
Rapid performance evaluation using fluid-flow
analysis and eXtended Stochastic Probes

Allan Clark and Stephen Gilmore

Laboratory for Foundations of Computer Science
The University of Edinburgh

Abstract. Rapid and accessible performance evaluation of complex soft-
ware systems requires two critical features: first, the ability to specify
useful performance metrics easily; second, the ability to analyse massive
state spaces of 101000 states and beyond. In this paper we combine previ-
ous work on the development of stochastic probes as a performance query
specification language with the requirement to analyse massive state
spaces in order to obtain a response-time profile. A stochastic probe is a
passive component added to the model in order to partition the states of
the model for the purpose of analysing a particular query. The language
of stochastic probes is a specification language with a regular-expression
like syntax which allows the concise specification of a sequence of activ-
ity observations. The specification is then automatically translated into
a passive component which is inserted into the model. The language of
“eXtended Stochastic Probes” (XSP [7]) allows the modeller to specify
guards on activity observations. We have found stochastic probes to be
a convenient query specification mechanism which is particularly well-
suited to passage-time queries in which the user must specify source and
target events. An event is either the occurrence of a particular activity
or some condition becoming true. In this paper we restrict ourselves to a
subset of all passage-time queries called a response-time query in which
the source and target events are observable by one of many components
of the same kind.

1 Introduction

Performance modelling techniques are used to build abstract models of a real-
world system. The ‘real-world system’ may not yet exist, or – if it does – we
may need to change it, or the environment which surrounds it may change out-
side of our control. Dynamic stochastic modelling is often used to predict the
performance of a combination of system and environment without the cost of
deploying a real-world test, which may be infeasible or prohibitively expensive.
Models are analysed to give performance results which are applicable to the
real-world system. Stochastic process algebras are a popular method of building
these abstract models for many reasons. Process algebras allow large models to
be built from small components which are combined and replicated. As a result,
models can be created which would be infeasible to construct in a less compo-
sitional manner. Additionally, the precise formal definition of stochastic process



algebras allows static analysis to be performed over the model. This can prevent
many modelling errors.

Performance models, whether described in a process algebra such as PEPA [16]
or a graphical notation such as Petri nets, are often translated into a continuous-
time Markov chain (CTMC) for analysis. This approach to evaluating the model
suffers from the well-known problem of state-space explosion. As we increase the
populations of the components involved in the model – for example increasing
the number of user or client components – the size of the resulting state-space
grows exponentially. Even utilising techniques to dampen the effect of state-
space explosion, such as aggregation [24, 11], or using simulation to approxi-
mately model-check the CTMC [21], the rapid grow of the discrete state-space
as components are added greatly limits the applicability of this approach to
analysing a model. This problem hinders modelling to the extent that in recent
years modellers have often turned to alternative approaches to model analysis
which do not require the generation of the entire state-space.

For the PEPA stochastic process algebra the breakthrough for this style of
analysis was Hillston’s 2005 paper[17] which describes the automatic translation
of a PEPA model into a set of coupled ordinary differential equations (ODEs).
The number of equations produced from the translation depends on the number
of distinct component states and not the populations of the component types.
This means that users of the PEPA language are able to analyse models that – if
interpreted in the discrete setting – would result in state-space sizes of the order
of 101000 and beyond. When a PEPA model is translated into a set of ODEs
this is often referred to as the fluid-flow approximation of the model. Since then,
the Stochastic Simulation Algorithm(SSA) [10] has also been used [2] to analyse
large-scale PEPA models.

The advantage of using such techniques is clear. Models which were previ-
ously infeasible to analyse (using CTMCs) now fall within the realm of models
appropriate for analysis via description in PEPA. The disadvantage is the loss
of the vast body of knowledge of analysis techniques for CTMCs.

One kind of analysis which can be achieved in various ways including uni-
formisation [12, 13, 23, 4] (also known as randomisation), is the extraction of
passage-time quantiles [9, 14]. This allows the calculation of the probability of
moving from one set of source states to another set of target states at or within
a given time after a source state is entered. In the world of the CTMC the source
and target of a passage are both defined as a set of states. However, when spec-
ifying the query we have not yet derived the CTMC, hence we talk about the
source and target events. A source event is either an activity which results in a
transition into a source state, or a condition which becomes true when such a
transition occurs. A target event is analogously defined.

In this paper we consider a subset of all passage-time queries which we call
response-time queries resulting in a response-time profile. This subset consists of
all passage-time queries which measure the probability of completing a passage
between two events observable by a single component. This is often a single
component actively initiating a request activity and then waiting to passively or



actively cooperate in a response activity. Although we call this a response-time
profile the initiating and completing activities can conceptually have nothing to
do with a request and response. However, for the remainder of this paper, we
will refer to them as request and response activities.

A response-time profile is a more detailed report of the responsiveness of a
system than an average response-time. A response-time profile reports the prob-
ability of a component observing the completion of a response at a given time
after the initiation of the request. For large-scale systems which cannot be com-
piled to a CTMC we have previously been limited to the computation of average
response-times. Numerical integration of the derived system of ODEs is used to
predict the evolution of the population of each component type over time within
the system. Where this converges to an unchanging equilibrium in which the
population of each component type remains the same we can classify this as the
steady-state of the system. Using this steady-state and an application of Little’s
Law [22] we can extract average response-times [6]. The main contribution of
this paper is the generalisation of this technique into one for obtaining a full
response-time profile based on the fluid approximation.

