initiative on Global Computing.

10. REFERENCES
[1] J. Hillston.A Compositional Approach to Performance

Modelling. Cambridge University Press, 1996.

[2] Dieter Gollmann.Computer Security. Wiley, 1999.

[3] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis
Nilson. Automatic validation of protocol narration. InProc. of
the 16th Computer Security Foundations Workshop (CSFW
2003), pages 126–140. IEEE Computer Security Press, 2003.

[4] F. Nielson, H.R. Nielson, H. Sun, M. Buchholtz, R.R. Hansen,
H. Pilegaard, and H. Seidl. The Succinct Solver suite. In
Proceedings of Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2004), volume 2988, pages
251–265. Springer-Verlag, 2004.

11. METADATA
[This section to be removed before the paper is submitted]

This is a draft version of the paper: comments are welcome.
Full papers submitted to the WOSP 2005 conference should be
up to 12 two-column proceedings pages in the ACM style. The
submission deadline is December 3rd. Find this paper’s LATEX
source code and compiled versions on-line athomepages.inf.
ed.ac.uk/stg/papers/DEGAS/CHOREOGRAPHER

The ACM style forces section headings to be in Times font. The
default LaTeX font, Computer Modern Roman, looks very poor
with this, in my opinion. Therefore, we should use a PostScript
font, and the obvious choice is Times, which we are using here.
An alternative would be New Century Schoolbook but not if we
are short of space. Because of the two column style we are
using “sloppy” spacing between words, and have discouraged
hyphenation with a high hyphen penalty. These can be changed
if they are causing offence. The ACM style uses American letter
paper, of course.

11.1 Papers not yet cited:
[?]

