
Chapter 1
Formal methods for checking the consistency of
biological models

Allan Clark, Vashti Galpin, Stephen Gilmore, Maria Luisa Guerriero and
Jane Hillston

Abstract Formal modelling approaches such as process algebras and Petri nets seek
to provide insight into biological processes by using both symbolic and numerical
methods to reveal the dynamics of the process under study. These formal approaches
differ from classical methods of investigating the dynamics of the process through
numerical integration of ODEs because they additionally provide alternative rep-
resentations which are amenable to discrete-state analysis and logical reasoning.
Backed by these additional analysis methods, formal modelling approaches have
been able to identify errors in published and widely-cited biological models. This
paper provides an introduction to these analysis methods, and explains the benefits
which they can bring to ensuring the consistency of biological models.

1.1 Introduction

Modelling complex systems on a computer allows us to investigate the rich dynam-
ics of phenomena which are difficult or impossible to study at first hand. Making and
analysing models may open the door to understanding but the insights and under-
standing gained depend crucially on the accuracy of the model and the legitimacy
of its assumptions. Accurate modelling of complex systems often leads to diffi-
cult computational problems where inherent complexities of the problem such as
multi-scale populations and widely-separated reaction rates present genuine techni-
cal challenges for robust numerical software. When grappling with these challenges
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it is important not to lose sight of the fact that the quality of the insights obtained
from the modelling depend critically on the quality of the model and that – in addi-
tion to carrying the burden of computing robust numerical results – modellers must
also shoulder the burden of creating accurate biological models.

Adding to the difficulty of the problem, it is very easy to introduce simple errors
which may have subtle effects which are extremely difficult to detect. For exam-
ple, writing down the wrong variable in a differential equation may give rise to a
model whose results look plausible (for example, there are no negative concentra-
tions or other non-physical results) but which are essentially meaningless. From the
perspective of a traditional differential equation integrator we have an entirely valid
system of equations and a well-posed initial value problem; it is simply that it does
not capture the phenomenon under study.

Domain-specific modelling languages such as process algebras and Petri nets
specifically tailored for biology are helpful here because they define and enforce
rules about the internal consistency of models which can allow simple modelling
errors to be detected automatically. In this way, these languages can prevent the
computational analysis of non-well-formed models and thereby – in some cases –
stop erroneous conclusions being derived from erroneous models.

Evidence for the effectiveness of these methods can be seen when formal mod-
elling is applied retrospectively to published models and at that point a previously-
unknown error is discovered. It is possible for these errors to be either in the model
itself, or in the computational analysis which was carried out in order to reveal the
dynamics of the underlying biological process. An example of an error of the for-
mer kind in a model of the TNFα-mediated NFκ-B signal transduction pathway was
uncovered using the techniques in [1]. An example of an error of the latter kind was
uncovered as reported in [2] where Gillespie simulation is used in co-operation with
continuous deterministic simulation to reveal a discrepancy which is traced to an
incorrect use of a numerical integrator.

Two of the most important motivations for modelling a biological system are:
(i) to identify gaps in the existing knowledge of the system, and (ii) to generate
new insights and understanding without the need to perform laboratory experiments.
In the former case we would work through validation where we try to discover
whether the behaviour of the model agrees with current biological knowledge. In
the latter case we investigate specific hypotheses via computational analysis instead
of laboratory work.

Although these aspects are closely interconnected, there are existing computa-
tional and mathematical techniques which provide features particularly suitable to
tackle one or the other. The process of identifying inconsistencies within models
is an important phase which should always be performed before any conclusion is
drawn from the results of the analysis of the model. Here, we focus on the use of
analysis techniques which have their roots in formal language theory and program
analysis. These range from static analysis and control flow analysis through to in-
variant generation, graph analysis and bisimulation. These methods enable us to
identify flaws in models: both errors due to unknowns or incorrect hypotheses in the
biological knowledge which are then unwittingly encoded in the model, leading to a
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flawed model; and errors which are introduced during model construction such that
the model does not faithfully represent current biological understanding.

Several formal methods have been developed (or adapted) in order to model and
analyse biological systems, including Petri nets [3]; rewriting systems such as mem-
brane systems [4] and Kappa [5]; and process algebras such as the biochemical
stochastic π-calculus [6], Bio-PEPA [7] and the Continuous π-calculus [8]. Most of
these languages are equipped with a discrete stochastic semantics, and some also
allow for a continuous deterministic interpretation. The analysis techniques which
are available differ for the various formalisms. For some of these languages it is
possible to employ verification techniques such as model-checking.

