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9.1 Introduction

The JAVA/A approach aims at semantically well-founded and coherent modelling and
programming concepts for components: based on sound theoretical foundations it en-
hances the widely used UML 2.0 component model by modular analysis and verifica-
tion techniques and a Java-based architectural programming language.

9.1.1 Goals and Scope of the Component Model

The JAVA/A component model, formally characterised within the algebraic semantic
framework of [}, is inspired by ideas from “Real-Time Object Oriented Modeling”
(ROOM [2])): components are strongly encapsulated, instantiable behaviours and any
interaction of components with their environment is regulated by ports. We took up
the ROOM model in its version integrated into the “Unified Modeling Language 2.0”
(UML 2.0 [3]]), though in a simplified form which, however, keeps the main structuring
mechanisms and focuses on strong encapsulation as well as hierarchical composition.

In contrast to interface-based component approaches (like COM, CORBA, Koala,
KobrA, SOFA; see [4] for an overview), the primary distinguishing feature of ROOM,
and hence of the JAVA/A component model, is the consistent use of ports as explicit
architectural modelling elements. Ports allow designers to segment the communication
interface of components and thus the representation of different “faces” to other com-
ponents. Moreover, ports are equipped with behavioural protocols regulating message
exchanges according to a particular viewpoint. Explicit modelling of port behaviours
supports a divide-and-conquer approach to the design of component-based systems on
the level of components and also on the level of particular views to a component.
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Furthermore, taking components to be strongly encapsulated behaviours commu-
nicating through ports fosters modular verification, which is one of the aims of the
JAVA/A approach. Using our semantic foundations, we employ the model checking
tools HUGO/RT and LTSA to verify that components comply to their ports and that
connected ports can communicate successfully; by a compositionality theorem we can
lift these properties to hierarchical, composite components. Starting with deadlock-free
component and port behaviours, we verify the absence of deadlocks in composed be-
haviours. Since HUGO/RT and LTSA are general model checking tools we may also
analyse arbitrary temporal logical formulae. For quantitative properties, we represent
the component semantics, though rather abstractly, in the PEPA process algebra [5]] and
use continuous-time Markov chains for performance analysis with the TPC tool [6].

The second aim of the JAVA/A approach is the representation of software architecture
entities in a programming language. For this purpose we introduced an “architectural
programming” language, JAVA/A [[7], which allows programmers to represent software
architectures directly in the implementation language and thus helps to prevent “archi-
tectural erosion” [§]]. We used the code generation engine HUGO/RT to translate the
behaviour of components into Java code; the code generation is not formally verified
but strictly adheres to the UML-semantics of the state machines. The usage of the same
tool for verification and code generation helps in transferring design properties into the
code. The generated Java code is then embedded into JAVA/A source code, which in
turn is compiled and deployed to yield the executable system. The deployment is not
described separately from the logical behaviour of the components.

9.1.2 Modelled Cutout of the CoCoME

We present selected parts of our model of the CoCoME trading system in Sect.
including the embedded system part with the CashDeskLine and the information sys-
tem part with the Inventory. In particular we treated the structural aspects of CoCoME
completely. The functional (behavioural) aspects were modelled also completely for
the embedded system part of the CashDeskLine and partly for the information system
part with the Inventory at its core. We touched only upon non-functional aspects by
provision of an example in the context of express checkouts. We did not specify pure
data-based specifications such as invariants and pre-/post-conditions but focused on the
control flow behaviours of ports and components instead.

All deviations from the original architecture of the CoCoME are discussed in detail
in Sect. Our approach does not directly allow for n-ary connectors and broadcast
messages between components. In both cases adaptor components need to be applied;
as far as the modelling of the CoCoME is concerned we did not feel this to be a severe
restriction. The full description of our model of the CoCoME as well as more details on
the theoretical background for the functional analysis can be found on our web page [9]].

