
Stochastic Process Algebras:
From Individuals to Populations

Jane Hillston1, Mirco Tribastone2 and Stephen Gilmore1

1 School of Informatics, University of Edinburgh, Edinburgh, UK
2 Institut für Informatik, Ludwig-Maximilians-Universität, Munich, Germany

Email: jeh@inf.ed.ac.uk, tribastone@pst.ifi.lmu.de, stg@inf.ed.ac.uk

In this paper we report on progress in the use of stochastic process algebras
for representing systems which contain many replications of components such
as clients, servers and devices. Such systems have traditionally been difficult
to analyse even when using high-level models because of the need to represent
the vast range of their potential behaviour. Models of concurrent systems with
many components very quickly exceed the storage capacity of computing devices
even when efficient data structures are used to minimise the cost of representing
each state. Here, we show how population-based models which make use of a
continuous approximation of the discrete behaviour can be used to efficiently
analyse the temporal behaviour of very large systems via their collective dynamics.
This approach enables modellers to study problems which cannot be tackled with

traditional discrete-state techniques such as continuous-time Markov chains.

Keywords: Performance modelling, stochastic process algebra, PEPA, compositional
modelling, continuous approximation

Received 29th March 2011; revised 04th July 2011; accepted 20th August 2011

1. INTRODUCTION

Stochastic process algebras have been successfully used
to construct performance models of a wide variety of
systems for more than a decade [1, 2, 3, 4, 5, 6, 7, 8, 9,
10]. The strength of these modelling languages stems
from their ability to express a high-level compositional
description of a system from which an underlying
mathematical model can be rigorously derived. The
mathematical model can then be subjected to analysis
to reveal performance properties of the system, readily
presented to the modeller in terms of the original high-
level compositional description.

This modelling approach was first defined using an
underlying mathematical model which is a Continuous-
Time Markov Chain (CTMC), which was subjected
to numerical solution in order to derive performance
indices. The advantage of this was that the stochastic
process algebra was able to take advantage of a rich
corpus of results and algorithms relating to the solution
of CTMCs. The disadvantage was that the CTMC,
like all discrete state space representations, is prone
to problems of state space explosion. Thus while it is
well-understood how to solve arbitrary CTMCs from a
theoretical point of view, from a pragmatic perspective
there exists a size of state space beyond which solution
becomes infeasible [11].

In recent years we have been exploring ways to give
alternative mathematical interpretations to the high-

level system descriptions produced by one stochastic
process algebra, PEPA. This alternative interpretation
can be viewed as forming an approximation of the
CTMC generated by the usual interpretation or as
taking a more abstract interpretation of the original
PEPA model. These two views have been proven
to coincide. The type of models which are suitable
for this alternative treatment are those in which we
have large numbers of repeated components. Thus it
is particularly appropriate for studying the scalability
of software systems under increasing load. This is a
common concern, particularly within service-oriented
computing. In this context the behaviour of the system
as a whole can be regarded as an instance of collective
dynamics, i.e. the behaviour at the population level
results from interactions which take place between
individuals within the population.

The remainder of the paper is structured as follows.
In Section 2 we introduce stochastic process algebras
in more detail, focussing particularly on PEPA in
Subsection 2.1. The interpretation of a PEPA model
as an underlying mathematical model is considered
in Section 3, where we explain how different levels
of abstraction can lead to different mathematical
interpretations, and the relationships between these
alternative mathematical models. The approach is
illustrated by a large example, taken from the domain
of service-oriented computing, in Section 4. Section 5
presents model evaluation with a particular focus on use

The Computer Journal, Vol. 00, No. 01, 2011

2 J. Hillston, M. Tribastone and S. Gilmore

of the PEPA Eclipse Plug-in. Related work is presented
in Section 6. Finally, in Section 7 we discuss some areas
for further work.

2. STOCHASTIC PROCESS ALGEBRAS

Stochastic process algebras emerged in the early 1990s
as a compositional modelling formalism for constructing
models suitable for performance evaluation based on
CTMCs. Queueing networks had been extensively
used for performance modelling in the preceding
two decades but the structures and complexities
of distributed systems presented difficulties for this
modelling approach. Stochastic extensions of Petri
nets [12, 13] had been proposed to overcome the
problems of expressiveness and simultaneous resource
possession, but they are not equipped with a natural
compositionality to tackle complexity. Stochastic
process algebras are extensions of classical process
algebras such as CCS [14] and CSP [15], which are
based on a compositional structure and a focus on the
interaction or communication between components.

From the performance modelling perspective, clas-
sical process algebras lack quantitative information
about the timing and likelihood of actions. The orig-
inal stochastic process algebras (TIPP, EMPA, PEPA
[16, 17, 18]) tackled this by associating an exponen-
tially distributed random variable, representing dura-
tion, with each action. Later stochastic process algebras
such as IMC and MoDeST [19, 20] separated immedi-
ate actions from exponentially distributed delays. In
both cases it is straightforward to derive an underlying
CTMC from the stochastic process algebra description.

2.1. PEPA

PEPA is a CSP-like process calculus extended with the
notion of exponentially distributed activities [18]. A
PEPA model consists of a collection of components
(also termed processes) which undertake actions. A
component may perform an action autonomously
(independent actions) or in synchronisation with other
components in the system (shared actions). The
language supports the following operators:

Prefix (α, r).E constitutes the atomic unit of compu-
tation of a PEPA model. It denotes a component
which may perform an activity (α, r) of type α,
subsequently behaving as E , which is said to be a
derivative of the component. The activity rate r is
taken from the domain R>0 ∪ {>}. If the rate is a
positive real then the activity duration is assumed
to be drawn from an exponential distribution with
mean 1/r time units. The symbol > denotes a
form of passive synchronisation whereby an activ-
ity of type α is to be executed in synchronisation
with some other component, which will determine
the overall rate of execution of the shared action.
The models presented in this paper do not make

use of passive synchronisation. The set of action
types in a PEPA model is denoted by A, whereas
Act denotes the set of activities.

Choice E + F indicates that a component may be-
have as E or F . Unlike traditional process calculi
in which the choice is non-deterministic, the be-
haviour in PEPA (and indeed in all other stochastic
process calculi) is determined stochastically. For
instance, let r , s > 0, in the choice (α, r).E +
(β, s).F the actions α and β are executed with
probabilities r/(r + s) and s/(r + s), respectively.

Constant A
def
= E is used to model cyclic behaviour.

Consider A
def
= (α, r).B , B

def
= (β, s).A. Here, A is

a component with two derivatives which performs
sequences of α- and β-activities forever.

Cooperation E ��
L

F is the synchronisation operator
of PEPA. The components E and F are required
to synchronise over the action types in the set L.
All the other actions are performed autonomously.
For instance, (α, r).(β, s).E ��

{α}
(α, t).(γ, u).F is

a cooperation between two components which
may perform a shared activity of type α,
with rate min(r , t), subsequently behaving as
(β, s).E ��

{α}
(γ, u).F . Then actions β and γ

are carried out autonomously. By contrast, in
the cooperation (α, r).E ��

{α}
(β, s).F the process

(α, r).E does not progress because α is not
available in the right hand side of the cooperation.
The set of all shared action types between E and
F is sometimes denoted by the symbol ∗.

Hiding E/L relabels the activities of E with the
silent action τ for all types in L. Thus,(

(α, r1) .E/{α}
)
��
{α}

(α, r2).F does not cooperate

over α because the process in the left-hand side
of the cooperation performs a transition (τ, r1) to
E . All α-transitions performed by E are similarly
hidden.

An interesting class of PEPA models comprises those
which can be generated by the two-level grammar shown
below.

S ::= (α, r).S | S + S | AS , AS
def
= S

C ::= S | C ��
L

C | C/L | AC , AC
def
= C

The first production defines sequential components, i.e.,
processes which only exhibit sequential behaviour (by
means of the prefix operator), and branching (by means
of the choice operator). The second production defines
model components, in which the interactions between
the sequential components are expressed through the
cooperation and hiding operators. The system equation
designates the model component that defines the
environment which embraces all of the behaviour of the
system under study.

The Computer Journal, Vol. 00, No. 01, 2011

Stochastic Process Algebras: From Individuals to Populations 3

Client
def
= (comm, rd).Think

Think
def
= (think , rt).Client

Server
def
= (comm, ru).Log

Log
def
= (log , rl).Server

System1
def
= Client [NC] ��

{comm}
Server [NS]

FIGURE 1. Simple PEPA model of a client/server
scenario.