These kinds of computational models can either be analysed statically via tech-
niques which work at the level of the model structure, or can be dynamically exe-
cuted via stochastic simulation [9] to produce time-course trajectories of amounts of
the participating species. For languages which have a deterministic interpretation,
numerical solution of the associated set of ordinary differential equations (ODEs)
can be also performed, together with the various mathematical methods available
for the analysis of ODE systems such as bistability, bifurcation, and continuation
analysis. Existing modelling platforms such as the Bio-PEPA Eclipse Plug-in [10]
allow modellers to perform model experimentation including parameter sensitivity
analysis, components knock-down, and dose-response experiments.

1.2 Static Analysis

Viewed as a formal text, a biological model contains definitions of constituents of
the model such as reaction rate constants, kinetic laws, initial concentrations, and
chemical species; and it contains uses of these definitions. One simple check of
self-consistency in the model is to determine that all definitions are used, and that
everything which is used has been defined. This type of checking falls within the
domain of static analysis because it can be performed without executing the model
(via simulation or otherwise). The benefits of static analysis are enormous: a vast
range of simple modelling errors can be easily and automatically caught at low
computational cost.

Automatic static analysis seems such a simple and sensible check that it may
be surprising to learn that not all programming languages enforce a static analy-
sis check. For example, the Python programming language [11] does not and so a
biological model implemented in Python has had less thorough automatic check-
ing than a model implemented in Bio-PEPA or Snoopy [12] where a static analysis
check is automatically enforced for every version of every model. Similar remarks
apply to biological models coded directly in MATLAB [13]. Both Python and MAT-
LAB have separate, optional static analysis tools (PyLint and M-Lint) which may
be used by modellers, but are not required.

Static analysis based on the structure of a model is the first step which allows us
to identify a number of errors, ranging from syntax errors such as trivial typos in
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variable names to more subtle omissions of species behaviour. Static analysis can
also be used in order to verify the presence or absence of deadlocks in the model
behaviour and to clarify the causal and temporal relations between events.

Most static analysis checks relate to the internal consistency of a model. They
generally do not require quantitative information such as kinetic rates and molec-
ular concentrations. The use of high-level modelling languages helps modellers to
reduce potential sources of errors by allowing them to define mnemonic names for
system components, reaction kinetic laws and parameters. In addition to reducing
the chance of introducing trivial modelling errors, the use of named definitions in-
stead of numerical vectors for variables and parameters makes it possible to auto-
matically perform a number of internal self-consistency checks as we will see.

In order to be considered valid, a formal model does not have to be only syn-
tactically correct, but it must also satisfy a set of predefined plausible and common
constraints. Formal languages are often domain-specific, thus allowing the notion
of plausible and common constraints to be tailored to the specific domain. For ex-
ample, as discussed below, static analysis checks on dependencies of kinetic laws
on reactants in Bio-PEPA models will warn that simulations may produce negative
results. A general purpose programming language or numerical computing environ-
ment will never warn about this because negative results might be legitimate for
some modelling problems in other domains.

Throughout the remainder we illustrate some of the concepts with features of the
Bio-PEPA language, as an example of a text-based formalism, and Petri nets, as an
example of a graphical formalism.

1.2.1 The reagent and reaction-centric views of a model

A biochemical model can be viewed in one of two orthogonal ways which we call
the reagent-centric and the reaction-centric views. In the former, for each reagent we
list the set of reactions in which the reagent is involved. Conversely, the reaction-
centric view displays, for each reaction, the set of reagents which are involved in
that reaction and the associated effect that the reaction has on the population of that
reagent. The BIOCHAM language [14] uses the reaction-centric view. In Bio-PEPA
models are constructed in the reagent-centric view and the reaction-centric view
is generated automatically by the software, in addition to some annotations on the
reagent-centric view to be discussed below.

Providing both views of a model is important because they have complemen-
tary sets of advantages. The reagent-centric view is appropriate when scrutinising
the behaviour of a particular component. Biologists are often trained to read reac-
tion definitions and this view can assist the detection of errors such as misplaced
reactants or products.