9.1.3 Benefits of the Modelling

In Sect. we show how the formal algebraic basis of our model allows one to thor-
oughly analyse and verify important qualitative and quantitative properties. In partic-
ular, we show that the composite component CashDeskLine is correct and deadlock
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free; as an example for performance analysis we study the use of express checkouts and
show that their advantage is surprisingly small. In Sect.[0.3]we briefly present the model
checking and architectural programming tools we used for the CoCoME.

9.1.4 Effort and Lessons Learned

We spent about two and a half person months on modelling, analysing and implement-
ing the CoCoME with the JAVA/A component model and the JAVA/A architectural
programming language. A completion of the modelling endeavour, including, in par-
ticular, data-based specifications would take about two more person months. However,
an inclusion of all non-functional requirements would require some more work on the
foundational aspects of the JAVA/A component model.

The CoCoME helped us on the one hand to consolidate the JAVA/A metamodel. On
the other hand, we gained important insights into glass-box views for composite com-
ponents and on the formulation of criteria for modular verification on the basis of a
port based component model. We plan to extend our model with data-based specifica-
tions (invariants, pre-/post-conditions) to develop and study an approach to state/event-
integration.

9.2 Component Model

In the JAVA/A component model, components are strongly encapsulated behaviours.
Only the exchange of messages with their environment according to provided and re-
quired operation interfaces can be observed. The component interfaces are bound to
ports which regulate the message exchange by port behaviour and ports can be linked by
connectors establishing a communication channel between their owning components.
Components can be hierarchical containing again components and connections.

In the following we briefly review JAVA/A’s component metamodel, see Fig.[1l Al-
though being based on corresponding concepts in the UML 2.0 and, in fact, easily
mappable, we at least strive to give a more independent definition which only relies on
well-known UML 2.0 concepts. In Fig.[T[l UML concepts modified by the JAVA/A com-
ponent model are shown with a white background while unmodified UML concepts are
shown with grey background. We assume a working UML 2.0 knowledge [3]] when ex-
plaining some of the specialities of our modelling notation and semantics. An algebraic
semantics framework for the JAVA/A component model can be found in [1].

Port. A port (see Fig. describes a view on a component (like particular function-
ality or communication), the operations offered and needed in the context of this view
and the mandatory sequencing of operation calls from the outside and from the inside.
The operations offered by a port are summarised in its provided interface; the opera-
tions needed in its required interface. The sequencing of operations being called from
and on a port is described in a port behaviour. Any auxiliary attributes and operations
in order to properly define the port behaviour are added as internal features.

As an example, consider the port C-CD (showing stereotype <port>) in Fig. [12] de-
scribing the coordinator’s view on a cash desk: Its provided and required interfaces
(attached to the port by using the ball and socket notation, respectively) declare only
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Fig. 1. JAVA/A component metamodel

asynchronous operations (i.e., on calling these operations the caller does not wait for the
callee to handle the call; for succinctness we use a stereotype <asyncs to express that
all operations of an interface are meant to be asynchronous); it also shows an internal
attribute for storing the identity of a cash desk. The behaviour of port C-CD is described
by the UML state machine in Fig. [I2] (top right). Besides the UML state machine fea-
tures we use, on the one hand, a special completion trigger <tau> for modelling internal
choice (of the port’s owning component) which is enabled on state completion but, in
contrast to completion triggers (used for those transitions not showing a trigger), is not
prioritised over other events. On the other hand, we assume all state machines to behave
like UML 2.0’s protocol state machines in the sense that it is an error if an event occurs
in a state where it cannot be handled by one of the outgoing transitions.

Simple component. A simple component (see Fig. [L(b)) consists of port properties
(sometimes referred to as port declarations), internal attributes and operations, and a
behaviour linking and using these ingredients. Port properties (like all properties) are
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equipped with a multiplicity, setting lower and upper bounds on how many port in-
stances of a particular type exist during runtime, permitting dynamic reconfiguration.

