
Monitoring and Controlling Distributed Applications with Relocatable Objects

Stephen Gilmore
The University of Edinburgh

stg@dcs.ed.ac.uk

Marco A. Palomino
University of Cambridge

map37@cl.cam.ac.uk

1. Introduction

The Java programming language and its environment are
highly regarded as suitable choices for the development
and deployment of distributed applications. Portability, an
object oriented approach, support for multi-threading pro-
gramming and a special set of libraries for remote procedure
calls, are some of the features that make Java an excellent
choice for the implementation of distributed applications.
A considerable number of projects on Java distributed sys-
tems have already been completed. Here we can list Char-
lotte, SuperWeb, Javelin, Javelin++, Java/DSM, Voyager
and Babylon.

Based on Java, the Babylon package [1] was designed to
integrate into a single comprehensive system both new and
previously researched ideas in Java distributed computing.
It retains parts of the underlying mechanisms used in Ajents
[2], a previous project from which Babylon took part of its
source code. Babylon also has some innovative additions
that are not currently supported by Java, such as remote ob-
ject creation, remote class loading, asynchronous remote
method invocation and object migration.

From the point of view of application designers, Babylon
can be deployed as a layer of middleware which facilitates
the use of clusters of computational resources allowing se-
lective migration of code-containing objects from one com-
putational environment to another.

From the point of view of programmers, Babylon can be
seen as a collection of Java class libraries that provides the
necessary software infrastructure to support straightforward
access to information that is distributed, within organisa-
tions and all around the world.

It is relevant to note that all of the Babylon class libraries
are written in pure Java. Among other things, this means
that Babylon can be executed on any standard Java Virtual
Machine (JVM), and it is potentially open to a vast audi-
ence of programmers. Besides, the Babylon package con-
tains some useful features that are not currently supported
by Java. Consequently, it reduces the difficulty of writing
distributed programs.

Babylon is implemented using Java RMI. It has been

shown, however, that Java RMI is very slow for high per-
formance computing [4]. Most of the researchers in the
field agree that it is inappropriate for interactive applica-
tions [3]. Given that the key features of Babylon are prin-
cipally based on Java RMI, all the drawbacks and limita-
tions of Java RMI are inherited by Babylon. The motiva-
tion behind this work is the submission of a contribution
that eventually helps Babylon to become a better tool in the
field of Java distributed object applications. To this end, we
have developed graphical components to provide monitor-
ing and management capabilities for a Babylon application.
We have also made a number of technical extensions to the
existing Babylon system, including upgrading it to the Java
2 security model, and we have adapted it to use a better
implementation of RMI, because we believe that its depen-
dency on Sun’s RMI represents a drawback. Due to space
limitations, we cannot state in this document all the details
of our work, but readers may wish to take a look at [5] for a
comprehensive description of our investigation.

2. Babylon monitoring interface

Babylon implements a scheduling system and allows the
creation of a set of Babylon servers to control and govern
the allocation of resources. The role of the Babylon servers
is to offer a point of contact for the creation of objects on
the machines where they reside. In the same way in which a
World Wide Web browser is not able to access information
stored on systems that are not executing an HTTP server,
Babylon cannot offer its resources to computers that are not
running a Babylon server.

The job of the Babylon scheduler consists primarily
of supplying references to accessible Babylon servers that
have identified themselves. In addition, it transparently
manages the dynamically changing availability of the Baby-
lon servers.

In the initial version of Babylon, the scheduler did not
have any graphical user interface. In consequence, users
had no convenient way to interact with the scheduler. In
view of this, one of the extensions that we considered to
improve the functionality of Babylon was the implementa-

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

tion of a graphical user interface. This new element not
only gives a better look to the whole application, but it also
assists with administering and monitoring the operation of
Babylon. Figure 1 displays a snapshot of the scheduler
monitor, which is the first piece of our user interface.

Figure 1. Scheduler monitor

Figure 2 shows an example of the server monitor, the
second important piece of the user interface. The snapshot
corresponds to a server that has just been started.

Figure 2. Server monitor

Keeping track of the objects residing at any time on the
different Babylon servers is another capability of our user
interface. We believe that it could eventually be useful to
limit the creation of new objects and even to move existing
objects when resources become heavily utilised.

3. Security framework

In previous versions of Java a security manager was re-
sponsible for determining which resource accesses were al-
lowed to the different objects participating in an application.
It was on the basis of that security model that Babylon was
developed.

With the advent of Java 2, the Java security architecture
became policy-based. This means that when code is loaded,

it is assigned permissions in accordance with the security
policy which is currently in effect. Each permission spec-
ifies a special kind of access to a particular resource, such
as read or write permission to a file or directory, or connect
access to a given host and port. The security policy that
indicates which permissions are available for code can be
initialised from an externally configurable policy file. No
application can access a particular resource guarded by cer-
tain permission unless that permission has been explicitly
granted in the security policy file.

It is mandatory to write a number of policy files to ex-
ecute Babylon on the Java 2 platform. Permissions to ac-
complish some required network socket operations consti-
tute the most important security concern for the Babylon
scheduler, whereas runtime permissions represent the key
security issue for the Babylon servers. Almost any Java ob-
ject in Babylon can be used in a distributed context, but
objects must be registered to take advantage of this func-
tionality. This implies that programmers should first obtain
a reference to the scheduler, and then consult it to access an
available server where the objects can be created. Never-
theless, servers could not create objects if they did not have
permission to read the files where the byte-code relevant to
the object creation is stored. Therefore, we need to grant a
FilePermission in the server security policy file.

4. Summary

The leading goal of this project was to enhance the func-
tionality of Babylon to control the execution of object-based
distributed applications. We developed graphical compo-
nents to provide monitoring and management capabilities
for a Babylon application. We also made a number of tech-
nical extensions to the existing Babylon system.

References

[1] M. Izatt. Babylon: A Java-based Distributed Object Environ-
ment. Master’s thesis, York University, Canada, 2000.

[2] M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an en-
vironment for parallel, distributed and mobile Java applica-
tions. Concurrency: Practice and Experience, 12(8):667–
685, 2000.

[3] V. Krishnaswamy, D. Walther, S. Bhola, E. Bommaiah, G. Ri-
ley, B. Topol, and M. Ahamad. Efficient implementations of
Java remote method invocation. In 4th USENIX Conference
on Object-Oriented Technologies and Systems (COOTS’98),
pages 203–241, O’Reilly & Associates, CA 95472, March
1998.

[4] C. Nester, M. Philippsen, and B. Haumacher. A more effi-
cient RMI for Java. Concurrency: Practice and Experience,
12(7):495–518, 2000.

[5] M. Palomino. BabylonLite: An Improved Babylon Package.
Master’s thesis, The University of Edinburgh, Scotland, 2000.

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