This is a strength of high-level modelling languages such as process algebras and
Petri nets: they give us more than one view of a model. In contrast, a programming
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language model such as a system of differential equations implemented in C or
Python gives only a single view.

1.2.2 Missing and unused definitions

For a textual modelling language, such as Bio-PEPA, a straightforward static anal-
ysis check scrutinises all definitions of names and considers if any are not subse-
quently used. There is also a converse check to ensure that any names used have
indeed been defined. These checks are fast to perform and catch simple errors made
by modellers, commonly misspelt names as well as missing definitions. Whenever
a definition is missing, this is considered as an error from which the software can-
not recover and evaluation of the model is disallowed. When a definition remains
unused, the software can still evaluate the model, but presents the user with a clear
warning that something is possibly wrong. For example, in the Bio-PEPA tools these
checks are applied to definitions of rate constants, kinetic laws and biochemical
species.

Whenever a rate function or initial concentration uses a constant which lacks a
definition this is likely to be an error on the part of the modeller, either they have
forgotten to provide such a definition or the constant name has been misspelt at
the point of use. Similarly, if a chemical species is given an initial concentration or
molecule count but is not involved in any reaction as reactant, modifier or product
then the model is incomplete – perhaps a component definition has been forgotten.
Alternatively a name which is misspelled at the point of use will be detected as a
missing definition and an unused definition.

An unused constant definition is likely to be caused by an error in either a rate
function or an initial concentration or molecule count. An unused rate function is
possibly missing behaviour in a species definition or perhaps the species definition is
missing entirely. Finally, an unused species definition may signal that the modeller
has forgotten to set the initial concentration or molecule count for one of the species
in the model.

In the context of Petri nets, a graphical notation, a similar problem may arise
if the model is not strongly connected, i.e. if there is not a directed path between
every pair of nodes in the Petri net. A disconnected Petri net implies that there are
two or more independent submodels. If static analysis reports that a model is not
connected, this could be the desired model (in which case the distinct submodels
can be analysed independently) but it could be due to reactions or species omitted
in error.
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1.2.3 Kinetic dependency analysis

Although missing and unused definitions can catch some simple errors made by the
user, some similar errors may escape such analysis. There are two basic analyses
which the Bio-PEPA Eclipse Plug-in performs over rate functions to catch further
errors. The two analyses performed check that any species P, whose population
affects a given rate function r, has a corresponding behaviour for r as a reactant,
activator, inhibitor or general modifier in the definition of P. When this is not the
case, the software brings this to the attention of the modeller since it is likely that
the modeller has forgotten to add the reaction-behaviour to the species definition.
Since we cannot know the role in which it should be added (reactant, activator, etc.)
the modeller must be notified. The second analysis can be seen as the converse of
this, it checks that for every reaction r for which a given species P is defined to be
a reactant, activator or inhibitor then the corresponding rate function for r includes
a reference to the population of P. Again, if this is not the case then it is likely that
the model erroneously includes reaction r behaviour in the definition of P or has an
incorrect definition for the rate function for r. These types of errors may lead to the
amount of a species P undergoing inappropriate or insufficient updates as the model
is exercised.

Kinetic dependency analysis does not guarantee that species are being used effec-
tively in a kinetic law. For example, it is possible to construct pathological functions
such as (k × E) + (P − P) which formally depends on the value of P because the
symbol P occurs in the expression, but which uses P in such a way that its current
value has no impact on the result of the function—which will always be equal to
k×E. It is not possible to detect all such false dependencies statically and so kinetic
dependency analysis helps to detect when species have accidentally been omitted
from function expressions but it can never provide a guarantee that their values have
been used effectively.

1.2.4 Boundary nodes, sources, sinks and input/output paths

Simple analysis of the model can determine its boundaries and its interactions with
its environment. For example, a Petri net without boundary nodes is a self-contained
closed system.

We can consider the interface to a model in terms of both reactions (transitions in
a Petri net model) and species (places in a Petri net). In general an input to the model
is termed a source while an output is termed a sink. A source reaction is a reaction
which has no reactants and at least one product (e.g. synthesis reaction). A sink
reaction is one which has no products and at least one reactant (e.g. degradations).
The reaction r1

def
= P + S −→ is an example of a sink reaction as mass is consumed

without any being produced.
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Similarly, a species is considered a source if it is involved in at least one reaction
as a consumed reactant and no reactions as a product. Conversely, a species sink is
a species which is involved in at least one reaction as a product and no reactions as
a consumed reactant. In Bio-PEPA the species S with definition: S

def
= r1↓S + r2↓S

is a source species as it can be consumed by the reactions r1 and r2 but it is never
produced.

