
Developing multi-threaded Java applications from
high-level models in the PEPA stochastic process algebra

Stephen Gilmore
�

and Kris Powell

Laboratory for Foundations of Computer Science, The University of Edinburgh, Edinburgh
EH9 3JZ, Scotland. Email stg@lfcs.ed.ac.uk, kris@krispowell.net

Abstract. The design and implementation of concurrent applications is more
challenging than that of sequential applications. The aim of this work is to ad-
dress this challenge by producing an application which can generate skeleton Java
systems from a high-level PEPA modelling language description. By automating
the process of translating the design into a Java skeleton system, the result will
maintain the performance and behavioural characteristics of the model, provid-
ing a sound framework for completing the concurrent application. This method
accelerates the process of initial implementation whilst ensuring the system char-
acterisics remain true to the high-level model.

1 Introduction

The design and implementation of distributed and concurrent systems has proved prob-
lematical, as the interaction of multiple executing processes can lead to unexpected and
unwanted behaviour, such as deadlock, live-lock and starvation. The objective of this
work is to develop a methodology and supporting tools that automate part of the process
in order to remove some of the pitfalls associated with the design of higher performance
concurrent and distributed systems.

One common technique is to use modelling languages to aid the design process as
they allow a particular design to be tested and refined in order to deliver maximum
performance whilst eliminating problems such as hotspots, bottlenecks and deadlock.
However, because there is usually no clear parallel between modelling language con-
structs and the facilities provided by programming languages, there is the danger that
the design of the system may veer away from the design suggested by the model once
actual implementation of the system begins.

Automating the process of the model’s translation to a ‘skeleton’ implementation
means the desirable performance and behavioural properties of the model are main-
tained, providing a sound framework for completing the implementation of the system
whilst ensuring the system characterisics remain true to the high-level model.

Using Performance Evaluation Process Algebra (PEPA) [4] and Java, the aim of this
work is to produce three things:

�

Corresponding author. Web page: http://homepages.inf.ed.ac.uk/stg/ Tel: +44 131 650 5189.
Fax: +44 131 667 7209.



1. A PEPA2Java API that defines an interface specifying PEPA constructs and their
behaviour in Java terms (e.g. a Component Java class with methods such as choice
to mimic the behaviour of PEPA components and the choice behaviour of these
components.)
One of the reasons for defining the API in such a way is that it would allow mul-
tiple implementations providing, for example, distributed in place of concurrent
execution of a model.

2. A package that implements the PEPA2Java API to run the PEPA system as a Java
application executing concurrent threads simulating the behaviour of the compo-
nents of the model.
The models produced will implement certain abstract classes and methods defined
in the API, and use the defined methods inherited to handle the actual “mechanics”
of running the simulation.

3. A Translator utility which automates the translation of a PEPA model into objects
and methods of the type defined by the PEPA2Java API.
The result is a set of Java classes that, when compiled and executed, will utilize a
PEPA2Java API implementation to execute the model as a Java application.

PEPA can be used to evaluate performance as well as testing for correct functional be-
haviour in a model. It also models parallel composition and synchronisation behaviour.
These attributes make it an ideal choice for this work. Briefly, PEPA is a timed process
algebra where the prefixes are pairs which specify the type and rate of an activity in
the form

���������
	 �
, where

�
is the continuation of the execution. Choices between dif-

ferent possible behaviours are denoted by
�
���

and resolved operationally by a rate
condition. Synchronisations between

�
and

�
over the activity types in the set � are

denoted by
��������

.
�����

is the degenerate case where � is empty, and so there is no
synchronisation between

�
and

�
at all.

��� � is like
�

except that the activites in the
set � are hidden, becoming silent � actions which cannot be synchronised upon. For
more on PEPA see [4].

Java is the target language because of its flexibility, its widespread adoption, its
portability across platforms and its rich set of standard libraries. Additionally, it has na-
tive support for multiple threading and remote method invocation. As an object oriented
language, it can take advantage of inheritance, making it simpler to run a PEPA model
as a Java process whilst hiding all the underlying mechanics from the user, as well as
allowing different implementations of the interface to run the same PEPA2Java skele-
tons. Also, this should make it easier to flesh-out and extend the generated skeletons by
limiting the generated “clutter”.

