
Systematic transformations to find
quasi-reversible structures in PEPA models

Stephen Gilmore1, Zully Grant-Duff1,2, Peter Harrison2, and Jane Hillston1

1 Laboratory for Foundations of Computer Science, The University of Edinburgh,
Edinburgh EH9 3JZ, Scotland.

2 Department of Computing, Imperial College of Science, Technology and Medicine,
University of London, London SW7 2BZ, England.

Abstract. Efficient product form solution is one of the major attrac-
tions of queueing networks for performance modelling purposes. These
models rely on a form of interaction between nodes in a network which
allows them to be solved in isolation, since they behave as if indepen-
dent up to normalisation. Several papers have explored the extent to
which product form structures can be identified in models expressed in
a Markovian process algebra (MPA). In [1], Harrison and Hillston pre-
sented a syntactic characterisation of MPA models which give rise to
quasi-reversible structure, leading to product form solution. This char-
acterisation means that models may be systematically checked for the
quasi-reversible property, without expanding the state space. It is one
of the features of process algebra models, however, that different syn-
tactic presentations may give rise to the same underlying structure. In
this paper we describe a set of transformations which may be used to
manipulate the syntactic presentation of a PEPA model, thus allowing
a previously obscured quasi-reversible structure to be detected.

1 Introduction

Compositionality is often cited as one of the major advantages of stochastic pro-
cess algebras (SPA). The ability to develop the model of a complex system in
terms of subsystems, which are smaller and more easily modelled, has clear ben-
efits for model construction. Using a SPA, unlike a stochastic Petri net (SPN),
this structure remains self-evident within the constructed model. It has already
been demonstrated that for the Markovian process algebras (MPA), the struc-
ture can also be exploited for model simplification [2, 3]. A disadvantage of the
compositional approach is the state space explosion problem—since the global
state of the model is expressed in terms of the local states of all the submodels,
the size of the state space, in general, grows exponentially.

Queueing networks offer a compositional approach to the construction of
models which is often exploited for the decomposed solution of the underlying
Markov process. The system is decomposed into service centres which represent
separate aspects of processing, and a customer’s progress through the system is
represented as a journey between these nodes. Many such networks have been



2 S. Gilmore, Z. Grant-Duff, P. Harrison, and J. Hillston

shown to exhibit a product form equilibrium distribution for their steady state
probabilities, leading to efficient solution techniques in which the service cen-
tres are solved in isolation. Thus the advantages of compositionality for model
construction are gained without the disadvantages of the global state space.

Several papers have explored the possibility of finding similar product form
solutions for MPA models [1, 4–7]. Each of these results relies on forming a
syntactic characterisation, in terms of the MPA, of models which will exhibit a
product form solution when considered at the underlying Markov process level.

For example in [1], considering the quasi-reversibility property, given a model

P BC
L
Q

the authors derive syntactic conditions on P , Q and L which allow us to recognise
when the equilibrium distribution of the model, denoted Π(·), has a product
form, i.e.

Π(P BC
L
Q) ≡ Π(P ) ·Π(Q)

This characterisation allows models to be systematically checked for the quasi-
reversibility property, without expanding the global state space.

However, it is one of the features of process algebra models that different syn-
tactic presentations may give rise to the same underlying stochastic structure.
Thus it is possible that a model which does not match the quasi-reversibility
characterisation, nevertheless has a Markov process which is quasi-reversible.
Our objective in this paper is to widen the class of models which may be au-
tomatically recognised as amenable to product form solution due to the quasi-
reversible property, by defining systematic transformations to the syntactic pre-
sentations of models. Thus we take the previously published characterisation
as a canonical form and attempt to transform any given model into that form.
Success establishes that the model is indeed quasi-reversible, and so has product
form solution.

The rest of the paper is structured as follows. In Section 2 we define the
class of quasi-reversible PEPA models. In Section 3 we introduce rewriting rules
for such models. In Section 4 we present an example of the application of these
rules. In Section 5 we discuss our implementation of the rules in a term-rewriting
kit for PEPA. Conclusions are presented in Section 6. Several MPAs have been
proposed in the literature; in this paper, as in all the cited work on product form
MPA, Hillston’s PEPA (Performance Evaluation Process Algebra) [8] is used. We
assume that the reader is familiar with PEPA and with Markov processes.

2 Quasi-reversible structures in PEPA models

Quasi-reversibility, as defined in terms of queues and customers, has been used to
show that queues behave as if independent (up to normalisation) in steady-state
queueing networks possessing certain properties. Therefore, given information
about the influence of the rest of the network on each queue, these queues may
be solved in isolation. The required information is the arrival rate of customers
when the system is in equilibrium and it is usually derived from traffic equations.



