
A unified approach to performance
modelling and verification

Stephen Gilmore and Lëıla Kloul
Laboratory for Foundations of Computer Science

The University of Edinburgh

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

1

Motivation

• The need for safe and dependable computer systems is well-understood. In
some systems correct functioning depends upon the ability to perform effectively
under heavy workload . The analysis of such systems must consider both timing
and behavioural information.

• Performability = performance + dependability.

• It is better to know about problems early. If performance design flaws are found
early in the development process then they can be corrected at a relatively
low cost. In contrast, if they are found after the development process is long
underway then they may be expensive or even unrealistic to repair.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

1

Motivation

• The need for safe and dependable computer systems is well-understood. In
some systems correct functioning depends upon the ability to perform effectively
under heavy workload . The analysis of such systems must consider both timing
and behavioural information.

• Performability = performance + dependability.

• It is better to know about problems early. If performance design flaws are found
early in the development process then they can be corrected at a relatively
low cost. In contrast, if they are found after the development process is long
underway then they may be expensive or even unrealistic to repair.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

1

Motivation

• The need for safe and dependable computer systems is well-understood. In
some systems correct functioning depends upon the ability to perform effectively
under heavy workload . The analysis of such systems must consider both timing
and behavioural information.

• Performability = performance + dependability.

• It is better to know about problems early. If performance design flaws are found
early in the development process then they can be corrected at a relatively
low cost. In contrast, if they are found after the development process is long
underway then they may be expensive or even unrealistic to repair.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

2

Summary of this talk

• We describe a novel performability modelling approach which facilitates the
efficient, and simple, solution of performance models extracted from high-level
descriptions of systems.

• The notation which we use for our high-level designs is the UML graphical
modelling language.

• The technology which provides the efficient representation capability for the
underlying performance model is the Multi-Terminal Binary Decision Diagram-
based PRISM probabilistic model checker.

• The UML models are compiled through an intermediate language, the
stochastic process algebra PEPA, before translation into MTBDDs for solution.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

2

Summary of this talk

• We describe a novel performability modelling approach which facilitates the
efficient, and simple, solution of performance models extracted from high-level
descriptions of systems.

• The notation which we use for our high-level designs is the UML graphical
modelling language.

• The technology which provides the efficient representation capability for the
underlying performance model is the Multi-Terminal Binary Decision Diagram-
based PRISM probabilistic model checker.

• The UML models are compiled through an intermediate language, the
stochastic process algebra PEPA, before translation into MTBDDs for solution.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

2

Summary of this talk

• We describe a novel performability modelling approach which facilitates the
efficient, and simple, solution of performance models extracted from high-level
descriptions of systems.

• The notation which we use for our high-level designs is the UML graphical
modelling language.

• The technology which provides the efficient representation capability for the
underlying performance model is the Multi-Terminal Binary Decision Diagram-
based PRISM probabilistic model checker.

• The UML models are compiled through an intermediate language, the
stochastic process algebra PEPA, before translation into MTBDDs for solution.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

2

Summary of this talk

• We describe a novel performability modelling approach which facilitates the
efficient, and simple, solution of performance models extracted from high-level
descriptions of systems.

• The notation which we use for our high-level designs is the UML graphical
modelling language.

• The technology which provides the efficient representation capability for the
underlying performance model is the Multi-Terminal Binary Decision Diagram-
based PRISM probabilistic model checker.

• The UML models are compiled through an intermediate language, the
stochastic process algebra PEPA, before translation into MTBDDs for solution.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

3

Contribution

• We provide a structured performability modelling platform by connecting a
specification environment (SENV) and a verification environment (VENV) so
that each may communicate with the other.

• The SENV and VENV are connected by a bridge which consists of two
categories of software tools. These are:

– extractors which translate designs from the SENV into inputs for the VENV,
omitting any aspects of the design which are not relevant for the verification
task at hand; and

– reflectors which convert the results from the analysis performed by the
VENV back into a form which can be processed and displayed by the SENV.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

3

Contribution

• We provide a structured performability modelling platform by connecting a
specification environment (SENV) and a verification environment (VENV) so
that each may communicate with the other.