The methodology of separating the model from the PEPA-simulating code by using
inheritance and also a tree-model used to represent synchronization behaviour distin-
guishes this work from previous work on automatic program generation from PEPA
models (for example, using Ada [3]). Notably, thread-based programming in Java is
very different from concurrent programming with Ada’s tasks.

2 Compiling PEPA to Java

The goal of this work is to be able to run any PEPA model as a Java application. The
procedure of finding a mapping from PEPA to Java often involved changes to the design



of our translator as limitations were discovered. Many improvements to the API were
made during the implementation stage, forcing a re-evaluation of how best to compile
PEPA into Java. Documented here is the final set of algorithms and concepts that present
a method of executing a PEPA model as a running Java system, compensating for most
of the limitations which this entails.

2.1 Methodology

We employ a direct mapping between the “objects” of PEPA (e.g. components and ac-
tions) and objects in Java. Using inheritance, the idea is to provide a public interface
that defines a number of classes and methods that specify PEPA-equivalents for Java.
Models are run by extending these classes, defining their abstract methods, and creating
instances of the appropriate objects which utilize the superclasses’ framework and de-
fined methods. One of the benefits of the API is that it is general and flexible enough to
work with different implementations, each providing different functionality. The API-
implementing packages can be used interchangeably to provide different functionality
for executing a PEPA model.

One important restriction to note is that PEPA’s Hiding combinator is not present
in this API. Whilst it was realised that the hiding construct is of great value during
abstract model design and evaluation, its importance in an actual system implementa-
tion is not as clear. In particular, it does not correspond to the traditional programming
language encapsulation provided by Java’s package mechanism and public and private
modifiers. Encapsulation in Java is a compile-time restriction on visibility of names at
the class level whereas hiding in PEPA is applied at the instance level to instantiations
of processes. Hiding is used to simplify complex models, but the process of top-down
implementation works in the opposite direction—adding the underlying complexity ab-
stracted away in modelling languages. Accordingly, there is no equivalent for PEPA’s
hiding combinator in the API and the translator will not translate any model which uses
hiding. It would be possible to implement hiding by a combination of duplicating com-
ponent definitions and renaming but such an approach would increase the complexity
of the generated Java and would not promote code reuse.

2.2 Branching and Race Conditions

One critical decision when translating from a PEPA model to an actual implementation
relates to branching. In models, the choice of which branch to execute is simplified.
In the case of PEPA, it is determined by a race condition of randomly sampled, expo-
nentially distributed rates. However, in an implemented system, branching is decided
by the system’s rules and history—namely, it is decided algorithmically. The generated
skeleton’s behaviour is probabilistic and rates need to be carefully chosen in order for
the results of performance analysis on the model to be applicable to the implementation.
Nevertheless, the skeleton is only the starting point: the main task of implementation is
to replace probabilistic with deterministic branching.

There are two forms of branching in PEPA, both determined by race conditions.
Choice constructs are the obvious form. The more subtle form is the case where multiple
components are all competing for the chance to cooperate on some shared action where



not all may cooperate at the same time. An example of this is two clients trying to
synchronise with one server on a critical section.

The PEPA race condition is a form of speculative execution of multiple branches:
all branches are executed and the first one to finish is the winner. The winning branch
then dictates the ensuing behaviour of the component, whilst all other executions are
aborted. Speculative execution is not an option when producing skeletons that are to
become actual applications: it would mean the forking of execution and aborting of
actions mid-task, which would make the skeleton impossible to “flesh out” and lead to
inconsistency.

Simulating the race condition as follows allows some certainty:

– once committed to an action, a component will not do anything else until the action
has completed;

– once started, an action must complete;
– if a branch has been chosen, the other branches will definitely not be chosen, and

will therefore not be able to affect the system.

These refinements allow us to make progress from an initial high-level model towards
a finished implementation.

3 Analysing PEPA terms for communication behaviour

Data structures called and-or synchronization trees are created to address the challenge
of representing PEPA synchronization types in Java. Each action holds the root of such
a tree, which is made up of synchronization set node objects. The synchronisation set
node class has the activity class as an (abstract) subclass with individual and shared
activities as (concrete) subclasses of that.