Systematic transformations to find quasi-reversible structures 3

Quasi-reversibility imposes a strong condition on the arrival rates of cus-
tomers but a weaker condition on probability flux than that imposed by re-
versibility. A reversible process must necessarily satisfy the detailed balance
equations

π(x) q(x, x′) = π(x′) q(x′, x) for all states x, x′

where q is the process’s instantaneous state transition matrix. A quasi-reversible
process satisfies instead partial balance equations of the form

π(x)
∑
x′∈S′

q(x, x′) =
∑
x′∈S′

π(x′)q(x′, x)

for all states x and a corresponding subset of states S′. Thus for any state
x the probability flux into and out of the subset of states S′ is balanced. In
queueing terms the set of states, S′, comprises those states which differ from x
by the arrival of exactly one customer at some server. Additionally, the arrival
rates of customers must be independent of the current state of the queue. It has
been shown that for both open and closed networks of queues, which are quasi-
reversible when considered in isolation, the queues behave independently (up to
normalisation in the closed case), meaning that the equilibrium distribution has
a product form. Moreover the network itself forms a quasi-reversible system.

Consider a stochastic process X(t) the state of which can change either via
an input process that causes one of a countable set of specified types of change
in the state, say x → x′, or via a dual output process that causes a change of
state in the opposite direction, for example x′ → x. In queueing network theory
the input process corresponds to arrivals to a queue (or subnetwork of queues)
and the output process corresponds to departures.

Definition 1 Such a stochastic process is quasi-reversible if, and only if, X(t)
is a stationary Markov process such that for all times t0 the state X(t0) is inde-
pendent of:

1. the input process after t0;
2. the output process before t0.

By Burke’s theorem, the M/M/1 queue with constant rates is quasi-reversible.
It is also obviously reversible, by inspection of its state transitions which form a
birth-death process, but in general neither of the properties of reversibility and
quasi-reversibility implies the other.

We call the thinned input process obtained by selecting only those state
changes of a particular type r the input subprocess r. The following proposition
then holds:

Proposition 1 For a quasi-reversible process:

1. the input subprocesses are Poisson with constant rate;
2. the output subprocesses are Poisson with constant rate.



4 S. Gilmore, Z. Grant-Duff, P. Harrison, and J. Hillston

The key property we require is that each input subprocess has constant rate, α(r)
say for subprocess r. Using a combination of reversibility and quasi-reversibility
arguments, it can be shown that a single multi-class queue and networks thereof
satisfy local balance equations and have product-form solutions.

We are interested in cases when the Markov process underlying a PEPA
model has a product form equilibrium distribution which corresponds to the co-
operating components within the model. In these cases the probability of a given
model derivative will be the product of the probabilities of the corresponding
derivatives in the cooperating components, possibly subject to renormalisation.
In other words, if the derivative Pi is expressed in state vector representation as
(C1i , C2i , . . . , Cni), then Π, the steady state probability distribution, over the
derivatives of P , can be expressed as

Π(Pi) =
1
Gi

ni∏
j=1

πj(Cji)

where πj is the steady state probability distribution over the derivatives of
Cj , 1 ≤ j ≤ ni, and Gi is a normalisation constant. The form of the cooper-
ating components is restricted in order to ensure that each element corresponds
to a quasi-reversible Markov process. Moreover, the nature of the interaction
between them ensures the quasi-reversibility of the model component considered
as a whole.

Definition 2 A PEPA component M is a QR component if and only if its
underlying Markov process is a quasi-reversible process.

As a first step we identify activities that are analogous to customer arrivals and
departures in a queue. The crucial characteristic of these pairs of events is the
fact that they reverse each other: one event followed immediately by the other
returns us to the original state.

Definition 3 A PEPA component P is said to enable a reverse pair (α,−α), if
(α, r) ∈ Act(P ) and for every (α, r)-derivative P ′ there exists (−α, s) ∈ Act(P ′)
such that P is an (−α, s)-derivative of P ′, where r, s ∈ IR+ ∪ {>}.

Note that if (α,−α) is a reverse pair between components P and P ′, then
(−α, α) is a reverse pair between P ′ and P , i.e. −(−α) = α. For example,
in the queue modelled below, (arrive, serve) is a reverse pair in every derivative,
but (serve, arrive) is another reverse pair in all Qi, i ≥ 1.

Q0
def= (arrive, λ).Q1

Qi
def= (arrive, λ).Qi+1 + (serve, µ).Qi−1 i ≥ 1

If all the activities that a sequential PEPA component enables constitute half
of a reverse pair then it is clear how to form its underlying reversed Markov
process. For any reverse pair (α,−α), if α occurs in the original process at time
t then in the reverse process −α occurs at time −t.



Systematic transformations to find quasi-reversible structures 5

The simplest form of QR components will be those which exhibit a strict
input/output behaviour with respect to their reverse pairs. As a preliminary we
generalise the notion of an (α, r)-derivative.

Definition 4 If P
(α,r)−→ · · · (α,r)−→︸ ︷︷ ︸
n times (α,r)

P ′ then P ′ is an (α, r)n-derivative of P .

In order to form an input process, corresponding to arrivals at a queue, we require
that the same input action (the (α, r) of a reverse pair (α,−α)) is enabled in
all the derivatives of the component and that the component must change state
monotonically whenever such an action occurs.