Structure of this paper: The remainder of this paper is structured as follows; the
following sub-section provides a brief overview of PEPA, the stochastic process
algebra with which this paper is concerned. Following this, Section 2 recaps in
detail how stochastic probes allow the calculation of average response-times from
PEPA models which we translate into ODEs. Section 3 shows how we can obtain
response-time profiles by modifying the way in which the probe specification is
translated. This is important as it means that the user need not change their
measurement specification and the calculation of the response-time profile can be
entirely automated. We give two examples and validate these by comparing the
results with those obtained using a stochastic simulator. In addition we build
a more abstract model with fewer states such that it may be translated into
a CTMC and compare the results of all three techniques. In this section the
queries are kept simple in that each response-passage has only one source state;
this simplifies the calculation a little for the purposes of demonstration. However
in Section 4 the method is generalised by removing this restriction and allowing
for response-passages which have multiple source states. Finally we conclude on
our method in Section 5.

1.1 PEPA

We work with the Markovian process algebra PEPA, as defined in [16]. Appli-
cations of the language are described in [15, 19, 18, 1]. PEPA is a stochastically-
timed process algebra where sequential components are defined using prefix and
choice. Models compose these sequential components, requiring them to coop-
erate on some activities, and hide others. Rates are associated with activities
performed by each component and the passive rate > is used to indicate that
the component will passively cooperate with another component on this activity.
In this case the passive component may enable or restrict the activity from being



performed by the cooperating component but the rate when enabled is deter-
mined by the actively cooperating component. The component (a, r).P performs
the activity a at rate r whenever it is not blocked by a cooperating component
and becomes the process P . The component (a,>).Q passively synchronises on
the activity a and becomes process Q. We use the version of PEPA with arrays of
components and functional rates [20] (“marking dependent rates”, in Petri nets
terms). We write P [5] to denote five copies of the component P which do not
cooperate and P [5][α] to denote five copies of the component P which cooperate
on the activity α. That is, P [5] is an abbreviation for P ‖ P ‖ P ‖ P ‖ P and
P [5][α] is an abbreviation for P BC

{α}
P BC
{α}

P BC
{α}

P BC
{α}

P .

We use the notation P BC
∗
Q to be a synonym for P BC

L
Q where L is the set

of activities performed by both P and Q, i.e. the intersection of their alphabets.
The component Stop indicates a component which has terminated and can no
longer perform any activities. Finally our probe language makes use of imme-
diate actions which are written a.P to mean the process which instantaneously
performs the action a to become the process P . These are generally cooperated
over such that components can be blocked until another component has entered
a state which may perform the appropriate immediate synchronisation.

A PEPA model can be compiled into several different formats for analysis.
There are three techniques commonly used to analyse a PEPA model; transla-
tion to a continuous time Markov chain (CTMC) [16], or to a set of ordinary
differential equations (ODEs) [17], and the use of stochastic simulation [2].

2 Average Response-Time

In this section we detail how average response-time can be calculated for a model
via translation to a system of ODEs.

The model shown in Figure 1 represents an e-commerce web-site. There are a
number of user components all of which must make requests to a central Server
component. This may in reality be many physical servers but is represented here
as a single stateless component. Each User may, independently, make a single
browse or buy request corresponding to the user clicking on a link to view or
purchase an item. The Server component then responds after some delay to
the user with either a page or a confirmation of payment. The rate of responses
to buy requests is somewhat slower since it takes longer to process a purchase
request than a data request.

We can obtain the average-response times of both the browse and buy re-
quest activities using this model by solving for the long-term, or steady-state,
populations of the three user component states. Where Popst(P ) means the
steady-state population of the state P and Thr(α) means the throughput (at
steady-state) of the action α, then our average response-times are computed as:

AvgRes(browse) =
Popst(Browse)

Thr(browse)

=
Popst(Browse)

Popst(User)× λbr



User
def
= (browse, λbr).Browse + (buy , λbr).Buy

Browse
def
= (getPage, λgp).User

Buy
def
= (getConfirm, λgc).User

Server
def
= (getPage, λsp).Server + (getConfirm, λsc).Server

System
def
= (Server [M ]) BC

L
(User [N ])

where L = { getPage, getConfirm }

Fig. 1. The PEPA model for an e-commerce web-site

AvgRes(buy) =
Popst(Buy)

Thr(buy)

=
Popst(Buy)

Popst(User)× λbu

The calculation of these particular response-times is made straightforward by
the fact that there is a set of states of the user components which corresponds to
the user being in the middle of the analysed response passage. In these specific
cases we are analysing single action response times and the sets of states are
singleton sets. However if we wish to measure the response-time from an initial
browse until a confirmation of a payment then we must modify our model. This is
because there is no set of User states which indicate that the user has performed
an initial browse request but has not yet performed the associated getConfirm
to complete the passage.

In order to automatically transform the model into one in which such a
measurement can be made we add a stochastic probe [7]. We specify the probe
as:

Probe = browse, getConfirm (1)

This is then automatically translated into the sequential PEPA component in
Figure 2. The alphabet of the probe is the set of all activities observed by the
probe component. The probe component is attached to the model via cooperation
with some component of the model (perhaps the whole system). The cooperation
set is the whole alphabet of the probe.

Probe
def
= (browse,>).Run + (getConfirm,>).Probe

Run
def
= (getConfirm,>).Probe + (browse,>).Run

(2)

Fig. 2. The PEPA component automatically generated from the probe specification (1).
The underlines are there only to indicate which prefix choices represent the self-loops
and have no semantic meaning.



We do not wish to artificially block the observed component and so the probe
component must be able to perform all activities in its alphabet in all states.
Hence in each state of the generated probe a self-loop is added for any activity
in the probe’s alphabet which does not cause the probe to change its state.
The self-loop observes the activity – allowing it to occur – but the probe does
not alter its state. In the generated PEPA component in Figure 2 the self-loop
activity observations have been underlined. In the remainder of this paper for
the sake of space and clarity we will omit the self-loops.