Synchronization set trees connect actions to their participating activities. There are
three types of synchronization set node objects: two of these (AND nodes and OR nodes)
are used as internal nodes in the tree and the third (activity objects) is used as the leaves.
Each branch node has a left child and a right child. An example will help to illustrate
the concept. Consider the PEPA composition:

�
Client

�
Client

� � �
�

serve �
Server

From this, we can see that there are two cooperations: both include the Server compo-
nent, and either one or the other of the two Client components. This would yield the
synchronization tree shown in Figure 1. The most important function of the synchro-
nization tree is to determine whether the action may run or not. An action is constantly
waiting to run—each time an activity joins it, using Java’s Thread.join method,
the action is notified (through the Waiter class) and will re-check the status of its syn-
chronization tree to see whether it may run. Checking is done by calling isLocked
on the root node of the tree. The method is recursively called on all nodes. AND nodes
return true if both the left and the right child return true, whereas OR nodes return true if
either (or both) of the children return true. The tree construct is equivalent to the PEPA
composition because the serve action requires the Server component and either of
the two Client components to cooperate before it can execute.



serve

Action

AND

ORServer’s serve

Activity

Client’s serve

Activity

Client’s serve

Activity

Fig. 1. A simple synchronization tree

A shared activity will most likely need to wait for additional components to join
before the action can run. Even then, if a component does join an action, it may or may
not be chosen as a participant if there are multiple possible combinations of cooperators
for an action: in this case, the Server component will always participate whenever
the serve action is run. However, only one of the two Client components may join
each run. Therefore, if both Client components are waiting for serve, one must be
chosen to be a Runner whilst the other will need to wait for a future run of the action: the
setRunners(actionThread) method traverses the tree and picks the “fastest”
subset which is ready to go. The chosen Activities will call actionThread.join to
lock their threads to the action’s Thread object. Also, the setRunnersmethod returns
the determining rate of the subset it has chosen, which will specify the length of time
that the action must pause for “executing.” Calling setRunners on an AND node will
recursively call the method on both the node’s children, whereas calling it on an OR
node will cause it to be recursively called on only one of the node’s children. Which
OR child is chosen is determined firstly by whether one or both of the children return
true for isLocked. If only one of the two subtrees returns true for isLocked, then
setRunners is called on that subtree. If both are locked, then the faster branch will be
returned. If both branches return the same speed (i.e. because they both run at rate

�
),

then the choice is decided by a weighted random function: the chance of setRunners
being called on the left branch is equal to the proportion of leaves in the left subtree over
the total number of leaves in the two subtrees. To avoid being continually passed over,
the rates of the members of the sets which are ready but are not chosen as participants
have their rates resampled each time the action runs.

The Translator must initially analyze the PEPA composition expression to discover
the synchonization sets, and generate the appropriate PEPA2Java commands. The PEPA
composition expression returned by the parser is of a tree form. For this part, consider
a slightly different model that better demonstrates the algorithm used:

A
� �

�
m �

B
���

�
n �

C



The parser will return the tree as shown in Figure 2. For PEPA2Java, a setSynch

Cn

BmA

ActionSet

Cooperation

Component

Fig. 2. The data structure created from A
���

�
m � B

���
�

n � C

method call must be made by each action, to create its synchronisation tree. To gener-
ate this method call, the translating algorithm goes through two stages— create a full
synchronisation set tree, and then prune the tree. The four steps for generating the full
synchronisation tree from the composition expression tree are (for each action):

1. Set a SharedAction flag to false.
2. Start at the top of the composition expression tree (fig. 2).
3. If the current node is a Cooperation node:

� If the current action is in this node’s ActionSet, return a new AndNode to our syn-
chronisation tree. Also, set the SharedAction flag to true.

� If the current action is not in this node’s ActionSet, return a new OrNode to our
synchronization tree.

� Set the left and right child to be the return result of a recursive descent into those
nodes.

4. If the current node is a component identifier, return the reference to it.

For action � , this would return the unpruned tree shown in Figure 3. The next
step is to prune the tree to contain only components that cooperate on this action. If
the SharedAction flag is still set to false, this is an individual action which requires
no cooperation— the synchronization tree is scrapped. Otherwise, we set the action’s
synchronization tree to be the result of the method unpruned_root.prune, which
will return a pruned version of the tree. The three steps in the pruning algorithm are:

1. Call the contains(thisAction) method on the left child node. This method
returns true if this sub-tree contains a component that contains an activity that par-
ticipates in this action.