The model shown in Figure 1 is defined using such
a grammar and will be used in the following to
illustrate the main properties of PEPA. The model
may represent a basic client/server scenario. A client
is a sequential component which cycles between the
two derivatives Client and Think . Similarly, a server
is a two-derivative component with derivatives Server
and Log . In derivative Client the client is able
to carry out a shared action comm in cooperation
with the server’s derivative Server . The derivatives
Think and Log model autonomous activities performed
by the components. In a distributed application,
activities of this kind may be used to denote genuinely
local computations or to abstract away interactions
with other components with negligible impact on the
performance characteristics of the system. The system
equation includes the derived syntax of a component
array E [N] which occurs frequently in the modelling
of large-scale systems representing a population of
N independent and identical sequential components
E . More formally, E [N] is a shorthand notation for
E ��

∅
E · · · ��

∅
E︸ ︷︷ ︸

N

.

3. SHIFTING LEVELS OF ABSTRACTION

Stochastic process algebras, such as PEPA, are typically
given a semantics in terms of a labelled transition
system, derived from small-step operational semantics.
In other words, a set of semantic rules, shown in
Figure 2, detail the possible evolutions of a term in
the langage based on the syntactical construction of the
term. The transitions which are derived are labelled
by the activities and thus contain information about
the dynamic behaviour in terms of the expected rate
of the transition in addition to the type of activity
performed. This inclusion of information about the
rates within the labelled transition system means that
a multi-transition system must be used in order to
correctly reflect the dynamics of the system, i.e. if
there are multiple instances of the same transition the
resulting action will occur at a faster rate than if there is
only a single instance, because each instance contributes
to the apparent rate of the action.

Prefix

S0 :
(α, r).E

(α,r)−−−→ E

Choice

S1 :
E

(α,r)−−−→ E ′

E + F
(α,r)−−−→ E ′ + F

S2 :
F

(α,r)−−−→ F ′

E + F
(α,r)−−−→ E + F ′

Cooperation

C0 :
E

(α,r)−−−→ E ′

E ��
L

F
(α,r)−−−→ E ′ ��

L
F
, α 6∈ L

C1 :
F

(α,r)−−−→ F ′

E ��
L

F
(α,r)−−−→ E ��

L
F ′
, α 6∈ L

C2 :
E

(α,r1)−−−−→ E ′ F
(α,r2)−−−−→ F ′

E ��
L

F
(α,R)−−−→ E ′ ��

L
F ′

, α ∈ L

R =
r1

rα(E)

r2
rα(F)

min (rα(E), rα(F))

Hiding

H0 :
E

(α,r)−−−→ E ′

E/L
(α,r)−−−→ E ′/L

, α 6∈ L

H1 :
E

(α,r)−−−→ E ′

E/L
(τ,r)−−−→ E ′/L

, α ∈ L

Constant

A0 :
E

(α,r)−−−→ E ′

A
(α,r)−−−→ E ′

, A
def
= E

FIGURE 2. Markovian semantics of PEPA.

The rules in Figure 2 correspond to the operators of
the language introduced in the previous section. Most
of the rules are straightforward, and presented here
without comment. Rule C2 is the fundamental inference
for the characterisation of the dynamic behaviour of a
shared action. It implements the semantics of bounded
capacity : informally, the overall rate of execution of a
shared activity is the minimum between the rates of
the synchronising components. The rule relies on the
notion of apparent rate to compute the total capacity
of a cooperating component, according to the following
definition.

The apparent rate of action α in process E , denoted
by rα (E), indicates the overall rate at which α can be

The Computer Journal, Vol. 00, No. 01, 2011

4 J. Hillston, M. Tribastone and S. Gilmore

performed by E . It is recursively defined as:

rα ((β, r) .E) =

{
r if β = α,

0 if β 6= α,

rα (E + F) = rα (E) + rα (F) ,

rα

(
E ��

L
F
)

=

{
min (rα (E) , rα (F)) if α ∈ L,
rα (E) + rα (F) if α 6∈ L,

rα (E/L) =

{
rα (E) if α 6∈ L,
0 if α ∈ L.

According to this definition, for the array of
sequential components Client [NC] the apparent rate of
comm is

rcomm (Client [NC]) = NC × rcomm (Client) = NC × rd.
(1)

Similarly,

rcomm (Server [NS]) = NS × rcomm (Server) = NS × ru.
(2)

Once the labelled transition system, or derivation
graph, corresponding to a PEPA model has been
constructed then it can be interpreted as the state
transition diagram of a CTMC. In this CTMC each
state corresponds to a distinct syntactic form of the
PEPA expression, as the model evolves according to
the semantics. The CTMC is stored as an infinitesimal
generator matrix, a matrix which captures the rates of
transitions between states. From this the probability
distribution over the states of the model at any given
time, or at steady state, can be readily derived using
standard linear algebra algorithms.

3.1. Identity and Individuality

The naive mapping to a CTMC outlined above is a
very direct mapping of the process algebra description
into a mathematical representation. In particular, if
we consider PEPA components within the model, each
is represented explicitly within the CTMC. Consider a
system which is comprised of two copies of component P
co-operating with component Q over activity α,

(P ‖ P) ��
{α}

Q.

Suppose that components P and Q are specified as
shown below.

P
def
= (α, r).P ′ Q

def
= (α, r).Q′

From the operational semantics of PEPA, the possible
one-step derivatives of the model (P ‖ P) ��

{α}
Q are

(P ′ ‖ P) ��
{α}

Q′ and (P ‖ P ′) ��
{α}

Q′,

depending on whether the leftmost or the rightmost
P participates in the cooperation with Q. In the
naive mapping each of these states at the level of the
process algebra semantics is represented by a distinct
state in the underlying CTMC. Analysis of the CTMC
derived in this way can distinguish states in which
only the leftmost P has reached state P ′ from those
in which only the rightmost P has reached state P ′.
Thus this interpretation of the model preserves both
the individuality of the P components (each is treated
separately) and the identity. Here we have dealt with
identity informally, distinguishing the instances of P
according to their position in the system equation.
However we would obtain exactly the same CTMC
if we were to write the model instead in terms of
distinguished components with the same behaviour, e.g.
(P1 ‖ P2) ��

{α}
Q, where

P1
def
= (α, r).P ′1, P2

def
= (α, r).P ′2, and Q

def
= (α, r).Q′.

This level of system description is typically useful in
the early stages of model (and system) development,
as it has sufficient detail to allow us to verify
the correct operation of the model. This can be
regarded as checking that the protocol which controls
interactions between components is giving the desired
behaviour. Due to the very explicit way in which all
possible configurations of the process algebra model are
represented in the underlying CTMC the state space
based on such an interpretation will soon exceed the
limits of efficient computation.

Fortunately, in most situations in which we are
studying the performance of a system we are not
interested in the identity of the components within
the system. Once confidence has been gained in the
correct operation of the model it is sufficient to know
how many instances of a component are currently
exhibiting a local state. In these circumstances we can
disregard the identity of the instances within the system
description although we still regard each instance as
an individual. Taking this view of the system leads
to a different mathematical interpretation. Again this
will be a CTMC but one with a smaller state space
as we would now represent both (P ′ ‖ P) ��

{α}
Q′ and

(P ‖ P ′) ��
{α}

Q′ by a single state in the CTMC —

the state which records that there is one instance of
P in state P and one in state P ′. The transition
rates between the states in this CTMC capture the
aggregated nature of the states represented. Formally
we can define an equivalence relation at the level of the
process algebra which identifies those process algebraic
states which give rise to the same behaviour. If we
denote the equivalence classes of states by [E] where E
is one PEPA expression exhibiting the behaviour we are
interested in, we can observe that for our example

[(P ‖ P) ��
{α}

Q]
2×r−→ [(P ′ ‖ P) ��

{α}
Q′].

The Computer Journal, Vol. 00, No. 01, 2011

Stochastic Process Algebras: From Individuals to Populations 5

For PEPA such a reduction has been defined from
both a theoretical perspective [21] and an algorithmic
perspective [22] and is readily applied to models
with repeated components. Note that the resulting
mathematical representation preserves the individuality
of components within the array but loses information
about their identity within the array (i.e. their location
within the expression).

The relationship between the CTMC obtained from
the naive interpretation of the PEPA model, and that
obtained using the aggregated interpretation based on
counting has been extensively studied and is well-
understood [22]. The two Markov processes are
lumpably equivalent, meaning that the equivalence
classes which are formed at the process algebra
level, give rise to a lumpable partition of the naive
CTMC. This has the consequence that the stochastic
process in which each partition is a single state (the
aggregated CTMC) is indeed a CTMC [23]. Moreover
the performance indices derived at the level of the
aggregated process can be readily be related back to
the process algebra description in terms of individuals
and identities [18, 21].