As an example, consider the simple component Coordinator (showing stereotype
<components) in Fig. Besides an internal attribute and two internal operations
it declares a port property cds of type C-CD with unlimited multiplicity. The behaviour
of Coordinator is laid down in the state machine of Fig. [I2] (bottom right). In fact, as
indicated by the stereotype <orthogonal> with tag { param = cd : cds }, this behaviour
description abbreviates a composite orthogonal state with as many orthogonal regions
(containing the given behaviour) as there are currently port instances in cds. Note also
that the internal operation updateSaleHistory is declared to be { sequential }, that is, all
calls to this operation are sequentialised.

Composite component. A composite component (see Fig. groups components,
simple as well as composite, by declaring component properties, and connectors be-
tween ports of contained components, by declaring connector properties. A connector
(which is always binary) describes the type of a connector property which links two port
properties such that the ports of the connector match the ports of the port properties.
Composite components do not show a behaviour of their own, their behaviour is deter-
mined by the interplay of the behaviours of their contained component instances and
the connections, i.e., connector instances. The ports offered by a composite component
are exclusively relay ports, i.e., the mirroring of ports from the contained components
which must not be declared to be connected by some connector property.

As an example, consider the composite component CashDeskLine (showing stereo-
type <component>) in Fig.[6l It declares, via the component properties cashDesks and
coordinator, components CashDesk and Coordinator as sub-components where each in-
stance of CashDeskLine must show at least one instance of CashDesk. Port property co
of CashDesk is connected to port property cds of Coordinator meaning that at runtime
each port instance in co of a cash desk in cashDesks is connected to a port instance
in cds of coordinator. The port declarations i and b of CashDesk are relayed. How-
ever, as in fact there may be several cash desks but there is to be only a single port
instance of CDA-Bank we would have to introduce an adapter component which de-
clares a port with multiplicity 1 to be relayed to the outside of CashDeskLine and a
port with multiplicity 1..* (matching the multiplicity of cashDesks) to be connected to
the different b instances of the different cashDesks. We abbreviate this by using the

: CashDeskLine : CDA-Bank

: CashDesk

: CDA-I
: coA-Bank | : CDA-Bank L]

: CDA-C

Fig. 2. Sample configuration of component CashDeskLine of Fig. [
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stereotype <adapters on connector declarations; in particular, as indicated by the
tagged value { kind = "seq” }, the adapter component sequentialises the different calls.
A sample runtime configuration of the composite component CashDeskLine is given
in Fig.[2l This configuration shows two instances of component CashDesk and a single
instance of component Coordinator. The CDA-C port instances of the cash desks are
connected to two different instances of the C-CD coordinator port. The CDA-Bank port
instances of the cash desks are adapted to one relay port instance of the cash desk line
by the auxiliary adapter component A-CDA-Bank. Similarly, the CDA-I port instance of
the cash desk to the right (the other cash desk does not show a CDA-| port instance, in
accordance with the multiplicity of the port feature declaration i) is relayed.

9.3 Modelling the CoCoME

We started the design of the CoCoME from the use case descriptions and sequence
diagrams as given in [10]. After and during static structure modelling for simple (non-
composite) components we designed component and port behaviours hand in hand, in
case of the embedded system part accompanied by formal analysis. Finally, the sim-
ple components were applied for the design of the composite components, yielding a
first draft of the complete architecture. Within the next iterations, the alternative and
exceptional processes of the use case descriptions were taken into account to extend
and correct the initial design. In case of ambiguous or unclear requirements our design
followed the prototype implementation of the CoCoME. Since we fully agree with the
data model provided in [10]], we omit specifications of data types, transfer objects for
data exchange and enumerations.

Our specifications comprise UML 2.0 class and composite structure diagrams to
specify the static structure of components, ports and interfaces; and UML 2.0 state ma-
chine diagrams to specify the behavioural view for ports and components. Familiarity
with terms, notions and functional requirements of the trading system [[10] is assumed.
For lack of space we do not discuss the specifications of components and ports shown
in grey in Figs. BHZl Instead we restrict our attention on a detailed presentation of the
embedded system part which is also the focus of our functional analysis. Additionally
we provide a representative extract of our model for the information system part of the
CoCoME. Specifications not discussed here can be found on our web page [9]].