Definition 5 A PEPA component P with initial component P0 is an input-
output component if P0 enables only passive activities (α,>) such that:

1. (α,−α) is a reverse pair;
2. (α,>) and (−α, s), for some s, are the only activities enabled by any deriva-

tive of P0; and
3. the (α,>)n-derivatives of P0 are distinct for all n.

The set of action types I(P ) = A(P0) is the set of input actions of P . These
correspond directly to the input subprocesses in the underlying Markov process:
one action type for each input subprocess. The output actions are those which
reverse the input actions:

O(P ) = {β | β = −α ∧ α ∈ I(P )}

The completion of activities of these types corresponds to the output subprocess
of the appropriate class. We assume that the input and output actions of any
input-output process are disjoint.

A PEPA component containing passive activities which are not shared with
an active component is incomplete. We say that a component S>α

def= (α, r).S>α
such that r 6= >, is an external source for an input-output process P if α ∈ I(P ).

Proposition 2 If a PEPA model M consists of an input-output component P
in cooperation with an external source S>α for each α ∈ I(P ),

M
def= P BC

I(P )
(S>α1

‖ · · · ‖ S>αn)

where I(P ) = {α1, . . . αn}, then M is a QR component, i.e. the Markov process
underlying M is quasi-reversible.

This follows from the definition of quasi-reversibility.
If I(P ) = {α} then by the definition of an input-output component, the

Markov process underlying M is isomorphic to a reversible queue with one class
of customers, whose arrival process is determined by the external source. These
basic components, whether with one input activity type or more, correspond



6 S. Gilmore, Z. Grant-Duff, P. Harrison, and J. Hillston

to the queues within a network. The class of QR components is larger than
this; we can enlarge it by considering the interactions of such components that
correspond to networks of queues.

Now we consider models formed by the interaction of input-output com-
ponents, and their appropriate external sources. Suppose C def= P BC

L
Q where

both P and Q are input-output components. We say that α ∈ L is a channel
from P to Q if α ∈ O(P ) ∩ I(Q); similarly β ∈ L is a channel from Q to P if
β ∈ I(P ) ∩ O(Q). Note that since the input and output sets of all components
are distinct all channels are uni-directional.

If every action in the set L∩(I(P )∪I(Q)) forms a channel in the component
P BC

L
Q, the interaction is termed a flow cooperation. (Any action in L but not

in I(P )∪ I(Q) is unable to participate in the cooperation, of course, but would
be syntactically valid.) In the more general case, a cooperation of n input-output
components P1, . . . , Pn, with state vector representation (P1, . . . , Pn), is a flow
cooperation if, when we consider the pairwise interactions between the compo-
nents, they all form channels. More formally, for any Pi, Pj , 1 ≤ i, j ≤ n such
that i 6= j, if Pi and Pj cooperate over α then either α is a channel from Pi to
Pj or α is a channel from Pj to Pi. We denote the set of interactions between
Pi and Pj by Lij .

For any QR component, the input actions are those corresponding to an input
subprocess in the underlying quasi-reversible process, and the output actions are
those corresponding to an output subprocess. A flow cooperation between such
components is then defined as above.

A flow cooperation of input-output components is said to be closed if it has
no actions enabled which do not form a channel. In this case all the input action
needs of the cooperating components are supplied by output actions of other
components in the cooperation, and similarly all output actions produced by
components are shared, as input actions, with other components. Conversely, a
flow cooperation which enables actions which are not part of a channel is termed
open. Such input actions must be provided with an external source of appropriate
type to complete the model. The resulting actions will form an input subprocess
to the model. Similarly, if a model enables an output action which does not form
a channel the model will exhibit an output subprocess.

In [1] it is established that an open flow cooperation of QR components
is a QR component; moreover, the underlying Markov process has a product
form equilibrium distribution over the components. In the case of a closed flow
cooperation the model is no longer a QR component, since there are no input
or output subprocesses. Nevertheless, components in such a cooperation behave
as if they were independent, up to normalisation, resulting in a product form
equilibrium distribution for the model. For the remainder of this paper we will
only consider closed flow cooperations.



Systematic transformations to find quasi-reversible structures 7

3 An Algebra of State Vectors using PEPA Combinators

3.1 Vector Form

When a PEPA model is defined to consist of one or more cooperating compo-
nents, these will be apparent in every derivative of the model. The vector form of
a model expression represents the state of a model as a tuple of local states (one
for each component) within decorated brackets. As in [9], we use subscripted
brackets to denote the scope of a cooperation set. We do not consider the hiding
operator.

Definition 6 (Vector Form) For a model expression, we define the vector
form inductively over the structure of the expression: let P and Q be expres-
sions and C be a constant denoting a sequential component.

1. vf(P BC
L
Q) = (vf(P ), vf(Q))L

2. vf(C) = C

This representation contains all the information about the static structure
of the model: it records the current derivative of each sequential component as
well as the scope of the cooperation sets which are in force. However this is not
sufficient to allow us to compute the derivation graph: the defining equations for
the sequential components are also needed.