The PEPA component automatically generated from the probe specification
is then added to the model using the following transformation rule [8]:

User [?N ] =⇒ (User BC
∗

Probe)[?N ]

Note that full cooperation ‘∗’ is used to ensure that the probe component ob-
serves all of its alphabet. By attaching a probe component to every user we can
examine the population of users in the ‘waiting’ state. Here, the ‘waiting’ state
is the state of having made at least one browse but not yet having performed the
target action getConfirm. To do so we count the number of probes in the Run
state. Because we have attached a probe to all the user components we term this
a “many probe”.

2.1 Partial Evaluation

Unfortunately, adding a probe component to every single user component in the
model translates the original model from one which could be readily translated
into a system of ordinary differential equations for analysis to one which can-
not. This is because the translation into ODEs does not allow a cooperation
to be replicated by the array operator. However, using an idea due to Nigel
Thomas [25], we can use a technique called partial evaluation to turn the coop-
eration component User BC

∗
Probe into a sequential component UserProbe which

can then be used within the array operator as UserProbe [N ]. The individual
states of the User and Probe components are still recoverable from the states
of the sequential UserProbe component. This technique has been documented
previously [6]. The UserProbe component in our example is given by the PEPA
code shown in Figure 3.

Having attached this many probe to the User component in our example
model we can re-analyse the model and obtain the time series depicted in the
graph in Figure 4. This gives us a steady-state of the system from which we can
calculate the average response-time of our passage by:

Popst(Run) = Popst(BrowseRun) + Popst(UserRun) + Popst(BuyRun)

AvgRes =
Popst(Run)

Thr(UserProbe .browse)

=
Popst(Run)

Popst(UserProbe)× λbr



UserProbe
def
= (browse, λbr).BrowseRun + (buy , λbu).BuyProbe

BuyProbe

def
= (getConfirm, λgc).UserProbe

BrowseRun
def
= (getPage, λgp).UserRun

UserRun
def
= (browse, λbr).BrowseRun + (buy , λbu).BuyRun

BuyRun

def
= (getConfirm, λgc).UserProbe

Fig. 3. The probed and partially evaluated User component

 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250  300
 0

 200

 400

 600

 800

 1000

P
op

ul
at

io
n

Time

Time Series

Browsing
Buying

User
Running

Probe

Fig. 4. The timeseries of the web model with a probe added to each user

In the next section we will consider how we can obtain a more detailed full
response-time profile for the same passage.

3 Response-time Profiles

In this section we detail how to obtain a complete response-time profile from a
PEPA model which we compile into a set of ODEs. We build upon the general
idea originally proposed in [3]. This idea proposes that prior to generation of
the ODEs all user components are transformed into components which enter a
deadlocked state upon completion of the response activity that signals the end
of the passage.

This transformation can be done by applying an absorbing probe. A regular
probe definition such as that used in the previous section may be translated
differently such that when a response activity is observed in the Run state (by
which the end of the passage is signalled) the probe enters a deadlocked state
rather than returning to the initial state of the probe. The probe definition for
our example is translated into the absorbing probe:

Probe
def
= (browse,>).Run + (getConfirm,>).Probe



Run
def
= (getConfirm,>).Done + (browse,>).Run

Done
def
= Stop

In this translated probe component, when a probe component in the Run state
performs a getConfirm it moves to the Done state. This represents the only
change from the translated probe definition given in Figure 2. As before this
probe definition is attached to each User component as User BC

∗
Probe which is

then partially evaluated to give a UserProbe component.

UserProbe
def
= (browse, λbr).BrowseRun + (buy , λbu).BuyProbe

BuyProbe
def
= (getConfirm, λgc).UserProbe

BrowseRun
def
= (getPage, λgp).UserRun

UserRun
def
= (browse, λbr).BrowseRun + (buy , λbu).BuyRun

BuyRun
def
= (getConfirm, λgc).UserDone

UserDone
def
= Stop

Once the set of ODEs are generated, the populations of the user components
are set such that all of them are in the source state of the passage. That is, the
state which is entered when performing a request activity which signals the start
of the passage. In this example the source state is the BrowseRun state. We say
that we seed the ODEs when we set the population of each component prior to
the simulation of the set of ODEs. Seeding the ODEs will be used extensively in
our approach.

Having added an absorbing probe and seeded the user component popula-
tions, an approximation to the Cumulative Distribution Function (CDF) of the
passage specified by the probe specification can be obtained. The derived set
of ODEs are evaluated by numerical integration giving the populations of each
component type at time t, for each time value of the CDF that is required. The
approximate value of the CDF at time t is given by:

CDF (t) =
UserDone(t)

BrowseRun(0)

where UserDone(t) is the number of probe components in the deadlocked absorb-
ing state at time t and BrowseRun(0) is the initial population of the source state.
The initial population of the source state is equal to the original number of user
components since we have set all of the user components into their respective
source states.

In this method – which is a stochastic-probes specified version of the method
proposed by Bradley et al – the state definitions UserProbe and BuyProbe are un-
used because all of the user components are set to the source state and once the
passage has begun it cannot be reset. We have identified two sources of inaccura-
cies. The first concerns the deadlocked user components. Such user components



do not perform subsequent requests and responses and therefore do not compete
with the still-to-complete probed components. Therefore the later completing
components are afforded artificially exclusive access to shared resources. The
second source of inaccuracy is that this method does not take into account when
a request may occur. Because of this there may be initially too much competition
for shared resources. In the following section we address both these issues.

3.1 One-Run Probes

We begin with our approach to solving the first source of inaccuracy by allowing
user components which have completed their response-passage to continue to
behave as a normal unprobed component. We must take care that we are able
to distinguish those user components which have completed one passage whilst
they are still able to perform their usual activities. We approach this task with
the introduction of the notion of a one-run probe. Figure 5 shows a one-run
probe together with a typical (cyclic) probe and the above described absorbing
probe.

