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Abstract. A growing concern of Web service providers is scalability. An
implementation of a Web service may be able at present to support its
user base, but how can a provider judge what will happen if that user
base grows? We present a modelling approach based on process algebra
which allows service providers to investigate how models of Web service
execution scale with increasing client population sizes. The method has
the benefit of allowing a simple model of the service to be scaled to
realistic population sizes without the modeller needing to aggregate or
re-model the system.

1 Introduction

Web Services are gaining more and more popularity as an approach to distributed
computing. This flourishing is in part due to the use of well-known standard
protocols for message exchange such as HTTP [1], XML [2], SOAP [3], and
WSDL (Web Service Description Language) [4], as well as a large number of
frameworks to improve developer’s productivity (e.g. Apache AXIS [5], and Java
WSDP [6]). Web Services are also being supported by businesses (e.g., [7]) to
provide programmer-friendly interfaces for their services.

This paper addresses scalability performance aspects of e-Learning oriented
Web Services. We present a scenario in which Web Service technology is used to
implement a Distributed Course Management System (DCMS). One of the most
severe problems a DCMS has to deal with is the performance degradation occur-
ring when many users are requesting the service simultaneously. Let us imagine
a DCMS is available for collecting final course projects of a class. Teaching staff
usually put a deadline on those activities, and students are likely to get their
projects ready very close to the due date. The DCMS has to cope with a flash
crowd-like effect, as server resources (i.e. memory, CPU and bandwidth) have
to be shared among a large number of users, thus paving the way for perfor-
mance penalties experienced by users. In order to assess scalability properties of
the system, we first develop a simple analytical model of the request/response
message exchange pattern in SOAP, the Web Service communication protocol.
This model constitutes the basis for the DCMS model where concurrent clients
performing SOAP requests are taken into account.



2 Related work

Performance issues of traditional Web servers have been extensively investigated
(for example, [8, 9]). Research on performance evaluation of Web Services has
been primarily focused on comparing SOAP implementations [10, 11] or investi-
gating performance of SOAP approaches to scientific computing [12, 13].

In comparison to this, less effort has been invested in modelling the newer
technology of Web Services. In [14] a profile-driver model for cluster-based web
services is presented. Application profiles are obtained by mapping workload
characteristics to resource (i.e. CPU, disk, memory) utilisation using linear fit-
ting. Results shows that remote invocation overhead is important for the accu-
racy of the model; however, in our work we disregard method call overhead as
in our scenario we focus on the most constrained system activity occurring at
rate which turns out to be several order of magnitudes slower than SOAP pro-
cessing. [15] propose an analytical model for a multi-tier web service based on a
network of queues, where each queue represents an application tier. Although
this work shares some common ideas (chain multi-tier approach), we propose a
much simpler model where server overload, tier replication and multiple session
classes are not taken into account. A general account of Web Service scalability
is found in [16].

Structure of this paper: The remainder of this paper is structured as follows. In
Section 3 we briefly introduce PEPA, the stochastic process algebra employed for
our modelling. In Section 4 we develop the model of request/response message
exchange for Web Services. In Section 5 we discuss methodology and numerical
results of parameter estimation. In Section 6 the DCMS case study is shown and
a preliminary model is given. Stiffness problems in model evaluation are solved
by means of the simplified model which is presented in Section 7. Numerical
results are presented in Section 8. Section 9 concludes the paper.

3 Overview of Performance Evaluation Process Algebra

In Performance Evaluation Process Algebra (PEPA) [17], a system is viewed as
a set of components which carry out activities either individually or in coop-
eration with other components. Activities which are private to the component
in which they occur are represented by the distinguished action type, τ . Each
activity is characterized by an action type and a duration which is exponentially
distributed. This is written as a pair such as (α, r) where α is the action type
and r is the activity rate. This parameter may be any positive real number, or
may be unspecified. We use the distinguished symbol > to indicate that the
rate is not specified by this component. This component is said to be passive

with respect to this action type and the rate of the shared activity is defined by
another component.