In the following subsection we introduce our transformation system as a
set of rules which permit re-writing of state vector expressions. This requires
an overloading of the PEPA combinators—prefix, choice and cooperation—over
the space of such vectors. The meaning of these overloadings are given in the
semantics shown in Figure 1. The presentation uses the notion of apparent rate,
rα, defined in [8]. The equality used in the rules denotes an isomorphism relation:
two state vector expressions are considered equal in this sense if and only if, by
the rules given in Figure 1, they give rise to isomorphic derivation graphs. As a
consequence, the rules can be applied right-to-left or left-to-right.

3.2 Transformation System

In the style of Burstall and Darlington’s fold-unfold methodology [10], PEPA
constant definitions are used as equational re-write rules. In this sense, the sub-
stitution of a component by its definition is an unfold step; the substitution of
a vector form is a definition/abstraction step and the primitive laws are those
based on the properties of the PEPA combinators. In addition, we have the rules
we present below for manipulating state vectors.

In all the rules we assume a pair of components, P and Q, between which
there is a flow cooperation, governed by the cooperation set L. The first rule
dictates when a state vector may be prefixed by an activity. The first sub-rule
corresponds to the case when the action type α forms a channel between P and
Q; the second and third, the cases when it does not.

Rule 1 (State vector prefix). Assume P and Q are a pair of flow cooperating
components, in the cooperation P BC

L
Q, with derivative state vector (P ′, Q′)L.



8 S. Gilmore, Z. Grant-Duff, P. Harrison, and J. Hillston

Prefix

(α, r).(P,Q)L
(α,r)

−−−→ (P,Q)L

Choice

(P,Q)L
(α,r)

−−−→ (P ′, Q′)L

(P,Q)L + (R, S)K
(α,r)

−−−→ (P ′, Q′)L

(R, S)K
(α,r)

−−−→ (R′, S′)K

(P,Q)L + (R, S)K
(α,r)

−−−→ (R′, S′)K

Cooperation

(P,Q)L
(α,r)

−−−→ (P ′, Q′)L

((P,Q)L, (R, S)K)M
(α,r)

−−−→ ((P ′, Q′)L, (R, S)K)M

(α /∈M)

(R, S)K
(α,r)

−−−→ (R′, S′)K

((P,Q)L, (R, S)K)M
(α,r)

−−−→ ((P,Q)L, (R′, S′)K)M

(α /∈M)

(P,Q)L
(α,r1)

−−−→ (P ′, Q′)L (R, S)K
(α,r2)

−−−→ (R′, S′)K

((P,Q)L, (R, S)K)M
(α,s)

−−−→ ((P ′, Q′)L, (R′, S′)K)M

(α ∈M),

where s =
r1

rα(P BC
L
Q)

r2

rα(RBC
K
S)

min(rα(P BC
L
Q), rα(RBC

K
S))

Fig. 1. PEPA operational semantics extended to state vectors

Rule 1.1 If α is a channel, such that α ∈ A(P ) ∪A(Q) and α ∈ L, then

((α, r).P ′, (α, r).Q′)L = (α, r).(P ′, Q′)L

Rule 1.2 If α /∈ L, then

((α, r).P ′, Q)L = (α, r).(P ′, Q)L

Rule 1.3 If α /∈ L, then

(P, (α, r).Q′)L = (α, r).(P,Q′)L

The second rule shows how choice between state vectors arises, when there are
two channels between the components.



Systematic transformations to find quasi-reversible structures 9

Rule 2 (State vector choice). Assume P and Q are a pair of flow co-
operating components, in the cooperation P BC

L
Q, with derivative state vec-

tors (P ′, Q′)L and (P ′′, Q′′)L. If α and β are channels such that {α, β} ⊂
A(P ) ∪A(Q) and {α, β} ⊂ L, then

((α, r).P ′+(β, s).P ′′, (β, s).Q′′+(α, r).Q′)L = (α, r).(P ′, Q′)L+(β, s).(P ′′, Q′′)L

The third rule defines how progress may be blocked by the cooperation set. In
the rule (β, s) affects only the state of the Q component (left hand side of the
rule). Behaviourally this is not possible as (β, s) is a channel and must therefore
affect the state of both cooperating components. Since (β, s) does not appear in
both tuple elements the transformation rule discards its effect on the combined
state as invalid.

Rule 3 (Activity blocking). Assume P and Q are a pair of flow cooperating
components, in the cooperation P BC

L
Q, with derivative state vector (P ′, Q)L,

Q ≡ (β, s).Q′. If β is a channel such that β ∈ A(Q) and β ∈ L, then

((α, r).P ′, (β, s).Q′)L = (α, r).(P ′, Q)L

where α 6= β and α /∈ L

In the case of the fourth rule, (β, s) appears in both tuple elements hence the
transformation rule accounts for its effect on the combined state. Note that
the term (β, s).(P ′′, Q′) describes a flow transition whose input-output nature
is reflected in the fact that both the state of the source P and that of the
destination Q must change.