3.2. Collective Dynamics

The aggregated CTMC underlying a PEPA model is
typically much more compact than the direct repre-
sentation of the derivation graph in the naive CTMC.
Nevertheless it can rapidly exceed the capabilities of
current numerical solution tools, especially in circum-
stances when there are large numbers of instances of
components within the model. In this situation it may
be possible to switch to alternative means of analysis
to derive properties from the CTMC. For example,
stochastic simulation may be used to study the sys-
tem, rather than numerical solution to find the proba-
bility distribution. This has the disadvantage that each
run of the simulation generates only a single trajectory
within the state space, without the consideration of all
possible behaviours that are encompassed in the nu-
merical solution. Thus simulation necessitates multiple
runs of the model in order to derive statistically signifi-
cant results [24]. However in situations when numerical
solution becomes infeasible because the state space is
too large, simulation’s ability to avoid explicit repre-
sentation of the entire state space is invaluable. The
computational cost of analysis in this case remains high
however.

In recent work we have been investigating how
an alternative interpretation of the process algebra
description of a system can lead to very efficient analysis
based on a population level view of the components,
instead of a view of the components as individuals [25].
In this view an array of components is treated as a
single entity which undergoes change, as constrained
by the structure of the interactions with other arrays of
components (as specified by the system equation of the

PEPA model) and the current state of that entity. Each
entity/array of components captures a subpopulation
within a system which is comprised of interacting
subpopulations. A typical example might be that a
population of clients will interact with a population of
servers in a replicated service. Interaction tacks place
between individuals but we can nevertheless observe
many useful properties of the system by considering
the consequences of these interactions at the population
level. Therefore we can consider the performance of
a large-scale system to be an emergent property of
the collective dynamics of the individual components
making up the system.

A crucial change when choosing this level of
abstraction is that the state of the entity is now
captured as a set of continuous variables rather than
as discrete ones. Each subpopulation is represented
by a set of variables, each variable representing one
local derivative of the component. If this is done
with discrete variables it gives rise to an equivalent
representation to the aggregated CTMC: counting is
used to record how many of each type of component
are in each local state in both cases. An alternative
set of structured operational semantic rules to generate
a symbolic CTMC for such a case has recently been
developed [25]. A significant computational benefit is
gained when these variables are treated as continuous
and their evolution is governed by a set of ordinary
differential equations (ODEs) [26].

As an example, let us consider again System1 ,
as seen in Figure 1. This model has four local
derivatives: Client , Think , Server and Log . In the
discrete Markovian interpretation of the model states
can be represented by a vector which uses non-negative
integers to count the number of each type of local
derivative at each state. For example, (NC , 0, NS , 0)
represents the initial state of the underlying CTMC,
and (NC − 1, 1, NS − 1, 1) is the state which is reached
after an occurrence of the shared comm activity.

The continuous fluid approximation of the model also
requires a system of four variables, but these will have
real values, not integers. These ODE system variables
are used to approximate the number of instances of
each of the four local derivatives at any time point.
The following association table shows the relationship
between the ODE system variables and the processes of
the PEPA model.

x1 Approximate number of Client processes

x2 Approximate number of Think processes

x3 Approximate number of Server processes

x4 Approximate number of Log processes

Starting from the PEPA definitions in Figure 1, the
set of ODEs which is the fluid-flow approximation of
the system behaviour can be derived algorithmically
using the method presented in [25] and [26]. This is an
entirely automatic process which runs without human

The Computer Journal, Vol. 00, No. 01, 2011

6 J. Hillston, M. Tribastone and S. Gilmore

intervention and is implemented in the PEPA tools.
By this process we obtain the following set of ODEs
describing the evolution of the system:

dx1
dt

= −min(x1 × rd, x3 × ru) + x2 × rt,

dx2
dt

= min(x1 × rd, x3 × ru)− x2 × rt,

dx3
dt

= −min(x1 × rd, x3 × ru) + x3 × rl,

dx4
dt

= min(x1 × rd, x3 × ru)− x3 × rl.

The minimum terms in the ODEs stem from PEPA’s
apparent rate rule, as defined in Section 3. Each of
these is associated with the shared activity comm in
the PEPA model. The ODE terms which do not use the
minimum function arise from the individual activities in
the PEPA model (think and log).

The PEPA model specifies the initial state of the
system and this allows us to assign initial values to the
ODE system variables thus: x1 = NC , x2 = 0, x3 = NS
and x4 = 0. This gives rise to a well-posed Initial
Value Problem (IVP) where the evolution of the ODE
system variables as a function of time can be obtained
via numerical integration using well-known algorithms
such as Runge-Kutta or Bulirsch-Stoer. The ODEs
generated from PEPA models are conservative because
processes are neither created nor destroyed in PEPA.
The consequence of this for this model is that it will
always be the case for all time points that x1+x2 = NC
and x3 + x4 = NS .

This shift from the discrete, stochastic representation
of a CTMC to the continuous, deterministic representa-
tion of a set of ODEs may seem surprising. The use of
continuous variables is clearly an approximation since a
variable of the system, for example the number of idle
servers, or the number of occupied threads, will always
be a natural number in reality. The events which im-
pact on a variable such as the number of idle servers
(e.g. the arrival of a customer) cause a discrete change
in the system. Nevertheless, when subpopulations have
large numbers of individuals we have found that the
frequency and relative impact of the events mean that
treating these changes as continuous is justified, at least
empirically. Similarly, when subpopulations are large
but follow the same pattern of behaviour, as defined in
the PEPA description of the corresponding component,
then the variability across the population is substan-
tially reduced. In the limit, as the size of the population
tends to infinity, then the behaviour of the stochastic
process underlying the PEPA component tends to a de-
terministic limit [27, 28].

In [26] an algorithm was established to derive a
set of ODEs representing the fluid approximation
of a PEPA model. This can be regarded as an
alternative interpretation of the system description in
terms of populations and continuous variables. More
recently a new symbolic semantics of PEPA models

PEPA

?

symbolic
semantics

H
HHH

HHHH
HHH

HHj

direct mapping
(activity matrix)

CTMC
(aggregated)

-fluid
approximation ODEs

FIGURE 3. Alternative derivations from the PEPA
description and the fluid limit

has been developed which allows the infinitesimal
generator matrix underlying a PEPA model consisting
of subpopulations to be constructed in a compact
symbolic form [25]. In this form the number in the
population is a dependent variable and it has been
shown that for this CTMC as the population size tends
to infinity the deterministic limit which is reached
coincides with the ODEs derived directly from the
PEPA model [25] (see Figure 3).

There is undoubtedly some loss of information as we
move to the continuous, deterministic interpretation
of the PEPA model but it nevertheless useful as it
allows us to analyse models which would otherwise
be infeasible. The sets of ODEs generated are rarely
amenable to analytical solution but they are readily
solved using numerical integration. Such analysis
produces a time series of values for each of the
continuous variables. Related to the conventional
performance analyses conducted based on numerical
solution of CTMCs these values correspond to the
number of instances of each of the local states of the
components of the model, which can be regarded as a
form of utilisation. However we have also been able to
develop rigorous methods to derive more sophisticated
performance indices from the numerical integration of
the ODEs [29, 30, 31], as will be illustrated in the
following section.

4. CASE STUDY

The model which is presented in this section is based
on the e-University case study of the SENSORIA
project [32]. The case study is comprised of a
number of scenarios; here the scenario of interest
is the Course Selection scenario, where students
obtain information about the courses available at their
education establishment and may enrol in those for
which specific requirements are satisfied.

Although the overall application is intended to be
service-oriented, the scenario investigated here is such
that the kinds of services available in the system do
not to change over the time frame captured by this
model. This reflects the fact that a university’s course
organisation is likely to be fixed before it is offered to

The Computer Journal, Vol. 00, No. 01, 2011

Stochastic Process Algebras: From Individuals to Populations 7

students. Furthermore, minor changes are likely not to
affect the system’s behaviour significantly. The model
will not consider other services which may be deployed
in an actual application (e.g. authentication services)
because their impact on performance is assumed to
be negligible. The scenario also considers a constant
population of students to capture a real-world situation
where the university’s matriculation process is likely to
be completed before the application may be accessed.

Our intention here is to give the reader an
understanding of the modelling and analysis techniques
used, rather than present novel or realistic results about
web servers. Detailed models of web servers can be
found in papers such as [33] and [34].