9.3.1 Architectural Deviations

Two of the essential features of our component model are, on the one hand, its strict
use of ports as first-class citizen to encapsulate (parts of) component behaviour and,
on the other hand, the distinction between component, port types respectively and their
instantiation. These features enabled us to model some aspects of the trading system in
a more convenient way. In the following we describe and justify structural deviations
from the original modelling along Fig.[3l On the left-hand side the component hierarchy
as described in [10] is shown. The right-hand side shows the corresponding modelling
within our approach. From deviations with our static model almost naturally some de-
viations in behavioural aspects follow. We omit a detailed discussion here and refer to
[9] for component-wise details on this issue.
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Fig. 3. Component hierarchy of given (left) and modelled (right) architecture

As the most important deviation in the embedded system part we did not model the
event bus component, which is used in the CoCoME for the communication between
the subcomponents of the cash desk line on the one hand, and between those, the coor-
dinator and external components on the other hand. Instead of a functional component,
our approach provides explicit models of component communications and interactions
using port and component behaviour specifications. We consider the integration of an
event bus to be an implementation decision where the implementation should guarantee
that the specified communication structure of the design model is respected.

Explicit modelling of the cash desk’s internal interaction structure constitutes the in-
ternal topology of our composite component CashDesk (see Fig.[7) deviating from the
cash desk’s inner structure as shown in [10, Fig. [l]. During the modelling of the sub-
component’s communication it soon became apparent that, in our approach, the most
appropriate topology for the CashDesk is the one specified in Fig.[Zl The central func-
tionality of handling sales almost always requires the cash desk application to receive
some signal or message respectively from an “input” component such as the cash box
and to send a corresponding notification to an “output” component such as the cash
desk GUI or the printer.

Furthermore we dropped the distinction of functional and controller components
within the cash desk component of the CoCoME. In our approach, controller com-
ponents such as the CashBoxController [10, e.g. Fig.[6 [G]], linking the middleware and
the hardware devices, could be modelled with ports.

The main structural deviation from the CoCoME requirements of the informa-
tion system part concerns the layered approach to the modelling of the compo-
nent Inventory on the left-hand side of Fig. Bl The layers Application, Data and
GUI (represented by components) distinguish between an “enterprise part” and a
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“store part”: within the component Data this distinction is manifested directly in the
components Enterprise and Store. Within the components Application and GUI the
distinction is between Reporting and Store. The former is, according to the deploy-
ment of Inventory::Application::Reporting on the EnterpriseServer (see Fig. [@l),
not only part of the enterprise context but also located at the store server (as part of
Inventory::Application). However, according to the use case descriptions and sequence
diagrams of [10], Reporting seems actually not to be used in the store context. In fact,
the functionality of this component is exclusively to generate reports for the enterprise
manager. Therefore we decided to model Store and Enterprise as functional components
on their own. An enterprise may contain a number of stores comprising an inventory and
a cash desk line. Reporting then is part of Enterprise but not of Store as this seems to
model the application domain of the required trading system more naturally. The Data
layer of the CoCoME is represented by the component Data with ports modelling the
enterprise and the store related data aspects. Notice that, as required in the CoCoME,
different instances of the Data component may share the same instance of a DataBase
component. This issue depends on a concrete system configuration only. Last, the GUI
layer is represented by the operator ports of the components Enterprise and Store.

Further structural deviations concern the original component Data::Persistence
which is in our approach not modelled explicitly but integrated with the port modelling
of the Data component instead. Also, the sequence diagram Fig.[@]] concerning the
product exchange among stores of the same enterprise (Use Case 8) shows a component
ProductDispatcher which is not mentioned in the structural view of the CoCoME. We
modelled this component as part of the enterprise component.

9.3.2 Trading System — Stores and Enterprises

This section describes the specifications for the root component TradingSystem as well
as the two fundamental components Stores and Enterprises, all of them being composed
from further components.