Rule 4 (Choice and cooperation). Assume P and Q are a pair of flow
cooperating components, in the cooperation P BC

L
Q, with derivative state vectors

(P ′, Q)L,and (P ′′, Q′′)L, Q ≡ (β, s).Q′′. If β is a channel such that β ∈ A(P )∪
A(Q) and β ∈ L, then

((α, r).P ′ + (β, s).P ′′, (β, s).Q′′)L = (α, r).(P ′, Q)L + (β, s).(P ′′, Q′′)L

where α 6= β and α /∈ L.

The fifth rule can be regarded as a generalisation of Rule 3 and Rule 4.

Rule 5 (Choice, cooperation and blocking). Assume P and Q are a pair of
flow cooperating components, in the cooperation P BC

L
Q, with derivative state

vectors (P ′, Q)L,and (P ′′, Q′′)L, Q ≡ (γ, t).Q′. If β and γ are channels such that
{β, γ} ⊂ L, β ∈ A(P ) ∪A(Q) and γ ∈ A(Q) then

((α, r).P ′+ (β, s).P ′′, (β, s).Q′′+ (γ, t).Q′)L = (α, r).(P ′, Q)L + (β, s).(P ′′, Q′′)L

where α 6= β 6= γ and α /∈ L.



10 S. Gilmore, Z. Grant-Duff, P. Harrison, and J. Hillston

4 An example of quasi-reversibility

In this section we show how to formally transform one representation of a system
into another, using the transformation rules introduced in the previous section.
We consider a simple closed queueing network, consisting of two FIFO servers
and a population of size three, initially at the first server. This system suggests
two distinct PEPA representations. In the first, one PEPA component is defined
for each server/queue. These components have a local state or derivative rep-
resenting each possible state of the corresponding queue. This representation is
shown in Figure 2.

S10
def
= (go21, µ2).S11

S11
def
= (go21, µ2).S12 + (go12, µ1).S10

S12
def
= (go21, µ2).S13 + (go12, µ1).S11

S13
def
= (go12, µ1).S12

S20
def
= (go12, µ1).S21

S21
def
= (go12, µ1).S22 + (go21, µ2).S20

S22
def
= (go12, µ1).S23 + (go21, µ2).S21

S23
def
= (go21, µ2).S22

System
def
= S13 BC

{go12,go21}
S20

Fig. 2. Description 1.1: PEPA model of the two node system using two components

In the second representation a single PEPA component is used to capture
the behaviour of the complete system, which in effect is sequentialised. This
representation is shown in Figure 3. The first representation clearly satisfies the
criteria for giving rise to a quasi-reversible Markov process:

– the activities go12 and go21 form a reverse pair in each component;
– each of the components is an input-output component; and
– the cooperation is a flow cooperation.

However in the second representation for component S1320 this is not the case.

4.1 Transformation from Description 1.1 to Description 1.2

When dealing with a server-based description such as this we simply start by
representing the top level cooperation by a pair, our hypothesis being that there
is a flow cooperation between S20 and S13 and that go12, go21 are channels. Once
the rewrite rules are applied to this initial equation new pairs are introduced and
other definitions are (subsequently) tupled accordingly.



Systematic transformations to find quasi-reversible structures 11

S1320
def
= (go12, µ1).S1221 (1)

S1221
def
= (go12, µ1).S1122 + (go21, µ2).S1320 (2)

S1122
def
= (go12, µ1).S1023 + (go21, µ2).S1221 (3)

S1023
def
= (go21, µ2).S1122 (4)

System
def
= S1320

Fig. 3. Description 1.2: PEPA model of the two node system using a single component

The starting point is a tuple of PEPA terms derived from Description 1.1.
Let G be the set {go12, go21}.

(S13, S20)G
def= ((go12, µ1).S12, (go12, µ1).S21)G
{by Rule 1}

= (go12, µ1).(S12, S21)G (5)

The behaviours defined by equations (5) and (1) are identical, in the sense that
they give rise to isomorphic derivation graphs (only the names of derivatives
may differ). This is clear since we have syntactically identical definitions up to
renaming. Here there is a direct correspondence between the vectors (S13, S20)G
and (S12, S21)G and the terms S1320 and S1221 respectively. (In this sense, no
further transformation steps are required. For completeness one could rewrite
equation (5) to S1320

def= (go12, µ1).S1221, by substitution of constant names.)

(S12, S21)G
def= ((go21, µ2).S13 + (go12, µ1).S11, (go12, µ1).S22 + (go21, µ2).S20)G
{by Rule 2}

= (go21, µ2).(S13, S20)G + (go12, µ1).(S11, S22)G (6)
{by commutativity of choice}

= (go12, µ1).(S11, S22)G + (go21, µ2).(S13, S20)G (7)

Again, the behaviours defined by equations (7) and (2) are identical. The ar-
guments to justify this are the same as above. Also, the choice combinator is
assumed commutative which is easily shown by appealing to its definition. This
will give us an exact match to the term S1221.