� If the method returns false, return the result of right_node.prune— this node,
and its left sub-tree have been pruned. The ends the algorithm for this node.

2. Call the contains(thisAction)method on the right child node.



C

B

m

A

Action

&&

Component

� �

AndNode

OrNode

&&

� �

Fig. 3. Action � ’s unpruned synchronization tree for A
� �

�
m � B

� �
�

n � C

B

m

A

&&

Fig. 4. Action � ’s pruned synchronization tree for A
���

�
m � B

���
�

n � C

� If the method returns false, return the result of left_node.prune.
� If no result has been returned, then both children must have returned true for
contains. The left node is set to the result of left.prune and set the right
node to right.prune.

3. Finally, return this as the result of this.prune— this node has not been
pruned.

Action m’s resulting pruned tree is shown in Figure 4. Because the right child of
the OrNode did not contain any activities participating in m, but its left subtree did, the
left subtree was returned as the result of calling prune on the root. The OrNode and
its right subtree were dropped. The left subtree survived intact because both its children
contained components that participate in m. Performing these two algorithms on all
the actions in the model will create the synchronization set trees needed to define the
PEPA2Java API’s abstract initSynchs method in the PepaSystem object.

4 An Implementation of the PEPA2Java API

The Simulator and Barebones packages are the concurrent system implementations of
the PEPA2Java API. Their functionality (and their source code) is for the most part
identical, except that the Simulator package includes extensions that give the ability to
display the state of the system. This is useful for debugging purposes and tracking the
execution of a model.



Central to the implementation is the PepaSystem class– it specifies three abstract
methods which must be defined by implementing models. These are createComponents,
createActions and initSynchs. The PepaSystem object creates the Compo-
nents and their Scripts, the Actions and their synchronisation sets, initialises all these
objects and starts the whole system running. In the case of the Simulator package, it
will also control the GUI and the debugging messages.

The most important part of the implementation deals with ensuring that the Java
skeleton of a model runs as the PEPA model dictates it should. However, there is no
native support for the concept of synchronising multiple threads of execution for coop-
eration on an action. Therefore, much of the challenge lies in getting Java to behave in
this way, as well as deciding the branching. The Action class, specified later in this sec-
tion, ensures the proper synchronisation of multiple threads on cooperating sections. To
accomplish this, the Action class, and also the Component class, make use of two sim-
ple concurrency control helper classes: the Waiter class and the Lock class (specified
later).

The Waiter class provides synchronised wrapper methods around the wait and
notifyAll methods inherited from java.lang.Object. It enables objects to
wait for conditions becoming true, only checking conditions when another object no-
tifies it that there has been some relevant change. (For example, when a component is
waiting on any branch to become available for running in a choice block, or when an ac-
tion is waiting for cooperating components to join.) This also ensures any user-defined
subclass cannot inadvertently lock or release the object monitor and interfere with the
functioning of the implementation.

A Rate class provides methods for accessing an exponentially distributed random
number generator, which is used to calculate the period that an action pauses for, as
well as determining race conditions in branching. Additionally, they can represent un-
specified rates for passive participation.

The race condition is simulated in the following manner in the Simulator and Bare-
bones packages:

1. Rate samples are decided a priori—the branch with the smallest sleep-time will be
chosen. This is the case for both types of branching—choice blocks and multiple
components competing to join an action.

2. Losing branches are resampled to simulate speculative execution—this prevents
branches that get a high sleep-time from being passed over repeatedly because of
one “unlucky” sample.

3. The winning branch will pause for its sleep-time, resample and then execute its
next behaviour.

4. Before a branch can be chosen, it must be ready to execute—all the members of its
synchronisation set must be prepared to participate. If no branches are ready, the
system will execute the first branch that becomes so. Choosing commits the system
to execute that branch—it cannot be interrupted by a faster branch that becomes
available later.

5. Because the first ready branch wins, with no chance of faster branches “overtaking”,
the choice method necessarily needs a pause (set as a constant in this implementa-



tion) to allow participants of shared actions to join. Otherwise, individual actions
would unfairly dominate choice branching as they are always ready.