3.1 Combinators of the Language

PEPA provides a set of combinators which allow expressions to be built which
define the behaviour of components via the activities that they engage in. These
combinators are presented below.

Prefix (α, r).P : Prefix is the basic mechanism by which the behaviours of
components are constructed. This combinator implies that after the component
has carried out activity (α, r), it behaves as component P .

In this paper we will make use of functional rates [18] which allow the rate
at which an activity is performed to depend on the current state of the model.
(In Petri nets terms, a “marking-dependent” rate.)

Choice P1 + P2: This combinator represents a competition between com-
ponents. The system may behave either as component P1 or as P2. All current
activities of the two components are enabled. The first activity to complete dis-
tinguishes one of these components and the other is then discarded.

Cooperation: P1
��

L
P2: This describes the synchronization of components

P1 and P2 over the activities in the cooperation set L. The components may
proceed independently with activities whose types do not belong to this set.
A particular case of the cooperation is when L = ∅. In this case, components
proceed with all activities independently. The notation P1 ‖ P2 is used as a
shorthand for P1

��
∅

P2. In a cooperation, the rate of a shared activity is defined
as the rate of the slowest component.

Hiding: P/L This component behaves like P except that any activities of
types within the set L are hidden, i.e. such an activity exhibits the unknown type
τ and the activity can be regarded as an internal delay by the component. Such
an activity cannot be carried out in cooperation with any other component: the
original action type of a hidden activity is no longer externally accessible, to an
observer or to another component; the duration is unaffected.

Constant: A
def

= P Constants are components whose meaning is given by a

defining equation: A
def
= P gives the constant A the behaviour of the component P .

This is how we assign names to components (behaviours). An explicit recursion
operator is not provided but components of infinite behaviour may be readily
described using sets of mutually recursive defining equations.

One process constant is pre-defined. The deadlocked process named Stop

enables no activities [19].

3.2 Formal Semantics of the Language

Process algebras are concise formally-defined modelling languages for the pre-
cise description of concurrent, communicating systems. The PEPA process alge-
bra benefits from formal semantic descriptions of different characters which are
appropriate for different uses. The structured operational semantics presented
in [17] maps the PEPA language to a Continuous-Time Markov Chain (CTMC)
representation. A denotational semantics for the language maps PEPA models
to elements of metric spaces [20]. A continuous-space semantics maps PEPA
models to a system of ordinary differential equations (ODEs) [21], admitting



different solution procedures. We use both the CTMC and ODE semantics in
the present paper.

3.3 Analysis Tools for PEPA

The reason to have a formally-defined high-level language for performance mod-
elling is that it is possible to implement software tools which evaluate models
according to the formal semantics of the language. In the present study we used
the PRISM probabilistic model-checker [22], which accepts PEPA as one of its
input languages, to perform transient analysis of the CTMC. We used the PEPA
Workbench [23] to compile the PEPA model to a differential equation form which
we could solve using a fifth-order Runge Kutta numerical integrator.

Because we are modelling in a high-level language it is possible to apply these
very different numerical evaluation procedures to compute performance results
from the same model. This is a freedom which we would not have if we had
coded a Markov chain or differential equation-based representation of the model
directly in a numerical computing platform such as Matlab.

4 Model of a Request/Response SOAP Exchange

Web Services use SOAP as the underlying protocol for inter-process communi-
cation. Being based on XML, it requires more resources than traditional binary-
based RPC protocols such as, e.g. CORBA or RMI. Moreover, sending binary
data over XML-based protocol is a critical performance issue.

Several approaches have been presented so far to allow efficient transmission
of binary data over SOAP. SOAP with Attachments (SwA) [24] uses the MIME
mechanism [25] to send MultiPart/Related messages. DIME [26] is a specification
from Microsoft which encapsulates SOAP messages and attachments into binary
records. DIME is no longer supported and has been replaced by MTOM [27],
a WC3 Recommendation which enables optimised MIME serialisation of SOAP
messages.