The next two steps complete the transformation. Remarks are as above.

(S11, S22)G
def= ((go21, µ2).S12 + (go12, µ1).S10, (go12, µ1).S23 + (go21, µ2).S21)G)
{by Rule 2}

= (go21, µ2).(S12, S21)G + (go12, µ1).(S10, S23)G
{by commutativity of choice}



12 S. Gilmore, Z. Grant-Duff, P. Harrison, and J. Hillston

= (go12, µ1).(S10, S23)G + (go21, µ2).(S12, S21)G

(S10, S23)G
def= ((go21, µ2).S11, (go21, µ2).S22)G
{by Rule 1}

= (go21, µ2).(S11, S22)G

4.2 Transformation from Description 1.2 into Description 1.1

We are interested in the structure which is hidden in this monolithic description.
For QR models, as this one, there will be a successful transformation into a
server centric description as shown below. This means that both descriptions
are equivalent, i.e. isomorphic, and give rise to identical Markov processes. Our
ultimate aim is to derive a flow cooperation representation, where all interactions
are channels. Accordingly, once tuples are introduced, the next step is for the
transformation to construct the cooperation set by identifying channels. We will
find it useful to appeal to the following proposition.

Proposition 3 Let P BC
L
Q be a flow cooperation with derivative state vector

(P ′, Q′)L and α ∈ L a channel from P to Q. If there exists activity (β, s) such
that (α, β) form a reverse pair between (P,Q)L and (P ′, Q′)L then β is a channel
from Q to P and thus β ∈ L.

The proof is immediate by appeal to the definitions of channel and reverse pair.

Transformation Steps The first step in the transformation consists of substi-
tuting every derivative component in the definition of S1320 by a pair of compo-
nents. For the case of (the initial state) S1320 we name them A1 and A2 (note
that the choice of name is irrelevant). Our hypothesis is that S1320 is a flow coop-
eration over some set L such that go12 is a channel in L—which is inferred from
the definition of S1320 itself. The objective of the transformation is to derive a
definition for A1 and A2 and construct the set L. This will be done incrementally
by adding to the initial set L0 = {go12}.

(A1, A2)L
def= (go12, µ1).(B1, B2)L (8)

(B1, B2)L
def= (go12, µ1).(C1, C2)L + (go21, µ2).(A1, A2)L (9)

(C1, C2)L
def= (go12, µ1).(D1, D2)L + (go21, µ2).(B1, B2)L (10)

(D1, D2)L
def= (go21, µ2).(C1, C2)L (11)

From equations (8) and (9) we infer that (go12, go21) is a reverse pair between
(A1, A2)L and (B1, B2)L and (go21, go12) is a reverse pair between (B1, B2)L and
(A1, A2)L. Since go12 is a channel between A1 and A2 its reverse go21 is also
a channel. From equations (14) and (11) we infer that (go12, go21) is a reverse



Systematic transformations to find quasi-reversible structures 13

pair between (C1, C2)L and (D1, D2)L and (go21, go12) is a reverse pair between
(D1, D2)L and (C1, C2)L. In other words, the components A1 and A2 enable the
reverse pair (go12, go21). Hence, L1 = L0 ∪ {go21}.

Applying Rule 1 we rewrite all equations above.

(A1, A2)L
def= ((go12, µ1).B1, (go12, µ1).B2)L (12)

(B1, B2)L
def= ((go12, µ1).C1, (go12, µ1).C2)L
+ ((go21, µ2).A1, (go21, µ2).A2)L (13)

(C1, C2)L
def= ((go12, µ1).D1, (go12, µ1).D2)L
+ ((go21, µ2).B1, (go21, µ2).B2)L (14)

(D1, D2)L
def= ((go21, µ2).C1, (go21, µ2).C2)L (15)

Further, applying Rule 2 to equations 13 and 14 we have:

(A1, A2)L
def= ((go12, µ1).B1, (go12, µ1).B2)L

(B1, B2)L
def= ((go12, µ1).C1 + (go21, µ2).A1, (go12, µ1).C2 + (go21, µ2).A2)L

(C1, C2)L
def= ((go12, µ1).D1 + (go21, µ2).B1, (go12, µ1).D2 + (go21, µ2).B2)L

(D1, D2)L
def= ((go21, µ2).C1, (go21, µ2).C2)L

Last, by tuple equality:

A1
def= (go12, µ1).B1

A2
def= (go12, µ1).B2

B1
def= (go12, µ1).C1 + (go21, µ2).A1

B2
def= (go12, µ1).C2 + (go21, µ2).A2

C1
def= (go12, µ1).D1 + (go21, µ2).B1

C2
def= (go12, µ1).D2 + (go21, µ2).B2

D1
def= (go21, µ2).C1

D2
def= (go21, µ2).C2

The transformation terminates successfully since all named derivatives define a
reachable state (i.e. all constants defined are specified in at least one equation on
the right hand of the def= symbol). This is confirmation of original hypothesis—
that the monolithic representation concealed a flow cooperation. Had our hy-
pothesis been wrong the transformation would not have terminated.
The constructed specification is then

System def= A1 BC
L
A2

where L = L1 = {go12, go21}.