TradingSystem. The composite component TradingSystem in Fig. @ provides flexi-
ble instantiation possibilities for different system configurations. As will be evident
from the specifications of the composite components Enterprise and Store described
hereafter, the former contains, among others, a number of stores and a Store in turn
contains further components such as the CashDeskLine. In fact a system configuration
following the hierarchy further down from one instance of Enterprise already suffices
to meet the original CoCoME requirements for a trading system with an enterprise and
a number of stores which belong to this enterprise. In this case the sets of simpleStores
and simpleStoresDB would be empty as these are used only in case of extended system
configurations with stores independent from any enterprise.

The bank component, required for card payment at the cash desks of a store, is con-
sidered external to the trading system. Therefore the component TradingSystem declares
a relay port of type CDA-Bank to delegate incoming and outgoing communications be-
tween a bank and internal components, respectively. The port multiplicity with a lower
bound of 1 of indicates that for a proper instantiation of TradingSystem it is strictly
required to provide appropriate bank connections to the system.
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Fig. 4. Static structure of the component TradingSystem

Beyond, the component TradingSystem allows for several further system config-
urations. For example the system might be used with store components which are
independent of any enterprise. On this account the TradingSystem contains a set of
stores (simpleStores), each of them connected to its own instance of a data base
(simpleStoresDB). Since the port feature pe:l-PD is required only for stores belonging
to an enterprise, the port must not be connected in this case.

Enterprise. An enterprise is modelled by the composite component Enterprise in
Fig. I3l It consists of a number of stores, of a component Reporting which provides
means to create several reports from the enterprise manager’s point of view, of a compo-
nent Data as an intermediate layer between Reporting and the concrete DataBase which

Enterprise] J5 static structure

<=component== £]
Enterprise

stores : Store ['1 |

‘ pe: -PD [0.1]
b CD&-Bank [1]

B oo DateBase (1]
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b CDA-Bank [1] pe FD[0.1] do: DataBiase [1) gy
L__| L__|

Fig. 5. Static structure of the components Enterprise and Store
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is also instantiated as part of an Enterprise and shared between Data and the stores, and
finally of a component ProductDispatcher to coordinate the product exchange among
the stores of the enterprise.

In order to provide connections for the bank ports b of the contained stores, the
component uses a relay port with multiplicity 1..* and instantiates one port for each
store. Hence, in contrast to the cash desks as part of the CashDeskLine (Fig. [6) the
different stores of an enterprise do not share the same bank connection.

Store. As depicted in Fig. Bl the component Store is a composition of a CashDeskLine
(see Sect.[9.3.3), an Inventory (see Sect. and an instance of the component Data.
The inventory is connected to the Data instance hiding the concrete data base from
the application as required in the CoCoME. In contrast to the enterprise context, the
port e : Enterprise of Data is not used, when instantiating the component as part of
a Store. The optional operator ports of Inventory remain unconnected, as we did not
model explicit GUI components. These would be connected to the particular ports for
testing purposes; in the deployed system we may also connect actual operator interfaces.

The component Store uses mandatory relay ports to connect to a bank component
and a data base. Relaying the port I-PD of component Inventory is optional, in order to
take into account the requirements of the exceptional processes in Use Case 8 (enter-
prise server may be temporally not available). Optionality is also required for system
configurations with stores that are independent of any enterprise. In this case, there is
definitely no other store to exchange products with.

9.3.3 Cash Desks — The Embedded System Part

Any store instantiated as part of the trading system comprises a cash desk line which in
turn represents a set of cash desks, monitored by a coordinator. Each cash desk consists
of several hardware devices managed by a cash desk PC. The specification of the cash
desk line models the embedded system part of the CoCoME with characteristic features
of reactive systems such as asynchronous message exchange or topologies with a dis-
tinguished controller component. The former is illustrated by the subsequent behaviour
specifications for ports and components, the latter is exemplified directly in the static
structure of the composite component CashDesk with the cash desk application playing
the role of the controlling component at the centre (Fig. 7). Due to this topology, most
of this section is devoted to the specification of the component CashDeskApplication.