Source

Target

source
action

Typical Probe

Source

Target

Absorbing Probe

Source

Target

One-Run Probe

*

* = probe alphabet

Fig. 5. A typical probe together with an absorbing probe and a one-run probe

As before with an absorbing probe we can use the same probe definition,
but the translation into a PEPA component is modified such that upon entering
the Done state the probe is still able to observe – and thus not block – all
the activities within its own alphabet. The probe definition given above, and
labelled (1), is translated into the following set of component definitions:

Probe
def
= (browse,>).Run + (getConfirm,>).Probe

Run
def
= (getConfirm,>).Done + (browse,>).Run

Done
def
= (browse,>).Done + (getConfirm,>).Done



Once the one-run probe enters into its absorbing state – the Done state – it
will never leave. Nonetheless, the component Done is able to passively cooper-
ate over the activities in its alphabet, browse and getConfirm. Therefore each
user component attached to a probe component is not blocked from behaving
exactly as a non-probed user component. This has the consequence that the
process User can perform the same activities as the process (User BC

∗
Done).

Crucially, we are able to identify the population of user components which have
completed the analysed passage using the population of probe components in
the Done state. Thus we can tell how many user components have completed
one response-passage even though they are now currently acting as a non-probed
user component and offering up competition for the shared resources.

The diagram in Figure 6 depicts the general case of combining a one-run
probe in cooperation with a component. In the bottom row the inner circles relate
the state of the probe while the outer circles relate the state of the component.
The area within the shaded rectangle represents a client component acting as
though it were unprobed because the one-run probe is in the absorbing state.

Probe

Component

Fig. 6. A general case of combining a client component with a one-run probe component
in cooperation.

Once we have added the one-run probe to our example model and partially
evaluated the resulting cooperation between probe and user components we ob-
tain the following PEPA model:

BrowseRun
def
= (getPage, λgp).UserRun

UserRun
def
= (browse, λbr).BrowseRun + (buy , λbu).BuyRun

BuyRun
def
= (getConfirm, λgc).UserRan



UserRan
def
= (browse, λbr).BrowseRan + (buy , λbu).BuyRan

BrowseRan
def
= (getPage, λgp).UserRan

BuyRan
def
= (getConfirm, λgc).UserRan

Server
def
= (getPage, λsp).Server + (getConfirm, λsc).Server

System
def
= (Server[M ]) BC

L
BrowseRun [N ]

where L = { getPage, getConfirm }

The definitions BrowseRun , UserRun and BuyRun correspond to a user com-
ponent which is attached to a probe component in the Run state. The definitions
BrowseRan , UserRan and BuyRan correspond to a user component in coopera-
tion with a probe component in the Done state. We can therefore evaluate the
number of user components which have completed the passage using:

Done(t) = UserRan(t) + BrowseRan(t) + BuyRan(t)

We may therefore approximate the CDF at time t with:

CDF (t) =
Done(t)

BrowseRun(0)
(3)

However, this would calculate a pessimistic CDF due to the second problem
identified above – the state of the model at the time a request is made is not
utilised with the method thus far stated. The solution is to use the results of
steady-state analysis on the original model to seed the ODEs derived from the
probed model. We performed steady-state analysis using the ODEs derived from
the original model. From this we obtained the values for the populations of the
user states shown in the left-hand columns of the table in Figure 7.

User 300 UserRun 0
Browse 54 BrowseRun 54

Buy 646 BuyRun 0
UserRan 300

BrowseRan 0
BuyRan 646

Fig. 7. The left-hand columns show the steady-state populations of the User compo-
nent states. The right-hand columns show how the derived ODEs are seeded in order
to obtain a CDF for the response-passage.

The central idea is that when we seed the derived ODEs the behaviour of
the system should be that of the steady-state. In particular the source state
of the response passage has only the number of components expected to be



in that state at any given time. This is in contrast to before when the entire
population of user components was set to be in the source state of the response
passage. The remaining population of user components is distributed about the
user states as in the steady-state. However, this remaining population must not
interfere with the calculation of the CDF. In particular we must not count any
passages subsequently started by this user population. The solution is that these
uncounted users are seeded in cooperation with a completed probe component.
This means that we have a number of already completed passages before the
simulation of the seeded ODEs begins. We know the number of such passages
and can therefore subtract them from the end count.

The columns on the right half of the table in Figure 7 show how we seed
the probed model in order to approximate the CDF. All those user states which
are not the source state have their populations given to their respective states
in a user component in cooperation with a probe which is in the Done state.
The source state of the original unprobed model Browse has all of its steady-
state population given to the equivalent Browse state in which the probe is
in the Run state, i.e. the BrowseRun state. To calculate the number of user
components which have completed a passage we subtract the initial number of
completed probes from the number of completed probes at time t:

Done(t) = (UserRan(t) + BrowseRan(t) + BuyRan(t))

− (UserRan(0) + BuyRan(0) + BrowseRan(0))

Note that BrowseRan(0) will of course be zero since this corresponds to the
source state of the user component. The approximated CDF is then calculated
as before with equation (3).

3.2 Validation

In order to validate our computed CDF we can attempt to solve the model using
translation into a CTMC. Unfortunately the reason for translating the model
into a system of ODEs in the first place was due to the fact that the model was
too large for analysis via CTMC. Previously whenever a model was too large for
analysis via CTMC, but a response-time profile rather than an average response-
time was required we resorted to abstracting the model. A common method of
abstraction is for the behaviour of only one single client component to be fully
modelled while the behaviour of all other clients is aggregated into one super
client (in some cases a few super clients). Figure 8 shows a model which is an
approximation of the original model but which has a state-space small enough
to allow analysis via CTMC. The main trick is to reduce the rate at which the
server may respond by dividing the rate by the steady-state population of user
clients waiting for such a response. The steady-state population is obtained by
evaluating the original model using ODEs.