14 S. Gilmore, Z. Grant-Duff, P. Harrison, and J. Hillston

5 Implementation

Having now developed a set of formally defined transformations on PEPA models
we have implemented these in a term rewriting system which checks the correct
application of each of the rules from the previous section. Our system is called
the PEPA Term Kit and we have used it to check the derivations which were
presented in the previous section. The PEPA Term Kit is implemented in the
strongly-typed functional language Standard ML [11]. Standard ML provides a
metalanguage for defining other formal languages, whether they are program-
ming languages or modelling languages as is the case for PEPA here. We have
previously developed an embedding of PEPA in Standard ML [12] and our im-
plementation reuses this existing language embedding.

The PEPA Term Kit presents users with an interactive top-level loop which
allows them to enter model definitions, fold and unfold definitions and apply
rewriting rules. After experimenting with the interactive application of the rules
to strengthen understanding, the user can define tactics as in the style of Edin-
burgh LCF [13]. These tactics can be used to apply combinations of rules in a
single step. The necessary uses of rules and tactics to prove a desired goal can
be stored in a proof script which can be replayed as needed. The use of such a
proof script is shown in Figure 4.

PEPA model definitions are packed into modules called structures. These
model definitions introduce the ground terms of the rewriting system where
the static type system of the language separates out the identifiers for activity
types from the identifiers for rates or for model components. We apply one
of Standard ML’s parametric modules to a pair of model definitions in two
such structures. This produces a set of custom unification procedures for these
definitions. One of these unification procedure computes the most general unifier
for pairs of terms which contain a left subterm from the first model definition and
a right subterm from the second model definition. Another unification procedure
checks that substitutions are applied consistently to lists of such pairs. Lists such
as these are used to posit equivalences between definitions in the first model and
definitions in the second. The application of the unification procedure for lists
establishes that the posited equivalences genuinely do hold.

The PEPA Term Kit is available for download from the Internet address
http://www.dcs.ed.ac.uk/pepa/termkit.

6 Conclusions

We have defined and implemented a term-rewriting system for stochastic process
algebra models expressed in the PEPA modelling language. The term-rewriting
system ensures the legitimate application of transformation rules to the syntactic
representation of a model. By directing the application of the rules a user of the
system can rewrite a model into a syntactically characterised quasi-reversible
form without expanding the global state space. An efficient product form solution
can then be obtained for a model in this quasi-reversible form.



Systematic transformations to find quasi-reversible structures 15

PEPA Term Kit, Version 0.01 "Largs" (* start of session *)

[introducing top level component definitions ]

[building unifier for PEPA terms ]

> structure Unify : (* defining a module which *)

{val (’’e, ’’f) appendWithConsistencyCheck : (* provides unification procedures *)

(’’e * ’’f) list -> (’’e * ’’f) list -> (’’e * ’’f) list,

val ’e applySubstitution :

(Activity * Activity/1) list * (Rate * Rate/1) list *

(Identifier * Component/1) list * ’e -> Component -> Component/1,

val (’’e, ’’f) insert : ’’e * ’’f -> (’’e * ’’f) list -> (’’e * ’’f) list,

val (’’e, ’f) lookup : (’’e * ’f) list -> ’’e -> ’f,

val unifiable : Component * Component/1 -> bool, (* test if two terms unify *)

val unifiableList : (Component * Component/1) list -> bool, (* test if two lists of terms unify *)

val unifier : Component * Component/1 ->

(Activity * Activity/1) list * (Rate * Rate/1) list * (* compute most general unifier *)

(Identifier * Component/1) list * (Identifier/1 * Component) list,

val unifierList :

(Component * Component/1) list ->

(Activity * Activity/1) list * (Rate * Rate/1) list *

(Identifier * Component/1) list * (Identifier/1 * Component) list} (* end of Unify module *)

[installed unifier for PEPA terms ]

[defining transformations ]

> structure Transformations : (* defining the transformations *)

{structure Queue1 : (* the first Queue definition *)

{datatype Activity = (Activity, {con go12, go21 : Activity}), (* the type of activities *)

datatype Component = (Component, (* the component combinator syntax *)

{con $ : Identifier -> Component, (* variable *)

con * : (Activity * Rate) * Component -> Component, (* prefix *)

con + : Component * Component -> Component, (* choice *)

con - : Component list * Activity list -> Component}), (* cooperation *)

datatype Identifier = (Identifier, (* the model identifiers *)