CashDeskLine. A CashDeskLine (Fig.[6) consists of at least one cash desk connected
to a coordinator which decides on the express mode status of the cash desks. The com-
posite component CashDeskLine declares two relay ports delegating the communica-
tion between the cash desks, the inventory (i : CDA-I) and the bank (b : CDA-Bank).
The connector declarations in Fig. [6] are annotated with the stereotype adapter of
kind seq, meaning that the communication between the ports of the cash desks and the
relay ports i and b respectively, is implemented by a sequential adapter. In contrast, the
communication between the cash desks and the coordinator does not need to be adapted,
because each CashDesk instance is linked via its CDA-C port to its own instance of the
coordinator port C-CD. To share the bank connection among the desks of a cash desk
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Fig. 6. Static structure of the component CashDeskLine

line follows the CoCoME requirement in [10, Fig.[6] which shows a multiplicity of 1
for the particular required Bank interface, port respectively.

CashDesk (CD). The CashDesk component specified in Fig. [7] is the most complex
composite of the trading system. The component consists of six components modelling
the hardware devices as described in the CoCoME and one component modelling the
cash desk application. A cash desk has three relay ports to allow for the communication
with a bank, inventory and coordinator component. The component and port multiplic-
ities of the static structure in Fig. [ reflect the requirements of the CoCoME. Since an
exceptional process for Use Case 1 (Process Sale [[10]) explicitly mentions that the in-
ventory might not be available, the relay port i may sometimes not be connected. The
optional ports of CashBox, Scanner and CardReader model the communication of an
operator with the particular hardware device. In case of a cash desk actually deployed,
these ports might be connected with some low-level interrupt handler.

CashDeskApplication (CDA). The cash desk application links all internal components
of a cash desk and communicates with components external to the cash desk such as a

[Component] CashDesk] static structure ﬂ

<acomponents»
CashDesk E

cda : CashDeskApplication [1] E
b COA-CE[1] colg : CDA-CDG [1]
b CDA-Barnk[1] i CDAJ[D.A] oo CDA-CH]

1 Q 1

ﬂb:CDA-Eank [l }1 i: CDA[0.1] - co:CDAC[1]
L) L)

Fig.7. Static structure of the component CashDesk
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Fig. 8. Static structure of the CDA component

the port types and the suffixes R (P) for interfaces required (provided) by a port.

In the following we briefly describe representative port behaviours of the CDA.
Thereafter, we discuss the specification of the component behaviour which interrelates

the constituent port behaviours within a single state machine.




Modelling the CoCoME with the JAVA/A Component Model 219

(Con-cel 5] pon behaviour )
(CDA-CDG[ B port behaviour )
expresshiodeDisabled() po— ;;;Ur:;?eBalro:r;d)eEmerEd( i
p — g . —  saleStarted)
L e S saleFinishad() .EL stauzs

paymenthlade mode

cashBoxCipsed() «<auss| Faymentiiods ) I seleStarted()

# runningTotalChanged(productiiame, price, total)

paymentModel made [mode=Cash]

PaymentMode ) [mode=Cash] A
net finsl) / <ctume W_=ctaum>
cashAmourtEntered

canfaunt, final)

[finial] /
cashAmourtErtered
amourt, firal)

cashAmourtErtered( amourt

double, firal : hoolean ) [final] <taur

cashAmourtErtered( amourt
double, final - boolean  [not final]

@‘ TohangeAmountCalculated] change Amount) FinvalidCreditCard()

i saleSupcess()

productBarcodeErtersd

paymenfMode] mode
( harcode : long ) [mode=Cash]

PaymeniMode )
[mode=Gash]

! ® <tau -
paymenthiodet modes
eSttegy PEYTEIMREE) xppeseadebisatied) L <<tau JexpresshodeDishbled()
\“‘ﬁg[—] Disshled() ¢ y [ expresshodeE bled[j

| i )