However this means that we are comparing one approximation to another.
The first approximation is an approximation to the response-profile analysis of
the full model whilst the second is a full response-profile for a model which is an



λgp = λsp/Browse(∞)

λgc = λsc/Buy(∞)

User
def
= (browse, λbr).Browse + (buy , λbu).Buy

Browse
def
= (getPage, λgp).User

Buy
def
= (getConfirm, λgc).User

Server
def
= (getPage, λsp).Server + (getConfirm, λsc).Server

System
def
= (Server [M ]) BC

L
(User)

where L = { getPage, getConfirm }

Fig. 8. An approximation model solvable via a CTMC

approximation to the full model. To bridge this gap we use stochastic simulation.
The simulation is performed a number of times giving a percentage of runs in
which a target state is entered before any given time t up to some maximum.
Obviously the greater the number of runs the more accurate the computed CDF
is, but the longer the analysis takes.

A stochastic simulator can only be used for a response-profile if there are a
fixed number of source states and we know the relative probabilities that the
passage is begun in each of the given source states. When analysing via CTMC
analysis this information is achieved by exploring the whole state-space of the
system and then solving the embedded Markov chain of the entire state-space.
Since we wish to use this technique on a model with an infeasibly large state-
space this approach is not open to us. An alternative is to use a single source state
in the belief that it is representative of all source states. Some of the alternative
source states will give rise to a more optimistic response-profile and others a
more pessimistic one. We require that these two possibilities cancel each other
out when scaled by their respective probabilities of being the particular source
state in which a particular response passage is begun.

We must single out an individual client for this style of analysis so the PEPA
model which we in turn automatically translated into a Java simulator is given
in Figure 9. This provides a single tagged client and it is the response time as
observed by that tagged client that we measure.

This provides a specific source state and a specific condition for the tar-
get states. The source state as mentioned above is to have the steady-state
populations for the non-tagged clients and the tagged client in its source state:
Browsetag. The seeded population of the untagged client state Browse is reduced
by one as this corresponds to the single tagged client. The target condition is
simple; the tagged client must be in its target state, Donetag. In this example



User tag
def
= (browse, λbr).Browsetag + (buy , λbu).Buytag

Browsetag
def
= (getPage, λgp).User tag

Buytag

def
= (getConfirm, λgc).Donetag

Donetag
def
= Stop

User
def
= (browse, λbr).Browse + (buy , λbu).Buy

Browse
def
= (getPage, λgp).User

Buy
def
= (getConfirm, λgc).User

Server
def
= (getPage, λsp).Server + (getConfirm, λsc).Server

System
def
= (Server [M ]) BC

L
(User [N − 1] ‖ User tag)

where L = { getPage, getConfirm }

Fig. 9. A model suitable for generating a custom Java simulator using which a response-
time profile can be obtained.

there is exactly one source state; in Section 4 we analyse a passage with multiple
source states.

There are now three results to compare, the first is our approximate CDF
calculated using ODEs derived from the original model. The second is a precise
CDF calculated from the CTMC derived from an approximation to the original
model. The third is a CDF obtained through stochastic simulation of the original
model. The results of the comparison are shown in the graph in Figure 10.
There is very little disagreement between all three methods. To calculate these
results – on an typical desktop machine – our ODE approach takes less than
one second. For the simulation technique we set the number of independent runs
to ten thousand and this took 123 seconds. The analysis of the CTMC took
1,065 seconds. This is because the approximation model gives rise to a CTMC
with large rates and the uniformisation technique must perform many matrix
multiplications in the presence of large rates.

4 Multiple Source States

So far the passages we have been concerned with have all had the distinguishing
feature of a single source state meaning that at the beginning of a response-
passage the user/client component state is known. Where this has been the
case, we have been able to use the steady-state distribution to define the initial
value problem for the derived set of ODEs. This approach is not applicable if
there are multiple source states within the client component. Multiple source
states occur if the user component may perform an activity which begins the



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140
 0

 0.2

 0.4

 0.6

 0.8

 1

P
op

ul
at

io
n

Time

One-run probe approximated CDF

Average Response Time
one-run-ode-cdf
hydra-ctmc-cdf

ssa-cdf

Fig. 10. Comparison of the CDF computed via the approximation model and CTMC
analysis and the CDF computed via the original model and ODE analysis.

response-passage and transition into one of a choice of two or more states. This
means there must be more than one request activity – although these may have
the same name. For example, if the activity request begins a response-passage
then the following component has two source states, namely, Wait1 and Wait2:

Client
def
= (request , λ1).Wait1 + (request , λ2).Wait2

Wait1
def
= (response, δ1).Client

Wait2
def
= (response, δ2).Client

(4)

Recall our original model from Section 2 shown in Figure 1. Suppose now we
wish to measure the general responsiveness of the system, rather than that of
either the browse or the buy activities in isolation. To do this we may analyse the
response passage from an occurrence of either kind of request to the occurrence
of its associated response. This can be specified with the probe specification:

Probe = (browse, getPage) | (buy , getConfirm) (5)

This is then automatically translated into the following one-run probe compo-
nent definition:

Probe
def
= (browse,>).Run1 + (buy ,>).Run2

Run1
def
= (getPage,>).Done1

Run2
def
= (getConfirm,>).Done2

Done1
def
= (browse,>).Done1 + (buy ,>).Done1

+ (getPage,>).Done1 + (getConfirm,>).Done1

Done2
def
= as Done1 (6)

When this probe definition is attached to a user component, it creates a compo-
nent which always behaves as a usual unprobed user component. However when



ProbeComponent

source action 1
source action 2
target action

Fig. 11. The general case for combining a component with a one-run probe for the
case in which the response-passage has multiple user component source states

the first request/source activity is performed by the user component – and hence
observed by the probe component – then the state of the probe component al-
lows us to determine which activity began the passage and whether or not the
response-passage has been completed. The general case for attaching a one-run
probe with multiple source states to a user component is depicted in Figure 11.

When the probe definition (6) is added to the model we obtain the following
PEPA model where the X may be replaced by both 1 and 2.