4.1. Model

The access point to the system is the University Portal,
a front-end layer which presents the available services in
a coherent way, for example by means of a web interface.
There are four services in this model:

Course Browsing allows the user to navigate through
the University’s course offerings;

Course Selection allows the user to submit a
tentative course plan which will be validated
against the University’s requirements and the
student’s curriculum;

Student Confirmation will force the student to
check relevant personal details;

Course Registration will confirm the student’s selec-
tion.

These components make use of an infrastructural
Database service, which in turn maintains an event log
through a separated Logger service.

The modelling paradigm adopted here captures the
behaviour of a typical multi-threaded multi-processor
environment used for the deployment and the execution
of the application. The University Portal instantiates
a pool of threads, each thread dealing with a request
from a student for one of the services offered. During
the processing of the request the thread cannot be
acquired by further incoming requests, but when the
request is fulfilled the thread clears its current state
and becomes available to be acquired again. Analogous
multi-threaded behaviour will be given to Database
and Logger. Performance issues may arise from
the contention of a limited number of threads by a
potentially large population of students. If at some
time point all threads are busy, further requests must
queue, provoking delays and capacity saturation. This
model also proposes another level of contention by
explicitly modelling the processors on which the threads
execute. Here, delays may occur when many threads
try to acquire a limited number of processors available.
Furthermore, this may be worsened by running several

FIGURE 4. Deployment diagram of the e-University
case study. Solid connectors between components indicate
request/reply communication. Dashed lines denote the
deployment of services onto processors.

multi-threaded services on the same multi-processor
system, as will be the case in the deployment scenario
considered in this model: University Portal will run
exclusively on multi-processor PS, whereas Logger and
Database will share multi-processor PD (cf. Figure 4).

4.1.1. General modelling patterns
Processing a request involves some computation on the
processor on which the service is deployed. Such a
computation in the PEPA model is associated with
an activity (type, rate), where type uniquely identifies
the activity and rate denotes the average execution
demand on the processor (i.e. 1/rate time units). A
single processing unit may be modelled using a two-
state sequential component. One state enables an acq
activity to acquire exclusive access to the resource,
while the other state enables all the activities deployed
on the processor. Letting n be the number of distinct
activities, the following pattern is used for a processor.

Processor1
def
= (acq , racq).Processor2

Processor2
def
= (type1 , r1).Processor1

+ (type2 , r2).Processor1

+ . . .

+ (typen , rn).Processor1

(3)

This acquire-and-branch pattern describes a process
which must first be acquired and then is used for exactly
one job of the n possible types before being acquired
again for the next job (possibly of a different type).

Communication in this model is synchronous and is
modelled by a sequence of two activities in the form
(reqfrom,to , rreq).(replyfrom,to , rrep) where the subscript
from denotes the service from which the request
originates and to indicates the service required. A
recurring situation is a form of blocking experienced
by the service invoking an external request. Let A and
B model two distinct interacting services. For example,

A
def
= (reqA,B , rreqA).(replyA,B , rrepA).A′, and

B
def
= (reqA,B , rreqB).(execute, r).(replyA,B , rrepB).B ′.

The communication between A and B will be
expressed by means of the cooperation operator
A ��

L
B , L = {reqA,B , replyA,B}. According to the op-

erational semantics, A and B may initially progress by

The Computer Journal, Vol. 00, No. 01, 2011

8 J. Hillston, M. Tribastone and S. Gilmore

executing reqA,B , subsequently behaving as the process
(replyA,B , rrepA).A′ ��

L
(execute, r).(replyA,B , rrepB).B ′.

Now, although the left-hand side of the cooperation
enables replyA,B , the activity is not offered by the
right-hand side, thus making the left-hand side ef-
fectively blocked until execute terminates (i.e., after
an average duration of 1/r time units). These basic
modelling patterns will be used extensively in this case
study, as discussed next.

4.1.2. University Portal
A single thread of execution for the application layer
University Portal is implemented as a sequential
component which initially accepts requests for any of
the services provided, as can be seen in the definitions
below.

Portal
def
= (reqstudent,browse , ν).Browse

+ (reqstudent,select , ν).Select

+ (reqstudent,confirm , ν).Confirm

+ (reqstudent,register , ν).Register

The rate ν will be used throughout this model in all
the request/reply activities. In the following, the action
type acqps is used to obtain exclusive access to processor
PS .

Course Browsing is implemented as a service which
maintains an internal cache. When a request is to be
processed, the cache query takes 1/rcache time units
on average, and is successful with probability 0.95,
after which the retrieved data is processed at rate rint .
Upon a cache miss, the information is retrieved by the
Database service, and is subsequently processed at rate
rext .

Browse
def
= (acqps , ν).Cache

Cache
def
= (cache, 0.95rcache).Internal

+ (cache, 0.05rcache).External

Internal
def
= (acqps , ν).(internal , rint).BrowseRep

External
def
= (reqexternal,read , ν).(replyexternal,read , ν).

(acqps , ν).(external , rext).BrowseRep

BrowseRep
def
= (replystudent,browse , ν).Portal

(4)

Course Selection comprises four basic activities. An
initial set-up task initialises the necessary data required
for further processing (rate rprep). Then, two
activities are executed in parallel, and are concerned
with validating the selection against the university
requirements (rate runi) and the student’s curriculum
(rate rcurr), respectively. Finally, the outcome of this
validation is prepared to be shown to the student (rate
rdisp). The relative ordering of execution is maintained
by considering three distinct sequential components.
The first component prepares the data, then forks the

two validating processes, waits for their completion, and
finally displays the results.

Select
def
= (acqps , ν).(prepare, rprep).ForkPrepare

ForkPrepare
def
= (fork , ν).JoinPrepare

JoinPrepare
def
= (join, ν).Display

Display
def
= (acqps , ν).(display , rdisp).SelectRep

SelectRep
def
= (replystudent,select , ν).Portal

The two validating processes are guarded by the
fork/join barrier as shown below.

ValUni
def
= (fork , ν).(acqps , ν).(validateuni , runi).

(join, ν).ValUni

ValCur
def
= (fork , ν).(acqps , ν).(validatecur , rcur).

(join, ν).ValCur

(5)

These components will be arranged as follows in order
to obtain a three-way synchronisation.

Select ��
{fork,join}

ValUni ��
{fork,join}

ValCur

Student Confirmation is represented in the PEPA
model as an activity performed at rate rcon . The service
uses the Logger component to register the event.

Confirm
def
= (acqps , ν).(confirm, rcon).LogStudent

LogStudent
def
= (reqconfirm,log , ν).

(replyconfirm,log , ν).ReplyConfirm

ReplyConfirm
def
= (replystudent,confirm , ν).Portal

(6)

Finally, Course Registration performs some local
computation (at rate rreg) and then contacts the
Database component to store the information.

Register
def
= (acqps , ν).(register , rreg).Store

Store
def
= (reqregister ,write , ν).

(replyregister ,write , ν).ReplyRegister

ReplyRegister
def
= (replystudent,register , ν).Portal

(7)

The “acquire-and-branch” pattern (3) is applied to
processor PS to give the definitions shown below.

PS1
def
= (acqps , ν).PS2

PS2
def
= (cache, rcache).PS1 + (internal , rint).PS1

+ (external , rext).PS1 + (prepare, rprep).PS1

+ (display , rdisp).PS1 + (validateuni , runi).PS1

+ (validatecur , rcur).PS1 + (confirm, rcon).PS1

+ (register , rreg).PS1

The Computer Journal, Vol. 00, No. 01, 2011

Stochastic Process Algebras: From Individuals to Populations 9

4.1.3. Database
This service exposes two functions for reading and
writing data. Reading is a purely local computation,
whereas writing additionally uses the Logger service. In
this model, Database is only accessed by the university
portal in states External and Store in equations (4)
and (7), respectively. Let PD denote the processor on
which Database is deployed, acquired through action
acquirepd . Similarly to University Portal, a single
thread of execution for Database is defined by the
following PEPA sequential component.

Database
def
= (reqexternal,read , ν).Read

+ (reqregister ,write , ν).Write

Read
def
= (acqpd , ν).(read , rread).ReadReply

ReadReply
def
= (replyexternal,read , ν).Database

Write
def
= (acqpd , ν).(write, rwrite).LogWrite

LogWrite
def
= (reqdatabase,log , ν).

(replydatabase,log , ν).WriteReply

WriteReply
def
= (replyregister ,write , ν).Database

(8)

4.1.4. Logger
This service accepts requests from Student Confirma-
tion and Database, as described in equations (6) and
(8), respectively. It is deployed on the same processor
as Database, i.e., processor PD . Thus, one thread exe-
cution may be modelled as the PEPA sequential com-
ponent shown below.