Fig. 9. Behaviour of the CDA ports CB and CDG

CDA Port Behaviour. The state machine CDA-CB in Fig. [9] specifies the communica-
tion between the cash desk application and the cash box (CB). In general, the state
machine for a port receives events and signals named in the provided interface of that
port and sends out signals and events named in the required interface of that port. After
initially having received the signal saleStarted, defined in the port’s provided interface
CashBoxP in Fig. [8l the port may receive arbitrary many manually entered product
bar codes before moving to the next state due to the reception of saleFinished; manu-
ally entered product bar codes are part of an exceptional process in Use Case 1 of the
CoCoME. The next step within the sale process is the selection of card or cash pay-
ment as the payment procedure. If payment mode Cash was selected, the port waits for
messages concerning the cash amount received from the customer. It sends back infor-
mation concerning the change amount calculated (by sending changeAmountCalculated
defined in CDA-CB’s required interface CashBoxR in Fig.[8)), assumes that the cash box
is subsequently opened and finally waits for the cash box to be closed again. If payment
mode CreditCard was chosen, the port changes to a state where the chosen mode may
be cancelled by switching to cash payment and, additionally, a 7-transition may be trig-
gered internally, whereupon the cash box should be prepared to receive a saleSuccess
as a signal for the successful clearing of the sale process via card payment. In both cases
the port waits afterwards for the next saleStarted and until then allows to disable the
express mode the cash desk may have been switched into in the meantime.

In contrast to the behaviour at an “input” port, Fig. [Olalso shows an example for an
“output” port behaviour: the specification of CDA-CDG, which is intended to connect
to the cash desk’s GUI. In fact the behaviour is very similar to the specification of
CDA-P, connecting to the printer (not shown here). Both ports signal the status of the
sale process such as saleStarted or saleFinished and both show mostly internal choice
transitions. The main difference is that only the GUI port signals problems with the
credit card (invalidCreditCard). Also, besides the light display, it is the GUI which is
notified in case of mode switches from or to express mode.
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Fig. 10. Behaviour of the CDA ports I, C and Bank

The communication with components external to the cash desk is prescribed by the
port behaviour specifications for CDA-I, CDA-Bank and CDA-C shown in Fig. The
port behaviours of CDA-I and CDA-Bank demonstrate our modelling of synchronous
communication. The behaviour of CDA-C is used in Sect.[9.4.1]to illustrate our formal
analysis of functional requirements.

For a discussion on the behaviour specifications of the remaining ports CDA-S,
CDA-CR, CDA-P and CDA-LD not relayed to the environment, we refer to [[9]].

CDA Component Behaviour. Figure [Tl specifies the component behaviour of the cash
desk application. Using the port declarations of the static structure in Fig.[8lit shows the
dependencies and inter-linkages between the different ports of the CDA. For example
messages sent via ports p or cdg such as p.saleStarted and cdg.saleStarted are sequen-
tially arranged after the message cb.saleStarted was received at port cb. Furthermore
port attributes as well as component attributes such as itemCounter are assigned as an
effect, and afterwards used as actual parameters in messages sent.

Since the specification of the cash desk application’s behaviour is rather involved we
used submachines to factor out the major steps of the entire sale process. For lack of
space we refer to [9] for their detailed specification. However, a brief description may
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Fig. 11. Component behaviour of CashDeskApplication
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Fig. 12. Static structure and behaviour specifications of Coordinator

provide an intuitive understanding of the component’s behaviour: after saleStarted was
received at the cash box port cb, the submachine Scanltems repeatedly receives prod-
uct bar codes and notifies the printer and the GUI about product details like name and
price. Thereafter the payment mode must be chosen, resulting in a transition to the
corresponding submachine. CardPayment may be left at any state by the reception of
cb.paymentMode(Cash) modelling the cashier’s ability to switch from card to cash pay-
ment, e.g., in case of problems with the credit card. Before the sale process is completed
the component tries to account the sale at the inventory using port i within AccountSale.
If the inventory is not available the sale information is stored locally and delivered dur-
ing the next sale processes. Finally, in SwitchMode the component waits for a signal to
switch into express mode, to disable a previous express mode, or to start a new sale.