UserProbe
def
= (browse, λbr).BrowseRun1 + (buy , λbu).BuyRun2

BrowseRun1
def
= (getPage, λgp).UserRan1

BuyRun2
def
= (getConfirm, λgc).UserRan2

UserRanX
def
= (browse, λbr).BrowseRanX + (buy , λbu).BuyRanX

BrowseRanX
def
= (getPage, λgp).UserRanX

BuyRanX
def
= (getConfirm, λgc).UserRanX

Server
def
= (getPage, λsp).Server + (getConfirm, λsc).Server

System
def
= (Server [M ]) BC

L
(BrowseRun [N ])

where L = { getPage, getConfirm }

After the addition of the probe, the model is translated into a set of ODEs which
are then evaluated against the initial value problem using numerical integration.
As before, we must seed the ODEs by setting the correct populations of compo-
nent states to represent the steady-state of the system. In particular we set the



number of clients in each of the source states of the system depending on the
steady-state, not how often each kind of request occurs. Recall that we already
know the steady-state solution of this model from the original model 7 since
the addition of the one-run probes does not change the behaviour of the model.
We use the same idea by taking the source populations from the steady-state.
Essentially the seeding is the same but now the Buy user state is also a source
state. Therefore rather than the steady-state population of the Buy state being
seeded as BuyRan it is seeded as BuyRun2. Finally the steady-state population of
the User state must be initialised as either UserRan1 or UserRan2. The purpose
of this, as before, is that we have a user population which can be excluded from
the CDF approximation calculation but which still contributes to the compe-
tition for the shared resources. It does not matter which of the two as we can
subtract the sum UserRan1(0)+UserRan2(0) for which we can use the shorthand
UserRanX(0).

The näıve way to compute the CDF would be to take the value at time t
equal to the number of probes completed divided by the number of probes in
total which is equal to those which started in the two source states, or:

CDF (t) =
UserRanX(t) + BrowseRanX(t) + BuyRanX(t)−UserRanX(0)

BrowseRun1(0) + BuyRun1(0)

This would give a CDF value which over-compensated for the effects of the buy
response-passages. Because although ‘buy’ response passages are started much
less frequently then ‘browse’ response passages there are more of them in the
calculation. This is because the user client spends longer in the source state of
a ‘buy’ passage than in the source state of a ‘browse’ passage. However, each
probe’s absorbing state depends on how the passage was started. This allows us
to scale the contribution of each kind of passage according to how likely it is to
occur. We record the throughput of the User .buy and User .browse actions and
hence their ratios:

Ratio browse =
Thr(User.browse)

Thr(User.buy) + Thr(User.browse)

That is, the fraction of requests which are browse requests. In other words, the
probability that a general response-passage is begun by entering the Browse
state. This allows us to independently calculate the probability of completing
each kind of request and then scale the probabilities according to their frequen-
cies. We have that the probability of completing a browse response-passage at
time t is equal to:

CDFbro(t) =
UserRan1(1) + BrowseRan1(t) + BuyRan1(t)−UserRan1(0)

BrowseRun1(0)

Similarly for the buy response-passages:

CDFbuy(t) =
UserRan2(1) + BrowseRan2(t) + BuyRan2(t)−UserRan2(0)

BuyRun2(0)



Finally, our CDF for general requests in our model is calculated by:

CDF (t) = Ratio browse× CDFbro(t) +Ratio buy × CDFbuy(t)

4.1 Validation

For comparison the probe specification (5) can be translated in the traditional
cyclic manner and used to analyse the same passage via translation to a CTMC.
As before, the full model cannot be translated to a CTMC because of the
state-space size but may be approximated by the model in Figure 8. Plotted
in Figure 12 are the results from CTMC analysis of the approximation model.
The plotted lines are the CDF functions of three response-passages, that of all
browse requests, that of all buy requests and the passage of current interest i.e.
all requests in general. These clearly show the profile of the general response
is a combination of the two response-passages of which it consists. The browse
requests are responded to very quickly with high probability corresponding to
the steepest line of the graph. In contrast, the probability of completing a buy
response-passage increases much less sharply. The general response then behaves
in two modes initially a large proportion of the general requests (all the browse
requests) are responded to very quickly with high probability. But then once we
reach the probability corresponding to the proportion of general requests which
are browse requests the gradient of the CDF becomes similar to the gradient of
the buy requests. This is therefore a useful CDF to have computed showing that
general requests do indeed behave in two separate modes. For the simple model
we have analysed here it was easy to predict this but in general computing such
a CDF can be informative.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
ro

ba
bi

lit
y

Time

CTMC analysis

ctmc-browse
ctmc-buy

ctmc-browse/buy

Fig. 12. The CDFs for the web model as calculated by the analysis of the CTMC
derived from the approximation model

The top graph in Figure 13 shows how well our method of response-profile
analysis using ODEs for this particular query does. We see that for general re-



quests we do indeed compute a CDF showing two distinct phases or modes cor-
responding to the contrasting behaviours of the two kinds of response-passages
of which the general response-passage consists. We see that it compares quite
reasonably with that of the CDF computed via translation of the approxima-
tion model to a CTMC. Recall that this is only an approximation itself and
therefore exact agreement is not to be expected or even desired. Also shown in
this graph is the ODE-computed CDF for just the buy response passages and
the CDF computed via translation to ODE in the näıve manner of the previous
section which does not adjust for multiple source states. We see that these two
are similar because the näıve method vastly over-attributes the contribution of
buy response-passages to the overall general response-passage profile. Finally we
have again used our technique of generating a stochastic simulator to evaluate the
response-passage on the full sized model. The CDF calculated via this method is
also shown on this graph and in the bottom graph of Figure 13. We have zoomed
in on the first five time units to show how the three methods of response-time
calculation compare. In this we see that the two methods analysing the full-sized
model agree (slightly) more than the CTMC method analysing an approximated
model.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
ro

ba
bi

lit
y

Time

CDF comparison

ctmc-browse-buy
true-ode-browse-buy

ssa-browse-buy
naive-ode-browse-buy

true-ode-buy
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
ro

ba
bi

lit
y

Time

CDF comparison

ctmc-browse-buy
true-ode-browse-buy

ssa-browse-buy

Fig. 13. Comparison of the approximated CDFs for the response passage begun with
the browse and buy activities. Our ‘true’ version approximates well that of the CTMC
whereas the näıve version is too pessimistic. We plot also the CDF approximation using
our technique for the response passage begun with only the ‘buy’ activity. This is similar
to the näıve version suggesting that the näıve version exaggerates the contribution of
the ‘buy’ response passages to the overall CDF.