4.1 Message Life Cycle

We describe a fair approximation of a SOAP message life cycle, as we used
to model the system. Although SOAP also supports asynchronous (one-way)
messages, we focus on the Request/Response exchange pattern. Moreover, let us
suppose that the client may transmit a binary file with the request. We assume
the attachment is being sent according to the SwA specification, though our
model is consistent with other mechanisms as well.

The client is the originator of the request. We may describe it as a process
which evolves through the following series of activities:

1. Message creation. This involves XML formatting activities.
2. File attachment. This phase depends on the mechanism employed (e.g. SwA,

DIME, MTOM, Base64 Encoding) and the file size.



3. Message sending. Key factors are message size and network bandwidth.

4. Response awaiting. Performance issues are related to the server throughput
and network available bandwidth.

5. Response processing. HTTP and XML parsing are taken into account.

The server performs the following activities:

1. Request processing. This involves both HTTP and XML parsing.

2. Attachment processing. This depends on how many processing resources are
needed by the server in order to deal with the attachment.

3. Response creation. This phase includes server’s method invocation and XML
response message formatting.

4. Response sending. This is dependent on the available network bandwidth.

Setup of the model We consider the model in the optimistic scenario where
hardware and software failures are assumed to occur sufficiently infrequently that
we will not represent them. Further, the server is sufficiently well-provisioned
that we may also neglect the possibility failures caused by out-of-memory errors
or overrunning the thread limit on the JVM hosting the Web container. We will
return to review these optimistic assumptions after we compute performance
results from our model.

4.2 PEPA model of the system

It is straightforward to obtain a PEPA representation from the system descrip-
tion presented in Section 4.1. Figure 1 shows the model of a request/response
message exchange. The system here is made up of only two components that
perform a single exchange by synchronising on all of their common activities.

5 Parameter Estimation

5.1 Experimental Design

We conducted experiments to estimate the appropriate numerical values for the
parameters used in our model. We implemented a simple Web Service in which
SwA was enabled to allow it to save a binary file attached by the client. The
implementation of the server interface as well as the method for processing at-
tachments are timed methods, in order to let us gather measurement data on
their invocation.

The client makes a designer-tunable number of service calls, the attachment
file size being passed as application argument. The designer may also set an
inter-message idle period; however, our results were not affected by changes in
this parameter.



ClientA
def
= (create , α).ClientB

ClientB
def
= (attach , β).ClientC

ClientC
def
= (queue , λ).ClientD

ClientD
def
= (request ,>).ClientE

ClientE
def
= (response ,>).ClientF

ClientF
def
= (processResponse , γ).Stop

ServerA
def
= (queue ,>).ServerB

ServerB
def
= (request , µ).ServerC

ServerC
def
= (save , θ).ServerD

ServerD
def
= (processRequest , η).ServerE

ServerE
def
= (response , φ).Stop

ClientA ��
{queue,request,response}

ServerA

Fig. 1. PEPA model of request/response message exchange

5.2 Test Environment

We performed our tests with both client and server running on the same host,
although our Web Services was implemented to be remotely accessible. We used
a desktop with the following configuration: Intel Dual Xeon 3.2GHz processor
and 2 GB RAM running Microsoft Windows XP 64bit Edition. Our Web Ser-
vice framework uses Sun Java Application Server Platform Edition 8.2, Java
2 Platform Standard Edition 5.0, Java WSDP 1.6 and JavaBeans Application
Framework 1.0.2. Class binding, automatic WSDL file generation and applica-
tion deployment were supported by NetBeans IDE 5.0.

We used 200ms inter-message idle period and 1000 service invocations for
each experiment; file size was 20MB. Table 1 shows experimental results we
obtained in our tests.