Logger
def
= (reqconfirm,log , ν).LogConfirm

+ (reqdatabase,log , ν).LogDatabase

LogConfirm
def
= (acqpd , ν).

(logconf , rlgc).ReplyConfirm

ReplyConfirm
def
= (replyconfirm,log , ν).Logger

LogDatabase
def
= (acqpd , ν).

(logdb , rlgd).ReplyDatabase

ReplyDatabase
def
= (replydatabase,log , ν).Logger

(9)
Taking together (8) and (9) it is possible to write
a simple two-state PEPA sequential component that
models the processor PD .

PD1
def
= (acqpd , ν).PD2

PD2
def
= (read , rread).PD1 + (write, rwrite).PD1

+ (logconf , rlgc).PD1 + (logdb , rlgd).PD1

4.1.5. Student Workload
A student is modelled as a sequential component which
interacts with the university portal and accesses all of
the services available. The behaviour is cyclic and the
student interposes some think time between successive
requests. This results in a closed-workload type of

behaviour which is typical of many performance studies.

StdThink
def
= (think , rthink).StdBrowse

StdBrowse
def
= (reqstudent,browse , ν).

(replystudent,browse , ν).StdSelect

StdSelect
def
= (reqstudent,select , ν).

(replystudent,select , ν).StdConfirm

StdConfirm
def
= (reqstudent,confirm , ν).

(replystudent,confirm , ν).StdRegister

StdRegister
def
= (reqstudent,register , ν).

(replystudent,register , ν).StdThink

4.1.6. System Equation
The multiplicity of threads and processors is captured in
the system equation, in which all the sequential compo-
nents illustrated above are composed with suitable co-
operation operators to enforce synchronisation between
shared actions. The complete system equation for this
model is:

StdThink [NS] ��
∗((

Portal [NP] ��
M1

ValUni [NP] ��
M1

ValCur [NP]
)

��
M2

Database[ND] ��
M3

Logger [NL]
)
��
∗(

PS1 [NPS] ��
∅

PD1 [NPD]
)
,

where

M1 = {fork , join}
M2 = {reqexternal,read , replyexternal,read , reqregister ,write ,

replyregister ,write}
M3 = {reqconfirm,log , replyconfirm,log , reqdatabase,log ,

replydatabase,log}

and NS , NP , ND, NL, NPS and NPD are constants
which specify the number of copies of each process. It is
worth pointing out that the separate validating threads
ValUni and ValCur inherit the multiplicity levels of the
thread Portal which spawns them (i.e. NP).

5. MODEL EVALUATION

This section is concerned with the analysis of the
SENSORIA e-University case study. In Section 5.1
we consider the information about the system which
can be gleaned from a qualitative interpretation of
the PEPA model, disregarding timing information.
The performance metrics of interest are discussed in
Section 5.2. Section 5.3 illustrates the analysis of
the system which can be based on the Markovian
interpretation of the model, and Section 5.4 presents
the results obtained with fluid-flow approximation.

The Computer Journal, Vol. 00, No. 01, 2011

10 J. Hillston, M. Tribastone and S. Gilmore

NS NP ND NL NPS NPD Size

1 any any any 1 any 48

1 any any any ≥ 2 any 49

2 1 1 1 1 1 230

3 1 1 1 1 1 680

3 2 2 2 2 2 5540

10 2 2 2 2 2 512116

10 3 2 2 2 2 5075026

TABLE 1. State-space growth of the e-University case
study.

5.1. Qualitative Analysis

As previously remarked, Markovian analysis is funda-
mentally limited by the rapid growth of the state space
as a function of the population levels of the sequential
components. Table 1 shows the state-space cardinal-
ity for some model configurations. Even for a small
system with only ten clients (last row) the state space
reaches over five million states; furthermore, there is a
dramatic increase as a function of NP (the number of
portal threads)—adding one copy may result in an in-
crease by a factor of ten (compare the last two rows).
Nevertheless, analysis based on the explicit representa-
tion of the state space is a valuable tool for validating
the correctness of the model. For example, the first two
rows of Table 1 give confidence that the model matches
the modeller’s intended behaviour. Indeed, when there
is only one student the state space is fairly small regard-
less of the multiplicity levels of threads and processors
because at most only one of them will be used. Setting
NPS to any value greater than one adds only one more
state because the two activities ValCur and ValUni of
equation (5) may now run in parallel on two distinct
processors (instead, when NPS = 1 only one of them
may access the same processor at a time). Another
form of qualitative analysis can be based on visual in-
spection of the reachability graph, which can be walked
through to generate possible trajectories of the system.

Further analysis may verify that the model is
compliant with the policies of exclusive access to
threads and processors. This analysis may be carried
out by direct inspection of the state space and does
not necessitate the solution of the underlying Markov
chain. For instance, the configuration NS = 1, NP =
2, ND = NL = NPS = NPD = 1 considers a model with
one student and two threads deployed for University
Portal. Table 2 shows a subset of the state space in
which each of the states enables one of the University
Portal ’s activities, i.e., cache, prepare, confirm, and
register . The states are represented in a tabular form
in which each column is associated with a local state of
a sequential component. For the sake of conciseness not
all sequential components are shown—in all cases, their
local states are the initial ones. A necessary condition

for the correctness of the model is that if one thread is
engaged in some activity then the other must be idle,
because at most one thread may be acquired at a time.
This condition is met by all states of Table 2, since one
Portal thread is always in its initial state. Incidentally,
other behaviour seems to match the expected dynamics
of the system. In particular, when a Portal thread is
performing a cache action, the student is waiting for
a reply to a browsing action, giving confidence that
cache is indeed triggered by the shared reqstudent,browse

action. Similar considerations are valid for the local
states of Student when the other activities are enabled.
Furthermore, the fact that processor PS is in state
PS2 confirms that these activities are carried out in
cooperation between Portal and PS .

Here we are analysing the model by inspection and
informal consideration of the desirable behaviour. In
practice it is often beneficial to use model checking in a
tool such as PRISM [35] to test the validity of a logical
expression of a system property with respect to the
reachable states.

Exclusive access to processors may be checked in a
similar manner. For example, the configuration NS =
2, NP = 2, ND = NL = NPS = NPD = 1 has now
two students, each of whom may acquire one Portal
thread. However, since there is only one processor on
which the thread is running, there is contention at the
thread/processor level. Exploring the complete state
space of this system allows us to conclude that whenever
one thread is using the processor, the other is either
waiting for the processor to be released, or engaged in
a communication. Specifically, if one thread enables
one of the actions exhibited by PS2 then the other
thread is in one of its acqps states or undertaking a
communication-related activity. We do not confirm this
by showing the entire state space here due to its size
(6970 states).

Explicit enumeration of the state space of a PEPA
model is available in the Eclipse plug-in through a top-
level menu item, as shown in Figure 5. The reachability
graph may be iteratively walked using the Single Step
Navigator, shown in Figure 6.

5.2. Metrics

Once confidence is gained that a model faithfully
represents the system under consideration, the focus is
shifted to performance evaluation. In this case study
the system performance will be evaluated with respect
to the average response time experienced by a student
to carry out the complete sequence of operations with
the university portal. The thinking time exhibited by
the derivative StdThink will not be included as part
of this response time. The performance is evaluated
for steady-state conditions, i.e. after a sufficiently long
time period that the system’s state distribution does
not change. Under these conditions, the computation
of average response time in PEPA admits a simple

The Computer Journal, Vol. 00, No. 01, 2011

Stochastic Process Algebras: From Individuals to Populations 11

Student Portal Portal PS

Action type cache

(replystudent,browse , ν).StdSelect Cache Portal PS2

(replystudent,browse , ν).StdSelect Portal Cache PS2

Action type prepare

(replystudent,select , ν).StdConfirm Portal (prepare, rprep).ForkPrepare PS2

(replystudent,select , ν).StdConfirm (prepare, rprep).ForkPrepare Portal PS2

Action type confirm

(replystudent,confirm , ν).StdRegister Portal (confirm, rcon).LogStudent PS2

(replystudent,confirm , ν).StdRegister (confirm, rcon).LogStudent Portal PS2

Action type register

(replystudent,register , ν).StdThink (register , rreg).Store Portal PS2

(replystudent,register , ν).StdThink Portal (register , rreg).Store PS2

TABLE 2. Tabular representation of a subset of the state space for the system configuration NS = 1, NP = 2, ND = NL =
NPS = NPD = 1 showing that whenever a Portal thread is engaged in some action, the other is idle because one student may
acquire at most one thread at a time.

