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Extended Abstract

Bio-PEPA is a novel stochastic process algebra which has been recently developed for
modelling biochemical pathways [5,6]. In Bio-PEPA a reagent-centric style of mod-
elling is adopted, and a variety of analysis techniques can be applied to a single model
expression. Such an approach facilitates easy validation of analysis results when the
analyses address the same issues [3] and enhanced insight when the analyses are com-
plementary [4]. Currently supported analysis techniques include stochastic simulation
at the molecular level, ordinary di�erential equations, probabilistic model checking and
numerical analysis of a continuous time Markov chain.

Process algebras are a well-established modelling approach for representing con-
current systems facilitating both qualitative and quantitative analysis. Within the last
decade they have also been proposed as the basis for several modelling techniques ap-
plied to biological problems, particularly intracellular signalling pathways, e.g.
[13,12,10,7,2,1].

A process algebra model captures the behaviour of a system as the actions and
interactions between a number of entities, usually termed processes or components.
In stochastic process algebras, such as PEPA [9] or the stochastic �-calculus [11], a
random variable representing average duration is associated with each action. In the
stochastic �-calculus, interactions are strictly binary whereas in PEPA and Bio-PEPA
the more general, multiway synchronisation is supported.

The original motivation for the use of process algebras for modelling intracellular
pathways was the recognition of the clear mapping that can be made between molecules,
within a biochemical pathway, and processes, within concurrent systems [14]. The map-
ping is then elaborated with reactions between molecules represented by communica-
tion between processes, etc.

This mapping has been extremely influential with much subsequent work on process
algebras for systems biology following its lead. It takes an inherently individuals-based
view of a pathway or cell, and su�ers the problem of individuals-based modelling,
namely state-space explosion. When each individual within a system is represented ex-
plicitly and all transitions within or between individuals are captured as discrete events,
the number of states becomes prohibitively high. This problem prohibits the use of tech-
niques which rely on access to the state space in its entirety, such as model checking
or numerical solution of a Markov chain. Essentially analysis is restricted to stochastic
simulation where the state space is explored iteratively.
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Fig. 1. Alternative modelling approaches: a single Bio-PEPA description of a system may be used
to derive alternative mathematical representations o�ering di�erent analysis possibilities

In contrast, biologists often take a population-based view of cellular systems, repre-
senting them as systems of ordinary di�erential equations (ODEs). These mathematical
models are continuous or fluid approximations of the discrete state, individuals-based
models of the system. In many circumstances the approximation is extremely good. In
the biological context, where the exact number of molecules is often diÆcult to obtain
but is known to be extremely large, this more abstract view is both intellectually and
computationally appealing. The continuous state space models, in the form of systems
of ODEs, are much more eÆciently solved than their discrete state space counterparts.

In Bio-PEPA we wanted to be able to use a single model description to access both
an individuals-based and a population-based view of a system. Thus we adopt an ab-
stract style of modelling which we term, reagent-centric. We use the term reagent to
mean an entity which engages in a reaction. In the basic case this will be a biochemical
species such as a protein, receptor molecule or an enzyme. However it may be more
abstract, capturing the behaviour of a group of entities or a whole subsidiary pathway.
In this style of modelling the focus of the process algebra model is no longer the in-
dividual molecules, but rather the species or similar entities. This subtle change gives
us much more flexibility in how a model may be interpreted, facilitating mappings into
a number of di�erent mathematical representations, as illustrated in Figure 1. Viewing
the reagents as species, it is straightforward to use the BioPEPA description to derive
the stoichiometry matrix, and the corresponding ODE model. Conversely, knowing the
forms of interations which can be engaged in by the reagent, allows an individuals-
based or molecular model to be derived, suitable for solution by Gillespie’s stochastic
simulation algorithm [8].

Moreover using the reagents-as-processes abstraction, together with other features
of the BioPEPA language, make it straightforward to capture several characteristics
of biochemical reactions which can be problematic for other process algebras. These
include reactions with stoichiometry greater than one, with more than two reactants,
and with general kinetic laws.
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We have also been keen to investigate the extent to which “classical” process algebra
analyses can be used to provide insight into system biology models. In the context of
stochastic process algebras such analyses include numerical analysis of the underlying
continuous time Markov chain (CTMC) and probabilistic model checking. Whilst the
stochastic simulation described above is based on a CTMC, the size of the state space
in most examples will prohibit any state-based analysis. Thus we have also developed a
third mapping from BioPEPA models to an smaller CTMC, which we term the CTMC
with levels. In such models the concentration of each reagent is split into discrete steps,
leading to a more compact state space, more readily amenable to state-based analyses.
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