Table 1. Experimental results

Activity Name Mean (ms)

create 0.592
attach 0.040
processResponse 0.154
save 81.100
processRequest 0.775



6 Distributed Course Management System Model

In order to assess the scalability issues of a Web Service-based distributed ap-
plication we consider the following scenario. A Web Service is implemented for
distributed e-Learning and Course Management System. We restrict our analysis
to a case where one single course is being managed. We assume that no other
services simultaneously run on the server; thus, the server download capacity cs

as well as server upload capacity µs are fully available for the Web Service.
The clients’ (i.e. students) arrival process is assumed to be well-described

by a Poisson distribution with rate λ. The system allows a maximum number
of students (course size) N . We assume that all students have the same values
for download capacity cc and upload capacity µc. Like the server, we also sup-
pose that no other process but the Web Service client-side application consumes
network resources.

When multiple clients are involved, the server has to share its bandwidth
among them. A model of the behaviour of the network is therefore necessary.
We address this issue by developing a simple model for characterising service
performance of the system. In this model we assume an ideal network in which
no loss occurs and network nominal capacity means available bandwidth. We also
suppose that transmissions are established on top of TCP connections where
fairness against concurrent requests is perfect.

Given the above assumptions, if we denote i (i > 0) as the number of upload-
ing clients at any point in time, the uploading rate of each connection request

is:

request = min
{cs

i
, µc

}

(1)

Similarly, if j is the number of downloading clients (i.e., clients who are receiving
the response message), the downloading rate of each connection response is:

response = min
{µs

j
, cc

}

(2)

6.1 PEPA Model of the System

We present the model of the DCMS by taking into account the behaviour of
server bandwidth when multiple connections are allowed. Local activities are
unaffected by concurrent requests. Thus, the model of the client is the same as
in Fig. 1. As for the server, we need to distinguish each of the possible number
of clients which upload to him simultaneously. Let Serveri be the process de-
scription of the server downloading from i concurrent clients. The model of the
server as well as the description of the system are described in Fig. 2.

Model analysis has been carried out by setting local activity rates as they
were obtained in our experimental tests (cfr. Tab. 1). Table 2 shows the complete
parameter set. It is worthwhile to observe that network parameters represent
bandwidths normalised by the message size being sent. For instance, cs = 0.001
means that the server is able to get the entire message completed in 1000 s; this



Server0
def
= (queue ,>).Server1

Serveri
def
= (queue ,>).Serveri+1 + (request , min{ cs

i
, µc}).(save , θ).

(processRequest , η).(response , min{ µs

i
, cc}).Serveri−1

(0 < i < N)

ServerN
def
= (request , min{ cs

N
, µc}).(save , θ).(processRequest , η).

(response , min{µs

N
, cc}).ServerN−1



ClientA ‖ ClientA ‖ . . . ‖ ClientA
︸ ︷︷ ︸

N



 ��
queue,request,response

Server0

Fig. 2. Model of the server in DCMS

value resembles a realistic situation where a server equipped with a 10Mbps
connection has to download a file about 1GB long. We also would like to point
out that server upload capacity is much faster than its download capacity because
of the size of the message being transmitted: here we have assumed 1KB long
SOAP response messages in our parameter set. The value of λ is to consider
flash crowd-like effect, such that triggered for instance by simultaneous service
requests when a deadline is due.

As our model considers client components which perform only one request,
transient analysis has to be carried out for evaluating the performance of the
system. In the following we describe some preliminary studies which have been
conducted in order to assess scalability issues of the model.

Table 2. Parameter set for model analysis.

Parameter Meaning Rate (s−1)

α create 1689.20
β attach 25000.00
γ processResponse 6493.50
θ save 12.33
η processRequest 1290.32
λ queue 20.00
N Population size 100
cs Server download bandwidth 0.001
µs Server upload bandwidth cs/3
cc Client download bandwidth (cs/10) · 10

6

µc Client upload bandwidth cc/30

We mapped the PEPA model to CTMC representation. We found the un-
derlying Markov chain does not scale with the number of model components.
We calculated different state space sizes by varying N , as shown in Tab.3. We



argue that the CTMC representation highlights lack of scalability which makes
performance analysis intractable even for unrealistic values of N .