5 Conclusions

In this paper we have investigated the use of the PEPA language to obtain an ap-
proximation to the response-time profiles of passages for models with very large
state-spaces. Traditionally PEPA models have been analysed by translation into
the underlying CTMC. Recently, to avoid the state-space explosion problem,



modellers have taken advantage of an automatic translation from PEPA models
into a set of ODEs which approximate the CTMC underlying the PEPA model.
The obtained ODEs have then been evaluated via numerical integration to ob-
tain a time series plotting the population of each component type against time.
Evaluation is continued until the populations of each component kind are sta-
ble (the stationary points of the differential equation). These stable populations
have then been taken to be an approximation to the steady-state of the model.
This then gives a way to infer the average response-time of modelled systems
and services for large-scale systems.

For many models a more detailed analysis is required, and in the CTMC world
transient analysis of the CTMC has allowed for the calculation of response-time
quantiles which plot the probability of completion against time. This paper has
described a technique to allow an approximation to this response-time profile
to be calculated from the ODEs derived from a PEPA model, thus allowing
response-time profiles to be approximated for models with a state-space size
that is far beyond the feasibility for CTMC analysis.

The use of the stochastic probe query specification language is a key ele-
ment in bringing the technology of our method to the modeller. In particular it
is possible to use the same query specification to analyse the model regardless
of whether it is then translated to a CTMC or a set of ODEs. We believe our
method is robust and that the subset of passage-time queries for which it is
appropriate — those we have termed response-passages — is large enough to be
applicable in many situations. We know that some passages which may not ap-
pear to fall within this framework can be altered via the addition of observation
probes in order to become response-passages although this is a topic for future
consideration.

Although the work described here decreases the gap between those analyses
available only via translation to a CTMC and those available via ODE analysis
there are still some queries (not just general passage-time queries but other work
done on CTMCs) which can only be performed via translation to a CTMC.
This is sometimes done by first constructing a model of the real system and
then approximating that with a model with a smaller (tractable) state-space
by abstracting some of the behaviour of the original model. This was done in
our two examples in Section 3. A further benefit of our work here is that such
an approximation model may be validated by computing response-time profiles
for both the original model using our method and for the approximation model
using transient analysis on the derived CTMC.

We note that the method considered here is not universally applicable. The
main deficiency is that analysis via a CTMC allows each individual source state
to contribute to the computed CDF. Since we cannot enumerate all of the source
states our method implicitly approximates this by using only one source state
which corresponds to the steady-state of the system. In the context of a request-
response passage this means that we assume that all requests are made when the
system is under steady-state conditions. Requests made outside these conditions
are either very unlikely or such requests cancel each other out. That is, a request



made when the system is under low usage has a high probability of completing
early but conversely a request made when the system is under high usage has
a low probability of completing early. Given these constraints, it is relatively
simple to come up with a model which will induce our system to approximate
response-time profiles badly. Constructing such a system is particularly trivial if
functional rates are allowed within the model. However we argue that in this case
the modeller knows that they are deliberately changing the responsiveness of the
system under differing loads. We therefore believe that the modeller may analyse
the response-times in those conditions separately and, if necessary, combine the
results.

We have only considered translating the model into a system of ODEs, but
for large models another method to avoid the generation of a large state-space
is to use simulation. This has been used before for PEPA and since it is pos-
sible to obtain a time series analysis using simulation we see no reason why
the same technique as described here cannot be used to obtain response-time
profiles. Additionally, passage-time analysis was extended for PEPA to include
analysis of the end of the passage in question resulting in passage-end [5] anal-
ysis. Because of the machinery required here to allow for multiple source states,
which is similar to that required for passage-end analysis, we believe our method
extends nicely to allow passage-end analysis to be performed over models with
massive state-spaces. Such analysis can be important in the analysis of service
level-agreements. Passage-time analysis for service level-agreements (SLAs) is
important as it allows such statements as: “Ninety percent of requests are re-
sponded to within 10 seconds”. However in the past we found that such analysis
meant that a simple way to achieve an SLA would be to respond negatively (eg
“request rejected” or “service too busy”) to all requests. Passage-end analysis
allows more succinct SLAs to be evaluated such as: “Ninety percent of positive
requests are responded to within 10 seconds” or “Ninety percent of requests are
responded to within 10 seconds and of those at least eighty percent are positive”.

6 Acknowledgements

The authors have been supported by the EU FET-IST Global Computing 2
project SENSORIA (Software Engineering for Service-Oriented Overlay Com-
puters (IST-3-016004-IP-09)). The authors would like to thank Professor Jane
Hillston for constructive feedback.