The presence of boundary nodes is not in itself an error because these kinds
of species and reactions are perfectly valid in general open systems, but they can
also be the cause of unintended behaviour. For instance, a Petri net with source
species cannot be live and might lead to undesired deadlocks once the source node’s
initial amount is consumed. Similarly, a Petri net with source transitions cannot be
bounded because its products could grow unboundedly.

The dual views offered by the Bio-PEPA software allow appropriate source/sink
annotations to be added to reaction and species definitions. These annotations can
provide useful error detection information to the modeller. Reaction source and
sinks in particular denote that mass is not conserved by the model, although this
may be intentional. Additionally the user can be warned if a source species has an
initial population of zero, since in this case it will never have non-zero population
and the reactions associated with it will never occur (assuming that the rate of the
reactions do depend in a meaningful way on the population of the source species).

When boundary nodes are not caused by errors, but instead represent inputs or
outputs with the environment, they can provide additional insight into the behaviour
of the model: their identification, supplemented with the minimal sequences of reac-
tions that link a given source/sink combination, illustrates the flow of mass through
the model as an input/output behaviour. The input/output behaviour informs mod-
ellers about which sources influence which sink, and what is the effect on the overall
model of the sequence of reactions leading from source to sink. For instance, con-
sider a signalling pathway that describes the signalling cascade which, starting from
a constant influx of a ligand, leads to the production of one target protein. This
will have a source action and one sink species. When dealing with complex inter-
connected pathways, the input/output behaviour can help in understanding causal
dependencies and in abstracting from the behaviour of part of the system.

1.3 Structural analysis

For graphical formalisms, such as Petri nets, a complementary method of investigat-
ing internal consistency is to view the model as a graph and consider it in terms of
graph-theoretic concepts such as connectedness, reachability, paths, and cycles. An
extensive body of work on structural analysis of models comes from Petri net-based
techniques so we will discuss this type of analysis in Petri net terms.

Petri nets are graphical models of concurrent systems which contain places and
transitions. Places contain tokens and firing a transition moves tokens from one
place to another place. In the context of biological modelling, a Petri net is an au-
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tomaton whose places represent molecular species and whose transitions represent
reactions transforming reactants into products. Places can only ever be connected to
transitions, and transitions to places—thus every Petri net defines a bipartite graph.
Arcs are weighted, and their weights specify the stoichiometric coefficients of re-
actants. Places contain an arbitrary number of tokens which represent the current
molecule count of each biochemical species. The current state of the system, termed
the marking of the Petri net, is given by the number of tokens on each place.

The behaviour of a Petri net is defined by a firing rule, which specifies when
transitions are enabled (if there are enough tokens for the involved reactants) and
what is their effect (the changes in the number of tokens for the involved species).

Petri nets build on well-established mathematical foundations, which, in addition
to the static and structural analysis techniques discussed here, support transient and
steady-state analysis of the dynamic behaviour. Reachability analysis can be used
to identify parts of the model which are not connected; boundedness analysis can
be used to ensure uncontrolled growth of molecules is not possible; and invariant
analysis can identify violations of the law of conservation of mass. See [15] for
more details and examples.

1.3.1 Structural concepts in Petri nets

A number of structural properties have been defined for Petri nets. All of these can
be checked statically, because they are based solely on the structure of the Petri
net without consideration of the initial marking. Here we give only an informal
overview; for more details and their formal definitions see for instance [16]. These
common properties are often valid for biological models. If they are not satisfied, it
can be an indication of an error in the model specification (though not necessarily).
Some concepts, such as pure Petri nets and ordinary Petri nets, simply allow models
to be categorised — this can provide a validity check to the modeller. For example,
an ordinary Petri net is one in which all arcs are equal to 1 (which implies all sto-
ichiometric coefficients are 1). Thus if the model is identified as being an ordinary
Petri net but the model should include a homodimerization it is an indication that
something is wrong. A pure Petri net is one in which there is no pair of nodes which
are connected in both directions. This excludes models in which the same species is
both a reactant and a product of a reaction.