• The SENV and VENV are connected by a bridge which consists of two
categories of software tools. These are:

– extractors which translate designs from the SENV into inputs for the VENV,
omitting any aspects of the design which are not relevant for the verification
task at hand; and

– reflectors which convert the results from the analysis performed by the
VENV back into a form which can be processed and displayed by the SENV.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

4

UML modelling

• A UML model is represented by a collection of diagrams describing parts of the
system from different points of view; there are seven main diagram types. For
example, there will typically be a static structure diagram (or class diagram)
describing the classes and interfaces in the system and their static relationships
(inheritance, dependency, etc.).

• State diagrams, a variant on Harel state charts, can be used to record the
dynamic behaviour of particular classes. Interaction diagrams, such as sequence
diagrams, are used to illustrate the way objects of different classes interact in
a particular scenario.

• As usual we expect that the UML modeller will make a number of diagrams of
different kinds. Our analysis is based on state and collaboration diagrams.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

4

UML modelling

• A UML model is represented by a collection of diagrams describing parts of the
system from different points of view; there are seven main diagram types. For
example, there will typically be a static structure diagram (or class diagram)
describing the classes and interfaces in the system and their static relationships
(inheritance, dependency, etc.).

• State diagrams, a variant on Harel state charts, can be used to record the
dynamic behaviour of particular classes. Interaction diagrams, such as sequence
diagrams, are used to illustrate the way objects of different classes interact in
a particular scenario.

• As usual we expect that the UML modeller will make a number of diagrams of
different kinds. Our analysis is based on state and collaboration diagrams.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

4

UML modelling

• A UML model is represented by a collection of diagrams describing parts of the
system from different points of view; there are seven main diagram types. For
example, there will typically be a static structure diagram (or class diagram)
describing the classes and interfaces in the system and their static relationships
(inheritance, dependency, etc.).

• State diagrams, a variant on Harel state charts, can be used to record the
dynamic behaviour of particular classes. Interaction diagrams, such as sequence
diagrams, are used to illustrate the way objects of different classes interact in
a particular scenario.

• As usual we expect that the UML modeller will make a number of diagrams of
different kinds. Our analysis is based on state and collaboration diagrams.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

5

Introducing performance information

• We have introduced performance information in the state diagrams such that
each transition in these diagrams is labelled with a pair ‘a / r ’ where a is the
action type executed and r is an exponentially distributed rate associated with
this action.

– A customer arrival causes a change in the state of a queue so this would be
one example of an action. Concretely, arrive / λ and serve / µ would be
suitable arc adornments for a state diagram for a queue.

• State machines are sequential components. The collaboration diagram specifies
the concurrent composition of instances of these state machines. Collaborating
state machines synchronise on all of their common action types. Analysing
such a UML model begins by mapping it to a model in the PEPA stochastic
process algebra.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

5

Introducing performance information

• We have introduced performance information in the state diagrams such that
each transition in these diagrams is labelled with a pair ‘a / r ’ where a is the
action type executed and r is an exponentially distributed rate associated with
this action.

– A customer arrival causes a change in the state of a queue so this would be
one example of an action. Concretely, arrive / λ and serve / µ would be
suitable arc adornments for a state diagram for a queue.

• State machines are sequential components. The collaboration diagram specifies
the concurrent composition of instances of these state machines. Collaborating
state machines synchronise on all of their common action types. Analysing
such a UML model begins by mapping it to a model in the PEPA stochastic
process algebra.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

5

Introducing performance information

• We have introduced performance information in the state diagrams such that
each transition in these diagrams is labelled with a pair ‘a / r ’ where a is the
action type executed and r is an exponentially distributed rate associated with
this action.

– A customer arrival causes a change in the state of a queue so this would be
one example of an action. Concretely, arrive / λ and serve / µ would be
suitable arc adornments for a state diagram for a queue.

• State machines are sequential components. The collaboration diagram specifies
the concurrent composition of instances of these state machines. Collaborating
state machines synchronise on all of their common action types. Analysing
such a UML model begins by mapping it to a model in the PEPA stochastic
process algebra.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

6

Analysing PEPA models

• PEPA is a process algebra with timed activities, choice, parallel composition
and hiding. The analysis of a PEPA model derives a Continuous-Time Markov
Chain (CTMC). Many analysis tools are available for PEPA.