Each component object represents one of the components as defined in the composition
expression of the PEPA model, and is run as a separate Java thread. A component class
on its own defines no behaviour—for this, the CompScript interface is used. Every
component has a reference to one or more CompScript objects. The run method in the
Component class calls the current CompScript’s actions method. This executes the
behaviour of the component for one particular definition (for example, a series of prefix
or choice combinators). The CompScript.actions method ends by returning a
reference to a CompScript object (possibly itself). The Component.runmethod will
then in turn execute the actionsmethod of the returned CompScript. This mechanism
enables components to take on many varying behaviours as defined by scripts, whilst
their synchronisation sets and representation remain constant—hence, a Component
instance is equivalent to a PEPA component as defined in the composition expression
and a Component’s CompScripts are equivalent to sequential process definitions in a
PEPA model.

This execution mechanism of Components and CompScripts deploys a structured
continuation-passing style to simulate PEPA recursive processes on an unmodified JVM
without overflowing the run-time stack or generating any terminated Java threads which
need to be reclaimed by the system’s built-in garbage collector. Similar techniques
(known as “trampolining” algorithms) are used to compile functional programming lan-
guages for the JVM.

The Action class defines the PEPA actions of the model, in which Components may
take part (as PEPA activities). Each shared action of the model is represented by an
action object, which implements the Runnable interface. It also holds the root to a
synchronisation tree which is used to determine whether the action is ready to run or
not. An action steps through five stages:

1. Wait for noRunners: The action object waits until all component members of
its synchronisation set have their runner flag set to false—this indicates that the
components know that the previous run of the action has completed, which is a
prerequisite for the next run. This is necessary because if an action is very short
there is the possibility in a multi-threaded execution environment that one or more
of the last chosen component threads may not have resumed execution since the
last run. One of those components might still be waiting for the already executed
action to run whereas other components which are aware that the last action already
ran might now be waiting for the next action to occur. Therefore, the action must
pause between runs until all components have acknowledged its execution.

2. Wait for allLocked: Next, the action will pause until the allLocked method,
called on the root of the syncronization set tree, returns true—this happens when
all the component members of the synchronisation set have joined and committed
to the running of the action, indicating that the necessary cooperation is available.

3. Set the Runners: Now the action is ready to be run, it notifies the members of a
particular cooperation set that they have been chosen to participate in this run of the
action. These set their runner flags to true, and join the action thread, meaning
they are committed to cooperating.



4. Start the Action: The action calls its actionmethod, which will cause the thread
to sleep for a number of milliseconds set by the action’s determining rate, calculated
from the rates of all the participating activities. In the final implementation, the
sleep action would be replaced by the actual functionality required.

5. Reset: The reset method is the final command of this run of the action—its
reference (this) is passed to a new thread object as a Runnable argument. The ac-
tion’s rate is then reset to unspecified, and the action will start the newly created
thread. With this, the old thread previously running the action will die, releasing the
joined components, which will immediately set their runner flags back to false,
signalling they are aware that the current run of this action has completed.

The Activity class provides methods for component objects to interface with ac-
tions. An activity is joined and commmitted to when a component calls its join or
joinAt method. Conceptually, there is a subtle difference between activities as speci-
fied in PEPA and PEPA2Java. Namely, every component participating in an action holds
one PEPA2Java activity per action—if a component joins activities participating in the
same action at different rates, they will be represented by a single activity object in the
component. This is known as an internal choice, and represents the cases where either
the same action may be performed at different rates at different occasions or there is
a silent activity which has a rate but does not have a name [2]. The component will
simply join the activity at different rates at different times. This is done by changing
the rate object reference which the activity holds. The joinAt method is identical to
the join method except that it allows the caller to specify the rate at which the activity
should be performed. It is preferred because it closely mirrors PEPA’s Prefix semantics.

There are two sub-classes of the Activity class, SharedActiv and IndivActiv. SharedAc-
tiv is used to execute activities which require synchronization between multiple com-
ponents.

The IndivActiv class is used for executing individual activities—those without syn-
chronization. In essence, it exists to increase efficiency of execution, as individual activ-
ities may always run immediately on joining, whereas shared ones may need to pause
until other components are ready. Therefore, a lot of the “check and wait” methods
needed to synchronize multiple objects are not required and are replaced by null op-
erations. This allows the rest of the framework to treat individual and shared activities
identically, as in PEPA.