Other concepts are related to the possible behaviours of the model when it is
executed, i.e. when the Petri net is given a marking. For example a Petri net is con-
sidered to be bounded if the maximum number of tokens which can be on any place
in the net is bounded by a constant. In biological terms this means that the amount
of a species cannot grow without limit. A net is said to be structurally bounded if
it is bounded for any initial marking. In some circumstances this property can be
determined without executing the model and exploring its state space. A Petri net
is conservative if for each transition the sum of the weights of the incoming arcs is
equal to the sum of weights of the outgoing arcs (i.e. the model does not contain any
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reaction which does not preserve the total number of molecules, such as complex
formation reactions). Conservative Petri nets are always structurally bounded.

Another way of characterising nets is in terms of the conflict and causality struc-
tures in operation within the model. For example a Petri net is termed static conflict
free if there are no two transitions which share an input place. In terms of a biolog-
ical model this means that there is no competition between reactions for reactants.
Again, identifying such properties can be a source of validation – or otherwise – for
the model.

1.3.2 Invariants

For biochemical models it is commonly the case that the modeller wishes to respect
conservation of mass, so that the total quantity of matter at any time throughout the
simulation is the same as the total quantity at the start. This can be characterised
as an invariant of the model, a weighted sum of species quantities which remains
constant.

Where the model contains source and/or sink reactions, mass will, of course,
not be conserved. Such reactions are generally an abstraction, the products of a
source reaction do not suddenly materialise from nothing and nor do the reactants
of a sink reaction disintegrate into nothing. However the real reactants (of source
reactions) or products (of sink reactions) are outside the scope of the model. A
sink reaction could also represent a transportation to a place outside the scope of
a model. For example, an intracellular model may represent a movement to the
extracellular environment by the use of a sink reaction. Similarly, a movement from
the extracellular environment into the cell may be represented by a source reaction.

However, even for models in which the entire mass of the system is not con-
served, we expect there to be local conservation. When mass is conserved within a
set of components we call this an invariant, since the sum of the values of all the
members of the invariant – weighted by some suitable coefficients – will remain con-
stant throughout the simulation of the model. Invariant analysis is a well-established
technique of structural analysis of Petri nets, and can also be applied to textual no-
tations such as Bio-PEPA.

The stoichiometric information about the reaction network, captured as the inci-
dence matrix for a Petri net, defines a system of linear inequalities. Fourier-Motzkin
elimination can find both real and integer solutions to such a system of linear in-
equalities. These solutions are the weights which are used in the invariants which
hold over the species of the system. These are termed P-invariants in the context
of Petri nets. We can compute a minimal generating set of invariants with a version
of the Fourier-Motzkin method which produces only integer solutions [17]. The al-
gorithm works on a matrix representation of the stoichiometric information for the
model. This has as columns the reactions of the model and as rows the species.
Each element reflects the change in population of the given species when the given
reaction is fired.
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When the matrix is transposed, such that the rows become the reactions and the
columns are the species, performing the same Fourier-Motzkin method over the
transposed matrix we compute a new set of invariants. This new set of invariants is
called the reaction invariants, or reaction loops (termed T-invariants in Petri nets).
A reaction invariant consists of a set of reaction names with an integer coefficient
associated with each reaction name. Such an invariant states that if this exact set of
reactions is fired, the number of times indicated by each associated coefficient – in
any order – then the model will be returned to the same state it was in at the start of
the reaction invariant sequence.

The Bio-PEPA software computes both state and reaction invariants. Addition-
ally the user can temporarily eliminate any of the reactions. This means that the
chosen reactions are ignored for the purposes of the invariant analysis. In particu-
lar then the modeller may ignore all sink and source reactions in the model. If this
is done then the entire set of species in the model should be covered by a list of
invariants (which may be summed to create a single invariant which covers all of
the species in the model). Where this is not the case, this indicates that somewhere
in the model, mass is not conserved by a sequence of (non-source/sink) reactions.
This probably indicates an error and the modeller should inspect their model care-
fully and either be able to repair it or explain why the conservation of mass is not
observed.

a : A → B + C
b : B → D
c : C → D
d : D → A

prod : → A
degr : D →

A
def
= a↓A + d↑A + prod↑A

B
def
= b↓B + a↑B

C
def
= c↓C + a↑C

D
def
= d↓D + b↑D + c↑D + degr↓D

Fig. 1.1 An incorrect model which is not covered by invariants even if the source reaction ‘prod’
and the sink reaction ‘degr’ are ignored.