• The PEPA Workbench — steady-state and transient analysis
� MTBF and MTTF computation

• Möbius — steady-state, transient analysis and simulation
� Instant-of-time and interval-of-time measures

• PRISM — steady-state, transient analysis and model-checking
� custom performability verification

• IPC/DNAmaca — steady-state, transient analysis and passage-time densities
� service-level agreements

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

6

Analysing PEPA models

• PEPA is a process algebra with timed activities, choice, parallel composition
and hiding. The analysis of a PEPA model derives a Continuous-Time Markov
Chain (CTMC). Many analysis tools are available for PEPA.

• The PEPA Workbench — steady-state and transient analysis
� MTBF and MTTF computation

• Möbius — steady-state, transient analysis and simulation
� Instant-of-time and interval-of-time measures

• PRISM — steady-state, transient analysis and model-checking
� custom performability verification

• IPC/DNAmaca — steady-state, transient analysis and passage-time densities
� service-level agreements

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

6

Analysing PEPA models

• PEPA is a process algebra with timed activities, choice, parallel composition
and hiding. The analysis of a PEPA model derives a Continuous-Time Markov
Chain (CTMC). Many analysis tools are available for PEPA.

• The PEPA Workbench — steady-state and transient analysis
� MTBF and MTTF computation

• Möbius — steady-state, transient analysis and simulation
� Instant-of-time and interval-of-time measures

• PRISM — steady-state, transient analysis and model-checking
� custom performability verification

• IPC/DNAmaca — steady-state, transient analysis and passage-time densities
� service-level agreements

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

6

Analysing PEPA models

• PEPA is a process algebra with timed activities, choice, parallel composition
and hiding. The analysis of a PEPA model derives a Continuous-Time Markov
Chain (CTMC). Many analysis tools are available for PEPA.

• The PEPA Workbench — steady-state and transient analysis
� MTBF and MTTF computation

• Möbius — steady-state, transient analysis and simulation
� Instant-of-time and interval-of-time measures

• PRISM — steady-state, transient analysis and model-checking
� custom performability verification

• IPC/DNAmaca — steady-state, transient analysis and passage-time densities
� service-level agreements

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

6

Analysing PEPA models

• PEPA is a process algebra with timed activities, choice, parallel composition
and hiding. The analysis of a PEPA model derives a Continuous-Time Markov
Chain (CTMC). Many analysis tools are available for PEPA.

• The PEPA Workbench — steady-state and transient analysis
� MTBF and MTTF computation

• Möbius — steady-state, transient analysis and simulation
� Instant-of-time and interval-of-time measures

• PRISM — steady-state, transient analysis and model-checking
� custom performability verification

• IPC/DNAmaca — steady-state, transient analysis and passage-time densities
� service-level agreements

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

6

Analysing PEPA models

• PEPA is a process algebra with timed activities, choice, parallel composition
and hiding. The analysis of a PEPA model derives a Continuous-Time Markov
Chain (CTMC). Many analysis tools are available for PEPA.

• The PEPA Workbench — steady-state and transient analysis
� MTBF and MTTF computation

• Möbius — steady-state, transient analysis and simulation
� Instant-of-time and interval-of-time measures

• PRISM — steady-state, transient analysis and model-checking
� custom performability verification

• IPC/DNAmaca — steady-state, transient analysis and passage-time densities
� service-level agreements

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

7

Software architecture

PRISMPWB

Argo/UML

UML

.xmi .pepa

.pres.xml

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

7

Software architecture

PRISMPWB

Argo/UML

UML

.xmi .pepa

.pres.xml

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

7

Software architecture

PRISMPWB

Argo/UML

UML

.xmi .pepa

.pres.xml

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

7

Software architecture

PRISMPWB

Argo/UML

UML

.xmi .pepa

.pres.xml

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

7

Software architecture

PRISMPWB

Argo/UML

UML

.xmi .pepa

.pres.xml

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

7

Software architecture

PRISMPWB

Argo/UML

UML

.xmi .pepa

.pres.xml

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

7

Software architecture

PRISMPWB

Argo/UML

UML

.xmi .pepa

.pres.xml

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

8

Specifying system metrics

• A timed UML model describes the behaviour of the system under study.
Metrics over the system can be specified using additional system components
or logical formulae.