FIGURE 5. State-space exploration with the PEPA Eclipse plug-in. The top-level menu item Derive is available for any
syntactically correct PEPA model. The State Space View (bottom) is updated with a tabular representation of the state
space.

formulation based on Little’s law [36], as discussed
in [30]. Little’s law says that in a system in a stationary
state, the number of users L in the system is related
to the throughput of user arrivals λ and the average
response time W by the formula

L = λW.

In this case study, L and λ can be computed in
a straightforward way. The number of students
in the system is equal to NS (the total student
population) minus the population of students who are
thinking. This is directly obtained from the underlying
differential equation model, since one coordinate, say
xStdThink (t) (whose steady-state value will be denoted

by xStdThink (∞)), is associated with the population
count of the sequential component StdThink . The
throughput of student arrival is given by the number
of students performing the think action in the steady
state. Since one single student carries out that action
at rate rthink , the total throughput is the product
rthink xStdThink (∞). The average response time is
therefore:

W =
NS − xStdThink (∞)

rthink xStdThink (∞)
.

In practice, the average response time is calculated
using the PEPA Eclipse Plug-in, a software tool
which supports Markovian analysis and fluid-flow
approximation of PEPA in the Eclipse framework [37].

The Computer Journal, Vol. 00, No. 01, 2011

12 J. Hillston, M. Tribastone and S. Gilmore

FIGURE 7. Screenshot of the PEPA Eclipse Plug-in showing the editor area (left) with an excerpt of the e-University case
study and the dialogue box for the calculation of the average response time (right). The modeller is requested to set up the
parameters for the ODE numerical integrator (top) and select which derivatives are to be interpreted as the user being in the
system (bottom).

FIGURE 6. The Single Step Navigator allows the
inspection of the reachability graph of a PEPA model. Given
a configuration with all population counts set to one, this
screenshot presents the neighbourhood of the state when the
cache activity is being performed, showing that there are
two possible outcomes leading to the local state Internal
and External , respectively.

A screenshot of the tool is shown in Figure 7.

5.3. Markovian Analysis: Performance Bounds

Like the qualitative analysis considered earlier, the
Markovian analysis is based on explicit enumeration
of the state-space and is therefore limited to small-
scale systems. Nevertheless carrying out a performance
analysis of such small-scale systems can still offer
valuable insight into the behaviour of the system. For

example, here we show how a Markovian analysis can
be used to derive some performance bound estimates
for the e-University system.

For any given system configuration, the PEPA model
obtained by setting NS = 1 is optimal with respect
to the performance perceived by the user, e.g., average
response time. Indeed, a larger population of students
cannot improve the performance because this would
result in an increased contention for threads and
processors. Markov chains underlying models with only
one student are of very manageable size (cf. Table 1);
therefore such bounds may be computed quickly and
accurately. The system parameters used for this study
(and throughout this section) are listed in Table 3.
The first row of Table 4 shows the average response
times as a function of the student population for a
system configuration where all population counts of
threads and processors are set to one. These results
confirm that the average response time for NS = 1 is
indeed the minimum attainable for that configuration.
Furthermore, in this particular model it is possible to
conclude that the average response time at NS = 1
for the configuration in the second row is a global
minimum. In this case, the multiplicity of processors
PS is set to two. This leads to an improved average
response time because the two validating threads
may now run effectively in parallel, as opposed to
the previous case where they contend for the same
processor. This configuration represents the maximum
amount of resources needed by a single student, and the
fact that the average response time does not increase
further is confirmed, for instance, by the results shown

The Computer Journal, Vol. 00, No. 01, 2011

Stochastic Process Algebras: From Individuals to Populations 13

Messages Portal Database Logger Student

ν = 50.0 rcache = 20

rint = 3.0

rext = 4.0

rprep = 5.0

rdisp = 8.0

runi = 5.0

rcur = 4.0

rcon = 4.0

rreg = 3.5

rread = 5.0

rwrite = 3.0

rlgc = 3.0

rlgd = 3.5

rthink = 0.08

TABLE 3. Rate parameter set.

System Configuration

NP ND NL NPD NPS NS =1 NS =2 NS =3 NS = 4

1 1 1 1 1 3.195 3.694 4.390 5.357

1 1 1 1 2 3.064 3.522 4.155 5.032

3 3 3 3 3 3.064 3.065 3.066 3.074

TABLE 4. Average response times calculated with small-
sized CTMCs for the evaluation of performance bounds.

in the last row of the table, where all multiplicities are
set to three.

5.4. Fluid-Flow Analysis: Scalability and
Optimisation

To study the behaviour of the system under realistically
sized user workloads, let us consider the following
configuration: NP = ND = NL = 80, NPD =
40, NPS = 40. The model gives rise to a set of 63
coupled ODEs, not shown in this paper for the sake
of conciseness. Table 5 shows the results of fluid-flow
analysis and stochastic simulation for the computation
of the average response time for different student
population sizes. The underlying ODE was solved
using a fifth-order Range-Kutta numerical integrator.
Stochastic simulation was conducted using the method
of batch means which terminated when the 95%
confidence interval was within 1% of the average. The
accuracy, expressed as the absolute percentage relative
error between the deterministic and the stochastic
estimates, is adequate in all cases; importantly, the
computational cost of fluid-flow analysis is confirmed to
be negligible with respect to simulation, with runtimes
separated by some orders of magnitude. For population
levels between 1 and 325 the average response time
is not impacted negatively, however further increases
of the workload population cause a rather sharp
degradation of the system performance (for instance,
at NS = 600 the average response time is about five
times higher than its optimal level).

Due to its high effectiveness, fluid-flow analysis
may be successfully employed in modelling situations

NS ODE Runtime CTMC Runtime Error

1 2.975 2.7 s 3.091 436 s 3.74%

300 2.975 2.7 s 3.105 2656 s 4.17%

325 2.975 2.6 s 3.329 3017 s 10.62%

350 3.686 2.9 s 3.863 6505 s 4.57%

400 5.999 7.3 s 5.993 4465 s 0.10%

500 10.623 6.6 s 10.534 3845 s 0.84%

600 15.248 6.6 s 15.233 2985 s 0.10%

TABLE 5. Scalability analysis: average response time
as a function of the user workload. The results of fluid-
flow analysis are compared against stochastic simulation
of the Markov chain. Model configuration: NP = ND =
NL = 80, NPD = 40, NPS = 40. The table also shows the
execution times for both methods.

Conf. NP ND NL NPS NPD Response time

A 80 80 80 40 40 3.686

B 70 70 70 40 40 3.686

C 60 60 60 40 40 4.506

D 70 70 70 35 35 5.998

E 70 50 50 40 40 3.686

F 70 20 20 40 40 3.686

G 70 20 15 40 40 4.278

H 70 15 20 40 40 5.024

TABLE 6. Average response time for NS = 350 and
different system configurations.

which require the evaluation of the system under many
different conditions. This problem is usually known
as capacity planning and in the remainder of this
section we examine one instance based on this case
study. In addition to the workload population NS ,
there are 20 other parameters in this model: 15 rate
parameters and 5 concurrency levels for threads and
processors. Let us suppose that the workload is known
in advance and that the modeller has no possibility of
intervention over the rate parameters (for instance, they
may be determined by the technology infrastructure).
In this scenario an interesting question is to determine
an optimal configuration for the concurrency levels of
the system. This is important because it is directly
associated with the cost of deploying and running a
service (fewer replicas may imply less memory or fewer
processors required).

Let us consider a workload population of 350 students
and suppose that the average response time of the
system is acceptable (cfr. Table 5). Table 6 shows
the response times calculated with different system
configurations of similar size. Configuration A denotes
the original system. Decreasing all thread multiplicities
to 70 does not have any impact on the response
time (compare A and B), however further reductions
may incur some performance penalty (configuration
C). Reducing the number of processors leads to more

The Computer Journal, Vol. 00, No. 01, 2011

14 J. Hillston, M. Tribastone and S. Gilmore

significant delays (compare B and D). Comparing
B with E and F, the user-perceived performance is
not impacted negatively by decreasing the number
of database and logger threads. Configurations G
and H suggest that more parsimonious deployments
cause noticeable performance degradation. Incidentally,
they also show that the system is more sensitive to
changes in the number of database threads than in
the number of logger threads. In conclusion, F is
the best configuration of those considered in Table 6,
yielding the same performance but using 130 fewer
threads than the original system. It must be pointed
out that this strategy is not exhaustive, however it is
not difficult to imagine the use of fluid-flow models in
more sophisticated optimisation frameworks.