Consider the model in Figure 1.1. This model will not be covered by any state
invariants, however it does contain two reaction loops: a + b + c + d + degr and
a + b + c + (2 × degr) + prod. The first of these is suspicious because it includes a
sink reaction without a corresponding source reaction. Hence we employ our tactic
of ignoring source and sink reactions and computing the set of invariants that this
implies. This shows us that there are no invariants and this is highly indicative of an
error in modelling.

In this particular case the correction could be that the reaction a should be mod-
ified to consume two molecules of A as in: A + A → B + C or the reaction d could
be modified to consume two molecules of D as in: D + D→ A.

This is not an exhaustive list of possible corrections and in general there are
many possible ways to correct this problem. However, the static analysis of invariant
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coverage has highlighted the possibility of an error and this hopefully will help to
ensure that less time is spent analysing incorrect models.

1.4 Verification of behavioural properties

As valuable as static and structural analysis are, there are some properties of mod-
els which cannot be assessed in this way. These instead require the model to be
exercised to find all the possible configurations or states that it can reach. These cor-
respond to the possible (although some of them may be unlikely) behaviours of the
system. Such properties are termed behavioural properties, and generally are able
to tell us more about the dynamics of the system.

One point of interest may be the extent to which behaviour in the model persists,
or whether it reaches a state where no further reactions are possible (often termed
deadlock). In Petri nets this is known as liveness: A Petri net is live if, for every tran-
sition, it is possible from any state to reach a state where this transition is enabled.
A live Petri net is deadlock-free (i.e. the corresponding system does not have any
state where no reaction is possible).

Classical techniques for checking the behaviour of models over a bounded state-
space are considered in theoretical computer science under the heading of model
checking. These techniques use efficient algorithms and data structures to determine
whether logical formulae characterising desired (or undesired) behaviour are satis-
fied by a model. The presence of desired behaviour shows that the model is live,
and that sequences of reactions can lead the model to good states. The absence of
undesired behaviour shows that the model is safe, and that no sequence of reactions
can lead the model to bad states. Both liveness and safety are desirable qualities for
a model to possess.

Exact discrete-state model-checking where the complete state-space is gener-
ated can have applications in the modelling of biological processes (see [18]) but
very often the memory needed to store the reachable state-space of a biological
model exceeds the memory capacity of any computer system which we can access.
Approximate statistical model-checking [19, 20] can be used instead and can give
numerical results which are in very good agreement with those which are com-
puted using more expensive techniques [21]. In this method, exhaustive generation
of the reachable state-space is replaced by investigation of numerous trajectories
over the state-space generated by simulation. Exact numerical solution of the un-
derlying Markov chain is replaced by the execution of an ensemble of sufficiently
many Monte Carlo simulations to approximate the measure of interest, and the prob-
ability of satisfaction of the logical formulae of interest is reported together with a
confidence interval on the result.
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1.4.1 Trace-based validation and model-checking

Novel techniques for detecting errors in models are now working not on the models
themselves, but on their outputs generated through simulation. These complement
static and structural methods beautifully because they consider the simulation results
which are the output from a modelling study, not the model used as input. Such a
perspective can allow these techniques to detect errors in simulators, as well as
errors in models.

The Traviando trace analyser [22] is a discrete-event simulation trace analyser
which provides graphical techniques to inspect and manipulate simulation trace out-
put and to compute statistical results. These results include counts of reaction events
by category and can allow the modeller to discover that their simulation run has not
been long enough to allow some reactions to fire, or to discover that they only fire a
small number of times. Either of these might indicate an error in the model, caught
by trace analysis.

Another novel and promising technique integrates model-checking and trace
analysis and can be applied even in the continuous domain to the results of nu-
merical integrators. Fages [23], Donaldson [24] and others describe model checkers
which inspect simulation outputs and evaluate quantified logical formulae over a sin-
gle simulation trace (in contrast to the statistical model-checking approach, which
requires an ensemble of traces generated from Monte Carlo simulations conducted
in the discrete molecular regime).