• A long-run performance measure can be specified by using stochastic probes
to capture the property of interest. The probe can be described as simply
another UML state machine diagram or using a special-purpose description
language due to Bradley and Argent-Katwala.

• More complex metrics use Continuous Stochastic Logic (CSL).

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ | P./p[ψ] | S./p[φ]

ψ ::= Xφ | φ U φ | φ UI φ

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

8

Specifying system metrics

• A timed UML model describes the behaviour of the system under study.
Metrics over the system can be specified using additional system components
or logical formulae.

• A long-run performance measure can be specified by using stochastic probes
to capture the property of interest. The probe can be described as simply
another UML state machine diagram or using a special-purpose description
language due to Bradley and Argent-Katwala.

• More complex metrics use Continuous Stochastic Logic (CSL).

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ | P./p[ψ] | S./p[φ]

ψ ::= Xφ | φ U φ | φ UI φ

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

8

Specifying system metrics

• A timed UML model describes the behaviour of the system under study.
Metrics over the system can be specified using additional system components
or logical formulae.

• A long-run performance measure can be specified by using stochastic probes
to capture the property of interest. The probe can be described as simply
another UML state machine diagram or using a special-purpose description
language due to Bradley and Argent-Katwala.

• More complex metrics use Continuous Stochastic Logic (CSL).

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ | P./p[ψ] | S./p[φ]

ψ ::= Xφ | φ U φ | φ UI φ

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

8

Specifying system metrics

• A timed UML model describes the behaviour of the system under study.
Metrics over the system can be specified using additional system components
or logical formulae.

• A long-run performance measure can be specified by using stochastic probes
to capture the property of interest. The probe can be described as simply
another UML state machine diagram or using a special-purpose description
language due to Bradley and Argent-Katwala.

• More complex metrics use Continuous Stochastic Logic (CSL).

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ | P./p[ψ] | S./p[φ]

ψ ::= Xφ | φ U φ | φ UI φ

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

8

Specifying system metrics

• A timed UML model describes the behaviour of the system under study.
Metrics over the system can be specified using additional system components
or logical formulae.

• A long-run performance measure can be specified by using stochastic probes
to capture the property of interest. The probe can be described as simply
another UML state machine diagram or using a special-purpose description
language due to Bradley and Argent-Katwala.

• More complex metrics use Continuous Stochastic Logic (CSL).

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ | P./p[ψ] | S./p[φ]

ψ ::= Xφ | φ U φ | φ UI φ

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

8

Specifying system metrics

• A timed UML model describes the behaviour of the system under study.
Metrics over the system can be specified using additional system components
or logical formulae.

• A long-run performance measure can be specified by using stochastic probes
to capture the property of interest. The probe can be described as simply
another UML state machine diagram or using a special-purpose description
language due to Bradley and Argent-Katwala.

• More complex metrics use Continuous Stochastic Logic (CSL).

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ | P./p[ψ] | S./p[φ]

ψ ::= Xφ | φ U φ | φ UI φ

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

9

Example: hierarchical cellular network

• We conducted a case study with the tool to investigate its use in practical
modelling.

• We modelled a hierarchical cellular phone network consisting of two tiers of
cells, a level of macrocells overlying a level of microcells.

• In this study, we considered the Manhattan model where the reuse pattern
is based on a five squared microcell cluster, a central cell surrounded by four
peripheral cells.

• We considered a Fixed Channel Allocation scheme where a fixed number of
channels are distributed among the different cells.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

10

State diagrams

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

11

Results reflected in Argo/UML

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

11

Results reflected in Argo/UML

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

12

Related work

• Petriu and Shen automatically extract a layered queueing network model from
an input UML model with performance annotations in the format specified by
the OMG Profile for Schedulability, Performance, and Time.

• López-Grao, Merseguer and Campos map UML diagrams into Generalised
stochastic Petri nets which can be solved by GreatSPN.

• Lindemann, Thümmler, Klemm, Lohmann, and Waldhorst map state and
activity diagrams into generalised semi-Markov processes which can be solved
by DSPNexpress-NG .