The Component class defines a choice method that takes as argument an array
of Activity objects and an array of their respective Rate objects. It returns an integer
which corresponds to the position in the array of the Activity which is the fastest ready-
to-run branch. The choice method is used in a switch statement to select between
alternatives. In the case of individual activities there is only one rate, but in shared
activities, the overal rate of the action is determined by the slowest rate of the actively
participating activities, following PEPA’s well-known apparent rates method [4]. The
participating activities are those members of the subset of the synchronization set that
are currently set as the action’s runners.

In order to discover which actions are ready to run without having to commit, a
two-phase process is carried out. The first phase is a “registering of interest” by the
component in all the activities which it might choose (i.e. all those in the array). This is



done by setting the ready flag on the activity to true, indicating to other components
that this activity may by chosen.

After registering interest in the set of activities, this component pauses for “choice-
pause” (a constant). Any other choice methods that return from their pause may dis-
cover that there are now additional (potentially) complete sets in actions they are con-
sidering. They may then choose a branch that was previously unavailable. Without such
a ready-but-not-locked provision, branches relying on multiple components would be
starved—individual activities would always dominate.

Once the thread resumes execution after “choice-pausing”, it will request the locks
(in globally-sorted order) of all the actions it is considering joining. It then performs the
following steps on each activity it uses for these actions:

1. Set the rate of the activity to be an almostClone (same base-rate, different sam-
ple) of the one found in the corresponding position in the rate array. This is nec-
essary for cases such as A = (x, 1).B + (x, 1).C, where identical rates for the same
activities are found in the same choice—this means that two activities can share the
same rate object without having identical sleep-times.

2. Use the getPrioritymethod to get the determining rate of this activity’s action:
� For an individual activity, this returns its Rate object.
� For shared activities, if the action the activity participates in is not ready to run,
null is returned to indicate the branch is unavailable. Otherwise, the method calls
getRate(pathToMyNode) on the synchronization tree to return the determin-
ing rate. An activity is ready to run if the subset of cooperating runners containing
this activity are either locked (committed and joined), or ready (as set by another
component’s choice method).

3. If the rate returned from getPriority is the fastest yet found, this activity is the
current winner. Note that in the case of equal sleeptimes, one is chosen at random.

If a winner is found after checking all activities, the activities that are not chosen
have their ready flags set back to false, all locks are released, and the position of the
winner in the activities array will be returned as the result of the choice method.
Alternatively, if after checking all the activities there are no ready actions, all locks
are released, the thread will choice-pause again, and the process (beginning with the
locking) will repeat, until a choice is returned.

The requesting and releasing of locks is necessary to avoid deadlock when there
is more than one component considering joining the same action at the same time—
locking ensures a ready flag is only ever set to true when that activity is available, so
that two cooperating components cannot “go opposite ways” in choices. The Lock
class’s Lock[] getLockers(Activity[]) method takes a multi-set of activity
objects (the same as passed to choice) and returns a globally-sorted duplicate-free set
of the lock objects of the actions referred to by those activities (each action contains
a lock object). This array is passed to the static methods request(Lock[]) and
release(Lock[]), which request and release all the locks in order. Global sorting
ensures two threads simultaneously requesting different lock sets with shared members
will never cause deadlock.

Once a winner is chosen, all the losing sets’ rates are resampled to avoid a branch
being unfairly passed over repeatedly. Notice that this includes the resampling of all



a branch’s cooperators—if an activity is passive (PEPA’s
�

rate), resampling has no
effect: the cooperators determine the rate, and they too must be resampled.

Now that the framework for running PEPA models as Java applications has been pre-
sented, the translator’s functionality and output will be more comprehensible. The trans-
lator accepts a slightly reduced subset of the full PEPA grammar, known as guarded
PEPA. Specifically:

– As justified previously, there is no provision for hiding in PEPA2Java.
– The model composition expression may contain only cooperation constructs and

component identifiers.
– The composition expression is also the only place that cooperation constructs may

occur.
– Prefixes, additional choices or grouping structures holding either type of construct

are the only valid branches of choice constructs. Choices may have any number of
branches and may also be nested as long as there is always be an activity to evaluate
for each branch. For example,

A = (a, 1).A + (b, 2).B + (c, 3).((d, 4).D + (e, 5).E)

is a valid construct, but A = B + (c, 3).C is not, regardless of what B defines.

Developing a lexer and parser for the PEPA input was straightforward because the
PEPA2Java Translator accepts the same input syntax as the PEPA Workbench [1]. This
ensures that the models can be evaluated and refined in the Workbench before generat-
ing the PEPA2Java skeletons.