6. RELATED WORK

The first paper to develop a fluid-flow approximation
to the dynamics of a stochastic process algebra
was [26]. Early successes with this approach showed
that it allowed modellers to create expressive models
of complex large-scale systems [38, 39]. This focussed
attention on the significance of the approach and
motivated more deeply technical work on understanding
the theoretical relationship between continuous and
discrete PEPA models [28].

The very low evaluation cost of the fluid-flow
approach enabled more extensive modelling studies
to be carried out than had previously been possible.
Thus, the SRMC calculus [40], based on PEPA,
allows different system configurations to be expressed
within the calculus itself, leading to a family of
evaluation problems which are practical only because
of the low unitary evaluation cost of fluid-flow models.
This advantage is utilised to realise other extensive
experimental programmes in papers such as [41, 42].

Process algebras are distinguished from other mod-
elling formalisms because they have a formal language
definition presented in the structured operational se-
mantics style. Stochastic process algebras established
the principle of deriving the underlying mathematical
representation of the model via structured operational
semantics [18]. Such an account was missing for the
fluid-flow interpretation of PEPA until [25]. This put
the continuous interpretation of PEPA on the same sure
semantic foundations as the discrete interpretation and
enabled it to be appreciated as an alternative semantic
account of the language.

Some aspects of the PEPA language have proved
difficult to interpret in the continuous domain. One
such is the use of passive cooperation between
concurrently active components. Here, some authors
have studied the impact of different interpretations
of passive cooperation on the numerical results
computed by a PEPA model, considering methods of
adjusting models in order to remove uses of passive
cooperation [43, 44].

Having established the effectiveness of fluid-flow
approximation numerically, and tested their accuracy
empirically, attention is now being given to the
definition of reward structures in the continuous domain
such as response-time quantiles and other measures [31,
45].

Other authors have considered alternative approaches
between the fully discrete and the fully continuous
interpretation. A hybrid interpretation of PEPA,
for application when not all components exist in
sufficient quantities to justify a fluid approximation,
was presented in [46]. Hybrid fluid-flow analysis
with jump-diffusion SDEs has been considered by
Hayden [47] and a Langevin interpretation of PEPA
has been considered by Slegers [48]. Other languages
such as HYPE [49] mix the discrete and the continuous
domains within the language itself, in order to obtain a
hybrid process calculus.

Beyond process algebras, fluid approximation has
also been applied to stochastic Petri nets in both a
pure and hybrid form, e.g. [50, 51]. Recent work on
mean field approximation [52, 53, 54], giving rise to
models expressed as systems of ODEs, is also closely
related. This is particularly the case when, as in
the context of PEPA, it is applied to models with
continuous time [55]. This work can be seen to
derive from earlier mean field techniques where models
were approximated by a counting abstraction and
approximation of state-dependent probabilities based
on assuming mean conditions [56, 57]. The non-linear
traffic equations of G-networks are mean-field equations
which are exact rather than approximate [58, 59].

7. CONCLUSIONS

High-level modelling languages such as stochastic
process algebras are built on rigorous mathematical
foundations and make profitable use of powerful
reasoning and analysis techniques. Building on discrete
mathematical methods has considerable appeal because
it naturally captures the discrete nature of computer
software and computer data. However, discrete-
state representations ultimately limit the applicability
of modelling because of the problems of state-space
growth. The potential for precise reasoning and analysis
to improve systems then risks being lost because the
techniques are perceived to be of limited applicability
and appropriate only for small academic exercises.

Moving from discrete mathematical representations
to continuous ones completely changes the nature
of the problem. Considering populations instead of
individuals bypasses the state-space explosion trap.
The result is that modelling problems which were
infeasible before are now not only feasible but they
actually present little computational challenge. This
has allowed researchers using these methods to apply
precise numerical methods to large-scale systems with
realistic population sizes.

The Computer Journal, Vol. 00, No. 01, 2011

Stochastic Process Algebras: From Individuals to Populations 15

REFERENCES

[1] Gilmore, S., Hillston, J., Holton, D., and Rettelbach,
M. (1996) Specifications in Stochastic Process Algebra
for a Robot Control Problem. International Journal of
Production Research, 34, 1065–1080.

[2] Holton, D. (1995) A PEPA specification of an industrial
production cell. In Gilmore, S. and Hillston, J.
(eds.), Proceedings of the Third International Workshop
on Process Algebras and Performance Modelling,
December, pp. 542–551. Special Issue of The Computer
Journal, 38(7).

[3] Hermanns, H. and Katoen, J.-P. (2000) Automated
compositional Markov chain generation for a plain-old
telephone system. Sci. Comput. Program., 36, 97–127.

[4] Hillston, J. and Kloul, L. (2001) Performance investi-
gation of an on-line auction system. Concurrency and
Computation: Practice and Experience, 13, 23–41.

[5] Bradley, J. T., Gilmore, S., and Hillston, J.
(2008) Analysing distributed Internet worm attacks
using continuous state-space approximation of process
algebra models. J. Comput. Syst. Sci., 74, 1013–1032.

[6] Bravetti, M., Gilmore, S., Guidi, C., and Tribastone,
M. (2008) Replicating web services for scalability. In
Barthe, G. and Fournet, C. (eds.), Proceedings of
the Third International Conference on Trustworthy
Global Computing (TGC’07), LNCS, 4912, pp. 204–
221. Springer-Verlag.

[7] Zhao, Y. and Thomas, N. (2008) Approximate
solution of a PEPA model of a key distribution
centre. In Kounev, S., Gorton, I., and Sachs,
K. (eds.), Performance Evaluation: Metrics, Models
and Benchmarks, SPEC International Performance
Evaluation Workshop, SIPEW 2008, Darmstadt,
Germany, June 27-28, 2008. Proceedings, Lecture
Notes in Computer Science, 5119, pp. 44–57. Springer.

[8] Djoudi, L. and Kloul, L. (2008) Assembly code analysis
using stochastic process algebra. In Thomas, N.
and Juiz, C. (eds.), Proceedings of the 5th European
Performance Engineering Workshop (EPEW 2008),
Palma de Mallorca, Spain, September, LNCS, 5261,
pp. 95–109. Springer.

[9] Massink, M., Harrison, M., and Latella, D. (2010)
Scalable analysis of collective behaviour in smart
service systems. Proceedings of the 25th Annual ACM
Symposium on Applied Computing, pp. 1173–1180.
ACM.

[10] Massink, M., Latella, D., Bracciali, A., and Harrison,
M. (2010) A scalable fluid flow process algebraic ap-
proach to emergency egress analysis. Proceedings of
8th IEEE International Conference on Software Engi-
neering and Formal Methods, pp. 169–180. Computer
Society.

[11] Bell, A. and Haverkort, B. R. (2006) Distributed disk-
based algorithms for model checking very large Markov
chains. Formal Methods in System Design, 29, 177–
196.

[12] Molloy, M. (1981) On the integration of delay and
throughput measures in distributed processing models.
PhD thesis University of California, Los Angeles.

[13] Ajmone Marsan, M., Conte, G., and Balbo, G. (1984)
A Class of Generalised Stochastic Petri Nets for the

Performance Evaluation of Multiprocessor Systems.
ACM Transactions on Computer Systems, 2, 93–122.

[14] Milner, R. (1989) Communication and Concurrency.
Prentice-Hall.

[15] Hoare, C. (1985) Communicating Sequential Processes.
Prentice-Hall.

[16] Götz, N., Herzog, U., and Rettelbach, M. (1992)
TIPP—a language for timed processes and performance
evaluation. Technical Report 4/92. IMMD7, University
of Erlangen-Nürnberg, Germany.

[17] Bernardo, M. and Gorrieri, R. (1998) A tutorial
on EMPA: A theory of concurrent processes with
nondeterminism, priorities, probabilities and time.
Theoretical Computer Science, 202, 1–54.

[18] Hillston, J. (1996) A Compositional Approach to
Performance Modelling. Cambridge University Press.

[19] Hermanns, H. (2002) Interactive Markov Chains: The
Quest for Quantified Quality, LNCS, 2428. Springer.

[20] D’Argenio, P., Hermanns, H., Katoen, J.-P., and
Klaren, R. (2001) Modest — a modelling and de-
scription language for stochastic timed systems. Proc.
of Process Algebra and Probabilistic Methods. Perfor-
mance Modeling and Verification. Joint International
Workshop, PAPM-PROBMIV 2001, LNCS, 2165.
Springer-Verlag.

[21] Hillston, J. (1995) Compositional Markovian Modelling
Using a Process Algebra. In Stewart, W. (ed.),
Numerical Solution of Markov Chains. Kluwer.