• One feature of our work which is distinctive from the above is the role of a
reflector in the system to present the results of the performance evaluation
back to the UML modeller in the terms of their input model.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

12

Related work

• Petriu and Shen automatically extract a layered queueing network model from
an input UML model with performance annotations in the format specified by
the OMG Profile for Schedulability, Performance, and Time.

• López-Grao, Merseguer and Campos map UML diagrams into Generalised
stochastic Petri nets which can be solved by GreatSPN.

• Lindemann, Thümmler, Klemm, Lohmann, and Waldhorst map state and
activity diagrams into generalised semi-Markov processes which can be solved
by DSPNexpress-NG .

• One feature of our work which is distinctive from the above is the role of a
reflector in the system to present the results of the performance evaluation
back to the UML modeller in the terms of their input model.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

12

Related work

• Petriu and Shen automatically extract a layered queueing network model from
an input UML model with performance annotations in the format specified by
the OMG Profile for Schedulability, Performance, and Time.

• López-Grao, Merseguer and Campos map UML diagrams into Generalised
stochastic Petri nets which can be solved by GreatSPN.

• Lindemann, Thümmler, Klemm, Lohmann, and Waldhorst map state and
activity diagrams into generalised semi-Markov processes which can be solved
by DSPNexpress-NG .

• One feature of our work which is distinctive from the above is the role of a
reflector in the system to present the results of the performance evaluation
back to the UML modeller in the terms of their input model.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

12

Related work

• Petriu and Shen automatically extract a layered queueing network model from
an input UML model with performance annotations in the format specified by
the OMG Profile for Schedulability, Performance, and Time.

• López-Grao, Merseguer and Campos map UML diagrams into Generalised
stochastic Petri nets which can be solved by GreatSPN.

• Lindemann, Thümmler, Klemm, Lohmann, and Waldhorst map state and
activity diagrams into generalised semi-Markov processes which can be solved
by DSPNexpress-NG .

• One feature of our work which is distinctive from the above is the role of a
reflector in the system to present the results of the performance evaluation
back to the UML modeller in the terms of their input model.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

13

Conclusions

• This approach to modelling allows the modeller to access a powerful and
efficient solution technology without having to master the details of unfamiliar
modelling languages such as process algebras and reactive modules. Our
experience of using the PEPA and PRISM tools has been uniformly good.

• One of the decisions which we have had to take in this work was the choice
of UML diagrams and metaphors to employ. In part our choice in this was
restricted by the degree of support offered by our UML tool (ArgoUML).

• We hope that we have gone some way to providing automated support for
computing simple performability measures and to circumventing an unnecessary
notational hurdle if this was acting as an impediment to the understanding
and uptake of modern performability analysis technology.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

13

Conclusions

• This approach to modelling allows the modeller to access a powerful and
efficient solution technology without having to master the details of unfamiliar
modelling languages such as process algebras and reactive modules. Our
experience of using the PEPA and PRISM tools has been uniformly good.

• One of the decisions which we have had to take in this work was the choice
of UML diagrams and metaphors to employ. In part our choice in this was
restricted by the degree of support offered by our UML tool (ArgoUML).

• We hope that we have gone some way to providing automated support for
computing simple performability measures and to circumventing an unnecessary
notational hurdle if this was acting as an impediment to the understanding
and uptake of modern performability analysis technology.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

13

Conclusions

• This approach to modelling allows the modeller to access a powerful and
efficient solution technology without having to master the details of unfamiliar
modelling languages such as process algebras and reactive modules. Our
experience of using the PEPA and PRISM tools has been uniformly good.

• One of the decisions which we have had to take in this work was the choice
of UML diagrams and metaphors to employ. In part our choice in this was
restricted by the degree of support offered by our UML tool (ArgoUML).

• We hope that we have gone some way to providing automated support for
computing simple performability measures and to circumventing an unnecessary
notational hurdle if this was acting as an impediment to the understanding
and uptake of modern performability analysis technology.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

14

Acknowledgements
This work has been supported by the DEGAS (Design Environments for Global
ApplicationS) project IST-2001-32072 funded by the FET Proactive Initiative on
Global Computing.

The authors thank Gethin Norman and David Parker of the University of
Birmingham for the implementation of the PEPA process algebra combinators in
the PRISM model checker.

Stephen Gilmore DEGAS project, LFCS, Edinburgh SAFECOMP, Sept 2003