Apart from generating the synchronization set trees, the composition expression
is also used to create the Component objects of the system. Each component identi-
fier found in the composition expression will be made into a running instance of a
Component-extending class. There may be multiple instances of a single class as is the
case in this example: �

Client
�

Client
� � �

�
serve �

Server

In this example the multiple instances of Client will be given names such as client_i0_Comp
and client_i1_Comp, and will be of the Client_Comp class.

For the initial behaviour of the Components, equality of identifier is searched for
between the component definition in the composition expression and the sequential
process definitions. When the sequential process definitions are turned into CompScript
objects, the setStartScript method is used to set the reference to the initial script
that a Component object should execute.

The parser returns a tree made of ProcObj objects for each sequential definition.
Turning the tree into an actions method of a CompScript object is difficult, as cor-
rect nesting is important to ensure proper execution. The component’s behaviour trees
are traversed to gather a list of all the rates, activities and behaviours (CompScripts)
this component uses. These will be defined as fields in the Component class. The fol-
lowwing model produces the CompScript A_Script given in Figure5.

A = (m, 1.0).A + (n, 2.0).A + (o, 3.0).((x, 0.5).A + (y, 0.5).A)



public class A Script implements CompScript
�

Activity [] ch Act 0 =
�
m Activ, n Activ, o Activ � ;

Rate [] ch Rate 0 =
�
new Rate(1.0), new Rate(2.0), new Rate(3.0) � ;

Activity [] ch Act 1 =
�
x Activ, y Activ � ;

Rate [] ch Rate 1 =
�
new Rate(0.5), new Rate(0.5) � ;

public CompScript actions ()
�

switch(choice(ch Act 0, ch Rate 0))
�

case 0: m Activ.joinAt(new Rate(1.0));
return a Script;

case 1: n Activ.joinAt(new Rate(2.0));
return a Script;

case 2: o Activ.joinAt(new Rate(3.0));
switch(choice(ch Act 1, ch Rate 1))

�
case 0: x Activ.joinAt(new Rate(0.5));

return a Script;
case 1: y Activ.joinAt(new Rate(0.5));

return a Script;
�
throw new Error (“Problem with choice: no valid case returned!”);

�
throw new Error (“Problem with choice: no valid case returned!”);

�
�

Fig. 5. CompScript generated from: A = (m, 1.0).A + (n, 2.0).A + (o, 3.0).((x, 0.5).A + (y, 0.5).A)

References to sequential process definitions are returned as the next CompScript.
Prefix constructs become joinAt(Rate) method calls. Processing a Choice con-
struct is more difficult, because any number of branches is allowed. Some account must
be kept of whether each encounter with another Choice ProcObj is part of a new choice
block, or adding another branch to an existing choice block.

Generating the components, their scripts and defining the system’s class instances
and synchronization trees by implementing the PEPA system’s abstract methods ac-
counts for the majority of the work of the Translator. As a convenience, it has been
integrated into the PEPA Workbench, building on previous extensions to its functional-
ity [5, 6]. Additionally, Makefiles are generated to allow models to be easily compiled
and run from either within the Workbench or from the command line.

5 Case study

To illustrate the process of translation and execution of a PEPA model in Java, consider
the following example of a system with three components: a client that makes requests
for information, a server that is the authoritative provider of the requested information,
and a proxy that serves the client but may also need to query the server when it cannot
fulfil a request itself. Below is the PEPA description of the system:



����� 	 �
� ��� 	 �
	
��� 	 �
Client 


�
cReq

� � � 	 � cRep
� � � 	

Client

Proxy 

�
cReq

� � �
	
Proxy �

Proxy ��

�
cRep

� � �
	
Proxy

���
pReq

� � � 	 � pRep
� � � 	 �

cRep
� � �
	

Proxy

Server 

�
pReq

� � � 	 �
pRep

� 	 �
	 Server

Client
� �

� cReq, cRep �
Proxy

���
� pReq, pRep �

Server

Once generated, the PEPA2Java code is compiled and run, either using the Bare-
bones or the Simulator implementations of the PEPA2Java API. The SimWindow is a
GUI intended to allow the user to understand the state of the running model, to pause
and resume simulation, to interrupt sleeping actions, and to adjust the execution speed
and the level of debug messaging. There are three main parts to the SimWindow: the
three state tables, the debug message panel and the control panel. The state tables each
display information on one of the three main different types of PEPA objects in the
model: components, actions and activities. For each component, the current state, the
name of the presently executing CompScript, the activity it is participating in and the
number of CompScripts run are given. Possible states are, for example, “Waiting for
others”, “Joined” and “Choosing”. For activities, the current state, the rate, the type
(shared or individual) and the number of times run are given. Finally, for actions, the
state, their determining rate, the status of their synchronization tree (and its nodes) and
the number of times run are displayed. The middle portion of the SimWindow gives
all system and object debugging messages, along with the name and type of the object
from which the message originates. By default, only system status messages are dis-
played but the level of detail can be modified in the control panel, to the point where a
great deal of information can be discovered on exactly what is happening not only in the
PEPA model but also what API methods are doing “below the surface.” This is useful
if the model is behaving incorrectly or unexpectedly. On the bottom row, the control
panel makes play and pause commands available for resuming and pausing the running
of the simulation, as well as interrupt for prematurely ending long-running actions. Ad-
ditionally, there are two pull-down lists where simulation speed and the level of debug
messaging can be specified.

The simulation produces as its results the percentage of the total system time which
each action/ activity incurred. Also computed are the mean sleep time of each run and
the number of times each action (shared and internal) was executed. This facility is
meant only to provide basic feedback to help the user determine whether the model is
working correctly.

If the PEPA2Java code is executing satisfactorily, the next stage is to override the
action methods for each of the actions in the model, in this case the information
request and reply actions. This is a trivially simple example, but because of the syn-
chronization of the activities of the components, the implementor can always be certain
that the various components of the system are in a consistent and correct state when
they cooperate on shared actions.



6 Conclusions and further work

The principal goal of this work was to devise a method to support the rapid proto-
typing of high-performance concurrent Java applications. This was accomplished by
automating the creation of “skeleton” Java implementations from designs specified in
the high-level modelling language, PEPA.

Automating the process means undesirable behaviour such as deadlock will not be
introduced. Also, the performance characteristics of the model, tuned to deliver the best
results in the Workbench, will be maintained through into implementation. In order to
fulfill the goal of the project, two objectives were set.

The first objective was to produce and implement an API for creating and using
PEPA-equivalent constructs in Java. The PEPA2Java API has been specified and is im-
plemented by the Barebones and Simulator packages. With the omission of the hiding
construct, these can run any PEPA model as a concurrent system.

The second objective was to build an application that could translate PEPA mod-
els into Java. The PEPA2Java Translator produces running “skeleton” implementations
which use the commands specified in the PEPA2Java API to run as PEPA-equivalent
systems.

By automating the process of creating the initial Java implementation from a PEPA
model, the result will maintain the performance and behavioural characteristics of the
model, providing a sound framework for completing the concurrent application.

Not only do these tools ensure the system characterisics remain true to the high-
level model, they remove uncertainty and the potential of introducing human error,
whilst also greatly speeding the process of prototyping and implementation.

Acknowledgements: Stephen Gilmore is supported by the DEGAS (Design Environ-
ments for Global ApplicationS) project IST-2001-32072 funded by the FET Proactive
Initiative on Global Computing.

References

1. S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process Algebra-based
Approach to Performance Modelling. In Proceedings of the Seventh International Conference
on Modelling Techniques and Tools for Computer Performance Evaluation, number 794 in
Lecture Notes in Computer Science, pages 353–368, Vienna, May 1994. Springer-Verlag.

2. S. Gilmore and J. Hillston. Refining internal choice in PEPA models. In R. Pooley and
J. Hillston, editors, Proceedings of the Twelfth UK Performance Engineering Workshop, pages
49–64, September 1996.

3. S. Gilmore, J. Hillston, and D.R.W. Holton. From SPA models to programs. In M. Ribaudo,
editor, Proceedings of the Fourth Annual Workshop on Process Algebra and Performance
Modelling, pages 179–198, July 1996.

4. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

5. J. Hunter. Re-evaluation of the PEPA Workbench. Master’s thesis, The University of Edin-
burgh, September 1999.

6. F. Stathopoulos. Enhancing the PEPA Workbench with simulation and and experimentation
features. Master’s thesis, The University of Edinburgh, September 2001.