[22] Gilmore, S., Hillston, J., and Ribaudo, M. (2001) An
efficient algorithm for aggregating PEPA models. IEEE
Transactions on Software Engineering, 27, 449–464.

[23] Kemeny, J. and Snell, J. (1960) Finite Markov Chains.
Van Nostrand.

[24] Mitrani, I. (1982) Simulation techniques for discrete
event system. Cambridge University Press.

[25] Tribastone, M., Gilmore, S., and Hillston, J. (2010)
Scalable differential analysis of process algebra models.
IEEE Transactions on Software Engineering, –. IEEE
Computer Society http://doi.ieeecomputersociety.

org/10.1109/TSE.2010.82.

[26] Hillston, J. (2005) Fluid flow approximation of PEPA
models. Proceedings of the Second International
Conference on the Quantitative Evaluation of Systems,
Torino, Italy, September, pp. 33–43. IEEE Computer
Society Press.

[27] Kurtz, T. G. (1970) Solutions of ordinary differential
equations as limits of pure jump Markov processes.
Journal of Applied Probability, 7, 49–58.

[28] Geisweiller, N., Hillston, J., and Stenico, M. (2008)
Relating continuous and discrete PEPA models of
signalling pathways. Theor. Comput. Sci., 404, 97–
111.

[29] Tribastone, M. (2010) Scalable Analysis of Stochastic
Process Algebra Models. PhD thesis The University of
Edinburgh.

[30] Clark, A., Duguid, A., Gilmore, S., and Hillston, J.
(2008) Espresso, a little coffee. Proceedings of 7th
Workshop on Process Algebra and Stochastically Timed
Activities (PASTA 2008), Edinburgh, Scotland.

[31] Bradley, J. T., Hayden, R., Knottenbelt, W. J., and
Suto, T. (2008) Extracting Response Times from Fluid

The Computer Journal, Vol. 00, No. 01, 2011

16 J. Hillston, M. Tribastone and S. Gilmore

Analysis of Performance Models. SIPEW’08, SPEC In-
ternational Performance Evaluation Workshop, Darm-
stadt, 27-28 June 2008, June, Lecture Notes in Com-
puter Science, 5119, pp. 29–43.

[32] Wirsing, M. and Hölzl, M. (eds.) (2011) Rigorous
Software Engineering for Service-Oriented Systems.
Springer-Verlag.

[33] Liu, X., Sha, L., Diao, Y., Froehlich, S., Hellerstein,
J., and Parekh, S. (2003) Online response time
optimization of Apache web server. In Jeffay, K.,
Stoica, I., and Wehrle, K. (eds.), Proceedings of the
11th international conference on Quality of service
(IWQoS’03), Heidelberg, pp. 461–478. Springer-Verlag.

[34] Do, T., Krieger, U., and Chakka, R. (2008)
Performance modeling of an Apache web server with a
dynamic pool of service processes. Telecommunication
Systems, 39, 117–129.

[35] Kwiatkowska, M., Norman, G., and Parker, D. (2009)
PRISM: Probabilistic model checking for performance
and reliability analysis. ACM SIGMETRICS Perfor-
mance Evaluation Review, 36, 40–45.

[36] Little, J. (1961) A proof for the queueing formula:
L = λW . Operations Research, 9, 383–387.

[37] Tribastone, M., Duguid, A., and Gilmore, S. (2009)
The PEPA Eclipse Plug-in. Performance Evaluation
Review, 36, 28–33.

[38] Duguid, A. (2006) Coping with the parallelism of
BitTorrent: Conversion of PEPA to ODEs in dealing
with state space explosion. In Asarin, E. and
Bouyer, P. (eds.), Formal Modeling and Analysis
of Timed Systems, 4th International Conference,
FORMATS 2006, Paris, France, September 25-27,
2006, Proceedings, Lecture Notes in Computer Science,
4202, pp. 156–170. Springer.

[39] Gilmore, S. and Tribastone, M. (2006) Evaluating
the scalability of a web service-based distributed e-
learning and course management system. In Bravetti,
M., Núñez, M. T., and Zavattaro, G. (eds.), Third
International Workshop on Web Services and Formal
Methods (WS-FM’06), Vienna, Austria, Lecture Notes
in Computer Science, 4184, pp. 156–170. Springer.

[40] Clark, A., Gilmore, S., and Tribastone, M. (2009)
Scalable analysis of scalable systems. In Chechik, M.
and Wirsing, M. (eds.), Fundamental Approaches to
Software Engineering, 12th International Conference,
FASE 2009, LNCS, 5503, pp. 1–17. Springer.

[41] Zhao, Y. and Thomas, N. (2010) Efficient solutions of a
pepa model of a key distribution centre. Performance
Evaluation, 67, 740 – 756. Special Issue on Software
and Performance.

[42] Stefanek, A., Hayden, R., and Bradley, J. T. (2011)
Fluid analysis of energy consumption using rewards
in massively parallel Markov models. International
Conference on Performance Engineering (ICPE 2011),
Karlsruhe, Germany.

[43] Hayden, R. A. and Bradley, J. T. (2010) Evaluating
fluid semantics for passive stochastic process algebra
cooperation. Performance Evaluation, 67, 260 –
284. Performance Evaluation Methodologies and Tools:
Selected Papers from VALUETOOLS 2008.

[44] Hayden, R. and Bradley, J. T. (2010) A fluid analysis
framework for a Markovian process algebra. Theoretical
Computer Science, 411, 2260–2297.

[45] Tribastone, M., Ding, J., Gilmore, S., and Hillston,
J. (2011) Fluid rewards for a stochastic process
algebra. To appear in IEEE Transactions on Software
Engineering.

[46] Bortolussi, L., Galpin, V., Hillston, J., and Tribastone,
M. (2010) Hybrid semantics for PEPA. QEST 2010,
Seventh International Conference on the Quantitative
Evaluation of Systems, Williamsburg, Viginia, USA,
15-18 September 2010, pp. 181–190. IEEE Computer
Society.

[47] Hayden, R. A. (2007). Addressing the state space
explosion problem for PEPA models through fluid-
flow approximation. Undergraduate project, Imperial
College London.

[48] Slegers, J. (2010) A Langevin interpretation of PEPA
models. Electronic Notes in Theoretical Computer
Science, 261, 71 – 89. Proceedings of the Fourth
International Workshop on the Practical Application
of Stochastic Modelling (PASM 2009).

[49] Galpin, V., Bortolussi, L., and Hillston, J. (2009) Hype:
A process algebra for compositional flows and emergent
behaviour. In Bravetti, M. and Zavattaro, G. (eds.),
CONCUR, Lecture Notes in Computer Science, 5710,
pp. 305–320. Springer.

[50] David, R. and Alla, H. (2010) Discrete, Continuous and
Hybrid Petri Nets, second edition. Springer.

[51] Gribaudo, M. and Telek, M. (2007) Fluid models
in performance analysis. Formal Methods for
Performance Evaluation, 7th International School
on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2007,
Bertinoro, Italy, May 28-June 2, 2007, Advanced
Lectures, Lecture Notes in Computer Science, 4486,
pp. 271–317. Springer.

[52] Benäım, M. and Boudec, J.-Y. L. (2008) A class
of mean field interaction models for computer and
communication systems. Perform. Eval., 65, 823–838.

[53] Bakhshi, R., Cloth, L., Fokkink, W., and Haverkort,
B. (2009) Mean-field analysis for the evaluation of
gossip protocols. QEST, pp. 247–256. IEEE Computer
Society.

[54] Bakhshi, R., Endrullis, J., Endrullis, S., Fokkink, W.,
and Haverkort, B. (2010) Automating the mean-field
method for large dynamic gossip networks. QEST, pp.
241–250. IEEE Computer Society.

[55] Bobbio, A., Gribaudo, M., and Telek, M. (2008)
Analysis of large scale interacting systems by mean field
method. QEST, pp. 215–224. IEEE Computer Society.

[56] Chesnais, A., Gelenbe, E., and Mitrani, I. (1983)
On the modeling of parallel access to shared data.
Commun. ACM, 26, 196–202.

[57] Gelenbe, E. and Mitrani, I. (1982) Control policies
in CSMA local area networks: Ethernet controls.
SIGMETRICS Performance Evaluation Review, 11,
233–240.

[58] Gelenbe, E. and Fourneau, J. (2002) G-Networks with
resets. Performance Evaluation, 49, 179–191.

[59] Fourneau, J. and Gelenbe, E. (2004) Flow equivalence
and stochastic equivalence in G-Networks. Computa-
tional Management Science, 1, 179–192.

The Computer Journal, Vol. 00, No. 01, 2011