Table 3. CTMC State space sizes for N varying

N State space size

1 9
2 72
3 540
4 3888
5 27216
6 186624

It is well known that the ODE-based representation of the model offers bet-
ter scalability, as the size of the space vector does not change for N varying.
However, we encountered stiffness problems when running time-series analysis,
as the expected time to obtain model results was high (i.e., 108 s) even if the
state vector size would suggest easy computability. We conjecture these problems
are due to the differences of several order of magnitude between some activity
rates (e.g., µc against β). We actually modified the parameter set by imposing
unrealistic values (all close to 1) which made the running much faster, as we
obtained results in 10−2 s.

7 A Simplified Model

The scalability problems discussed above lead us to a simplified model where all
activities which occur at fast rate have been disregarded. The model is shown in
Fig. 3.

ClientIdle
def
= (queue , λ).ClientUploading

ClientUploading
def
= (request ,>).Stop

Server0
def
= (queue ,>).Server1

Serveri
def
= (queue ,>).Serveri+1 + (request , min{ cs

i
, µc}).Serveri−1

(0 < i < N)

ServerN
def
= (request , min{ cs

N
, µc}).ServerN−1



ClientIdle ‖ ClientIdle ‖ . . . ‖ ClientIdle
︸ ︷︷ ︸

N



 ��
{queue,request,response}

Server0

Fig. 3. Simplified PEPA model of the DCMS



When mapping the PEPA model to CTMC representation, we found that
the model is still not scalable as the space state size is 3N . In the continuous-
space representation the rates are separated by fewer orders of magnitude and
performance results could be evaluated at low computational cost. In particular,
we required only 0.03 seconds of compute time to obtain a 106 seconds time series
analysis.

8 Numerical Results

We obtained numerical results using the parameter set as follows. We considered
a maximum number of users N = 100, requesting service according to a flash
crowd-like effect at rate λ = 20. Server download capacity cs was set to 0.001,
and client upload capacity µc = cs/30.

Figure 4 shows a time series plot of the number of client uploading to the
server. The initial burstiness of requests is shown in Figure 5.

Figure 6 plots service durations for different server bandwidths (i.e., cs =
0.01, 0.02, and 0.1). Finally, Figure 7 shows service durations for different values
of N , when cs = 0.1 and µc = cs/30.
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Fig. 4. Evolution of the number of clients uploading

Commentary on the results: We note that the system requires a significant
amount of time to get every client request completed. Earlier we outlined a series
of assumptions about the model setup which included the optimistic assumptions
of absence of failure of various kinds, and did not include the possibility of users
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Fig. 5. Flash crowd effect in DCMS
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aborting long-running file uploads only to restart them again later. Since unsuc-
cessful file transfers (of whatever kind) will only tend to delay things more we
can safely interpret the results presented above as saying that even in this very
optimistic setting the system is impractical for use.

9 Conclusions

This paper has assessed the scalability of a Web service which supports secure
distributed file upload using the Web service attachments API. The issue of scal-
ability extends basic evaluation of performance: a service may have acceptable
performance at present, but the question is how this performance will be likely
to change as greater numbers of service subscribers are added.

Models of distributed systems which are based on a discrete-state interleaving
semantics are limited by the well-known state-space explosion problem: the size
of the system as a whole is bounded by the product of the state space size of the
individual components which it contains. Markovian models (whether obtained
from process algebras, Petri nets or another modelling formalism) are victims of
this problem. By mapping to a continuous-state differential equation represen-
tation the PEPA language allows modellers to assess scalability. The state-space
is never constructed, making it possible to have a scalable analysis process. We
move directly from the model with parameters fitted from measurement data
to time series plots showing the changes in the number of each kind of compo-
nent over time. The solution to a system of differential equations is definitive,
as the solution of a Markov chain is, thus there is no repetition cost as found in



other modelling approaches used to assess scalability (such as simulation). The
numerical procedures used have low computational cost.
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