{con S10, S11, S12, S13, S20, S21, S22, S23, System : Identifier}),

datatype Rate = (Rate,{con mu1 : Rate, con mu2 : Rate}), (* the type of rates *)

val Components : Identifier list,

val commute : Component -> Component,

val defn : Identifier -> Component,

val fold : Component -> Identifier,

val recUnfold : Component -> Component,

val rule : int -> Component -> Component, (* apply a transformation rule *)

val show : Component -> string,

val showActivity : Activity -> string,

val showComponent :

(Activity -> string) -> (Rate -> string) -> (Identifier -> string) ->

Component -> string,

val showIdentifier : Identifier -> string,

val showRate : Rate -> string,

val unfold : Identifier -> Component} (* end of first Queue definition *)

structure Queue2 : (* the second Queue definition *)

{datatype Activity = (Activity/1, {con go12, go21 : Activity/1}), (* the type of activities *)

datatype Component = (* the component combinator syntax *)

(Component/1,

{con $ : Identifier/1 -> Component/1, (* variable *)

con * : (Activity/1 * Rate/1) * Component/1 -> Component/1, (* prefix *)

con + : Component/1 * Component/1 -> Component/1, (* choice *)

con - : Component/1 list * Activity/1 list -> Component/1}), (* cooperation *)

datatype Identifier = (Identifier/1, (* the model identifiers *)

{con S1023, S1122, S1221, S1320, System : Identifier/1}),

datatype Rate = (Rate/1,{con mu1 : Rate/1, con mu2 : Rate/1}), (* the type of rates *)

val Components : Identifier/1 list,

val commute : Component/1 -> Component/1,

val defn : Identifier/1 -> Component/1,

val fold : Component/1 -> Identifier/1,

val recUnfold : Component/1 -> Component/1,

val rule : int -> Component/1 -> Component/1, (* apply a transformation rule *)

val show : Component/1 -> string,

val showActivity : Activity/1 -> string,

val showComponent :

(Activity/1 -> string) -> (Rate/1 -> string) ->

(Identifier/1 -> string) -> Component/1 -> string,

val showIdentifier : Identifier/1 -> string,

val showRate : Rate/1 -> string,

val unfold : Identifier/1 -> Component/1} (* end of second Queue definition *)

val assert1, assert2, assert3, assert4 : bool, (* four lemmas *)

val theorem1 : bool} (* equivalence theorem *)

[assertion checked ]

[assertion checked ]

[assertion checked ]

[assertion checked ]

[theorem checked ]

Exiting PEPA Term Kit (* end of session *)

Fig. 4. Loading a proof script into the PEPA Term Kit



16 S. Gilmore, Z. Grant-Duff, P. Harrison, and J. Hillston

Acknowledgements: This work was supported by the Engineering and Physi-
cal Sciences Research Council (COMPA project, G/L10215) and by the DE-
GAS (Design Environments for Global ApplicationS) project funded by the FET
Proactive Initiative on Global Computing.

References

1. P. Harrison and J. Hillston. Exploiting Quasi-reversible Structures in Markovian
Process Algebra Models. The Computer Journal, 38(6), 1995. Special Issue: Proc.
of 3rd Process Algebra and Performance Modelling Workshop.

2. J. Hillston. Compositional Markovian Modelling Using a Process Algebra. In W.J.
Stewart, editor, Numerical Solution of Markov Chains. Kluwer, 1995.

3. J.M. Fourneau, L. Kloul, and F. Valois. Performance modelling of hierarchical
cellular networks using PEPA. In Proc. of 7th Process Algebra and Performance
Modelling Workshop, Zaragoza, 1999.

4. M. Sereno. Towards a Product Form Solution of Stochastic Process Algebras. The
Computer Journal, 38(6), 1995. Special Issue: Proc. of 3rd Process Algebra and
Performance Modelling Workshop.

5. J. Hillston and N. Thomas. A syntactical analysis of reversible PEPA models. In
C. Priami, editor, Proceedings of the Sixth Annual Workshop on Process Algebra
and Performance Modelling, pages 37–49, Nice, France, September 1998.

6. J. Hillston and N. Thomas. Product form solution for a class of PEPA models.
Performance Evaluation, 35(3–4):171–192, 1999.

7. G. Clark and J. Hillston. Product form solution for an insensitive stochastic process
algebra structure. Performance Evaluation, to appear in 2002.

8. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

9. S. Gilmore, J. Hillston, and M. Ribaudo. An efficient algorithm for aggregating
PEPA models. IEEE Trans. on Software Engineering, 27(5):449–464, May 2001.

10. R. M. Burstall and J. Darlington. A transformational system for developing re-
cursive programs. Journal of the ACM, 21(1):44–67, January 1977.

11. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML: Revised 1997. The MIT Press, 1997.

12. S. Gilmore and J. Hillston. Performance modelling in PEPA with higher-order
functions. In N. Thomas and J. Bradley, editors, Proceedings of the Sixteenth UK
Performance Engineering Workshop, pages 35–46, Durham, July 2000.

13. R. Milner, M. Gordon, and C. Wadsworth. Edinburgh LCF. Springer-Verlag,
Berlin, 1979.