When working in the continuous domain the output of a model is a determin-
istic simulation utilising continuous sure variables. This contrasts strongly with a
stochastic simulation – which uses discrete random variables – because a single
stochastic simulation run can be very far from the average-case behaviour of the
model, and thus conclusions drawn from a single stochastic simulation can rarely
give definitive insights into behaviour. In contrast, a time-course output from a con-
tinuous deterministic simulation returns sure trajectories for each of the chemical
species in the model and thus carries more information which can be investigated in
model-checking.

1.4.2 Equivalence relations

Once we are working at the level of the state space generated by a model as well
as verification of behavioural properties, we can also consider whether alternative
models of the same system are in some sense equivalent. At the static level this
may be carried out by identifying an isomorphism between the constructs of the
model — essentially showing that models are equivalent because they are made
up of equivalent components. However, at the underlying level of the state space,
often termed the labelled transition system, much richer and more flexible notions
of equivalence can be defined.
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A bisimulation (and a semantic equivalence, more generally) is a way to assess
whether two different labelled transition systems have the same behaviour. A bisim-
ulation is a symmetric relation between states of two labelled transition systems that
requires that any two states in the relation both have transitions with similar enough
behaviour, as captured by the labels of transitions, and the states that are a result of a
pair of transitions are again in the bisimulation relation [25]. This captures the idea
that the way the two models progress is the same for both models because states
have transitions that match, as do the states that are targets of those transitions.

In the context of process algebras such as Bio-PEPA a variety of different bisim-
ulations have been defined depending on what information about transitions is in-
cluded in the labels [26]. In the original definition of bisimulation [25], equality
between labels is required. However, it is possible to relax this requirement to allow
for different notions of behaviour, as exemplified by the work on g-bisimulation in
Bio-PEPA [27]. This applies a function g to the labels on transitions and two labels
are determined to be similar enough whenever the function g gives the same value
for both labels. This is a powerful mechanism as it allows identification of selected
reaction names, and selection of information about the reaction that the transition
represents. The function g is chosen by the modeller to express the information of
interest when considering behaviour of the two systems. For example, a weak form
of this equivalence relation, together with invariant analysis, is used to establish the
equivalence of two previous models of the MAPK signalling cascade activated by
EGF receptors [28, 29, 27].

1.5 Conclusions

As memorably expressed by Box and Draper [30], “all models are wrong, but some
are useful”. Models are built in order to help us to improve our understanding of
systems and processes: if we already had perfect understanding then these models
would not be needed. Our current imperfect understanding is necessarily encoded
in the model. On top of this, all models simplify and abstract from details which are
believed to be inessential in order that they can be tractable and usable for mathe-
matical analysis. The belief that these details were inessential could be misplaced,
and simply one part of our imperfect understanding. Because of this, and by their
nature, we can never expect models of biological processes to be “correct”.

However, we can – and should – expect our models to be consistent. If we in-
tended to make a closed model where mass is conserved then we have an invariant
which we expect to hold—computing the species invariants of our model allows us
to check that mass is conserved and eliminates one possible source of error in our
encoding. Similarly, if we have defined a reaction in our reaction network to involve
species E and S then the kinetic law for the rate of that reaction should depend on
E and S, and only on E and S. If not, then we have a likely source of error in the
model.
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Errors such as these may seem like simple carelessness but all of the evidence
which we have seen seems to suggest that errors in the construction of formal mod-
els are very similar in nature to the errors which occur when writing a computer
program. These are very rarely profound misunderstandings and are more likely
to be simple mistakes such as a forgotten parameter or a forgotten function [31].
Nevertheless, the impact of such errors should not be underestimated.

Domain-specific modelling languages specialised to biological modelling are
much more helpful in enabling simple errors to be caught automatically than are
general-purpose numerical computing platforms. By building static analysis tech-
niques into their modelling tools, domain-specific modelling languages can check
that models are consistent, for every model, and for every revision of that model.
State-of-the-art modelling platforms run inexpensive static analysis procedures ev-
ery time that a model is saved after an edit has been made. This ‘always-on’ super-
vision helps modellers to find flaws in their models early, before analysis results are
computed.

At best the methods which we have considered in this paper can help us to pro-
duce biological models which are internally consistent, with all parameters, kinetic
laws and species used in the way in which we intended. Internal consistency in our
models can never make them right, but lack of consistency will make them wrong.
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