References

1. Argent-Katwala, A., Clark, A., Foster, H., Gilmore, S., Mayer, P., Tribastone, M.:
Safety and response-time analysis of an automotive accident assistance service. In:
Proceedings of the 3rd International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA 2008). pp. 191–205. No. 17 in
Communications in Computer and Information Science (CCIS), Springer-Verlag,
Porto Sani, Greece (Oct 2008)



2. Bradley, J., Gilmore, S.: Stochastic simulation methods applied to a secure elec-
tronic voting model. Electr. Notes Theor. Comput. Sci. 151(3), 5–25 (2006)

3. Bradley, J.T., Hayden, R., Knottenbelt, W.J., Suto, T.: Extracting
Fluid Response times from PEPA models. In: PASTA’08, 7th Work-
shop on Process Algebra and Stochastically Timed Activities (July
2008), http://pubs.doc.ic.ac.uk/responsetimes-fluidpepa/, this is a short
version summary of the full paper that appeared at SIPEW 2008
(http://pubs.doc.ic.ac.uk/responsetimes-fluidanalysis).

4. Clark, A., Gilmore, S.: Terminating passage-time calculations on uniformised
Markov chains. In: Argent-Katwala, A., Dingle, N.J., Harder, U. (eds.) Proceedings
of the Twenty-Fourth annual UK Performance Engineering Workshop. pp. 64–75
(Jun 2008)

5. Clark, A., Duguid, A., Gilmore, S.: Passage-end analysis. In: Bradley, J.T.
(ed.) Computer Performance Engineering, 6th European Performance Engineer-
ing Workshop, EPEW 2009, London, UK, July 9-10, 2009, Proceedings. Lecture
Notes in Computer Science, vol. 5652, pp. 110–115. Springer (2009)

6. Clark, A., Duguid, A., Gilmore, S., Tribastone, M.: Partial evaluation of PEPA
models for fluid-flow analysis. In: Thomas, N., Juiz, C. (eds.) Proceedings of the
5th European Performance Engineering Workshop (EPEW 2008). LNCS, vol. 5261,
pp. 2–16. Springer, Palma de Mallorca, Spain (Sep 2008)

7. Clark, A., Gilmore, S.: State-aware performance analysis with eXtended Stochas-
tic Probes. In: Thomas, N., Juiz, C. (eds.) Proceedings of the 5th European Per-
formance Engineering Workshop (EPEW 2008). LNCS, vol. 5261, pp. 125–140.
Springer, Palma de Mallorca, Spain (Sep 2008)

8. Clark, A., Gilmore, S.: Transformations in PEPA Models and Stochastic Probe
Placement. In: Djemame, K. (ed.) Proceedings of the Twenty-Fifth UK Perfor-
mance Engineering Workshop. pp. 1–16. Leeds University (Jul 2009)

9. Dingle, N.J.: Parallel Computation of Response Time Densities and Quan-
tiles in Large Markov and Semi-Markov Models. Ph.D. thesis, Department of
Computing, Imperial College London. University of London. (October 2004),
http://pubs.doc.ic.ac.uk/njdthesis/

10. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. Journal of
Physical Chemistry 81(25), 2340–2361 (December 1977)

11. Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA
models. IEEE Transactions on Software Engineering 27(5), 449–464 (May 2001)

12. Grassmann, W.: Transient solutions in Markovian queueing systems. Computers
and Operations Research 4, 47–53 (1977)

13. Gross, D., Miller, D.: The randomization technique as a modelling tool and solution
procedure for transient Markov processes. Operations Research 32, 343–361 (1984)

14. Harrison, P.G., Knottenbelt, W.J.: Passage time distributions in large markov
chains. In: SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMETRICS in-
ternational conference on Measurement and modeling of computer systems. pp.
77–85. ACM, New York, NY, USA (2002)

15. Hillston, J.: The nature of synchronisation. In: Herzog, U., Rettelbach, M. (eds.)
Proceedings of the Second International Workshop on Process Algebras and Per-
formance Modelling. pp. 51–70. Erlangen (Nov 1994)

16. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

17. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the
Second International Conference on the Quantitative Evaluation of Systems. pp.
33–43. IEEE Computer Society Press, Torino, Italy (Sep 2005)



18. Hillston, J.: Process algebras for quantitative analysis. In: Proceedings of the 20th
Annual IEEE Symposium on Logic in Computer Science (LICS’ 05). pp. 239–248.
IEEE Computer Society Press, Chicago (Jun 2005)

19. Hillston, J.: Tuning systems: From composition to performance. The Computer
Journal 48(4), 385–400 (May 2005), the Needham Lecture paper

20. Hillston, J., Kloul, L.: An efficient Kronecker representation for PEPA models. In:
de Alfaro, L., Gilmore, S. (eds.) Proceedings of the first joint PAPM-PROBMIV
Workshop. Lecture Notes in Computer Science, vol. 2165, pp. 120–135. Springer-
Verlag, Aachen, Germany (Sep 2001)

21. Katoen, J.P., Zapreev, I.S.: Simulation-Based CTMC Model Checking: An Empir-
ical Evaluation. In: Quantitative Evaluation of Systems (QEST). pp. 31–40. IEEE
Computer Society (2009), www.mrmc-tool.org

22. Little, J.D.C.: A proof of the queueing formula l = λw. Operations Research 9,
380–387 (1961)

23. Melamed, B., Yadin, M.: Randomization procedures in the computation of
cumulative-time distributions over discrete state markov processes. Operations Re-
search 32(4), 926–944 (1984), http://www.jstor.org/stable/170587

24. Ribaudo, M.: On the aggregation techniques in stochastic Petri nets and stochastic
process algebras. In: Gilmore, S., Hillston, J. (eds.) Proceedings of the Third Inter-
national Workshop on Process Algebras and Performance Modelling. pp. 600–611.
Special Issue of The Computer Journal, 38(7) (Dec 1995)

25. Zhao, Y., Thomas, N.: Approximate solution of a PEPA model of a key distribu-
tion centre. In: Kounev, S., Gorton, I., Sachs, K. (eds.) Performance Evaluation:
Metrics, Models and Benchmarks, SPEC International Performance Evaluation
Workshop, SIPEW 2008, Darmstadt, Germany, June 27-28, 2008. Proceedings.
Lecture Notes in Computer Science, vol. 5119, pp. 44–57. Springer (2008)