Coordinator (C). The cash desk line (see Fig.[d]) of a store consists of a number of cash
desks and an instance of Coordinator, see Fig. which decides on the mode of the cash
desks (express or normal). The component declares its port of type C-CD with multiplic-
ity * to allow to connect an arbitrary number of cash desks, which should be monitored
by this coordinator. Note that even if the coordinator decided for express mode, the port
may receive yet another sale registration from the same cash desk because the com-
munication partners are executing concurrently. In this case the sale registration has
precedence over the coordinator’s decision: the port recomputes its internal decision.

The component behaviour shown alongside the port behaviour in Fig. [[2lillustrates
the modelling of internal actions of a component which are hidden by 7-transitions in
the port behaviour specification. For each cash desk the component keeps track of the
particular sale history and decides upon this history to eventually switch a cash desk into
express mode. The update of the sale history is synchronised (annotation sequential)
due to the concurrent execution of the port instances cd in cds.

9.3.4 Inventory — The Information System Part

The information system part is modelled with an inventory at the core. The inventory
plays a crucial role in the Use Cases 3, 4, 7 and 8 (see Figs. [6lAGI6]N), which
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Fig. 13. Static structure and port behaviour of the component Inventory

describe how to order products, receive ordered products, change the price of a prod-
uct and how products might be exchanged among the stores of a enterprise. The most
prominent new modelling aspect with respect to the embedded system part in Sect.
is the specification of synchronous message call receptions. The specifications of Data,
Reporting, ProductDispatcher and DataBase can be found on our web page [9]].

Inventory (I). The component Inventor is a model of the store’s portion of the ap-
plication layer of the CoCoME. As depicted in the static structure of Fig.[I3] Inventory
provides two optional ports m : I-Manager and sm : I-StockManager to allow for man-
ager and stock manager requests. The behaviour specifications of these ports are trivial
and omitted here. The ports may be used for instance to connect simulation components
in order to test the developed system or, of course, to connect actual control interfaces
in the deployed system.

! Note that our component Inventory models Inventory::Application::Store of [10], see Sect.[0.3.1]
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The ports of type |-Data and |-Sale are used to connect to the data layer of a store
component and to the cash desks of the store, respectively. As the port behaviour of
I-Data in Fig. [I3] exemplifies for two operations of the interface DataR, any operation
call on the data layer is transactional, i.e., is framed by an explicit transaction start
(tctx.beginTransaction) and end (tctx.commit); the remaining operations of DataR are
applied analogously. Connections via I-Sale support the reception of messages required
during the sale process at a cash desk.

The component declares a port pe : I-PE in order to cope with product exchange
among stores as described in Use Case 8 of the CoCoME. The port behaviour specifica-
tion in Fig. [[3uses an orthogonal state with two regions to model the two distinct roles
of an inventory: the port may request to order some products at the other stores of the
enterprise, i.e., play the active role of initiating product exchange; on the other hand,
it provides a trigger for a data base update with possibly cached and not yet submitted
data, as well as to mark products for delivery to other stores, i.e. playing the passive role
of being asked for product exchange. Both messages are eventually received during a
connection with the component ProductDispatcher (see Fig. B) responsible to coordi-
nate the product exchange among the stores (see Fig.[@]).
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i o markProducts Asincominglooe) [el=e] f pe products = d lowStockitems getProducts();
pe.orter AtOther Stores(storeld, pe products)

pe orderadProducts Available(coe

SeteComplexOrderEntry>) r*:]

' [ ] pe.markProductsForDeliveryloos: Set=Complex<Qrder Ertry=)
I o markProcuctsUnayailaklenStock(coe )

Fig. 14. Component behaviour of the Inventory (regions omitted)

The component behaviour specification of Inventory comprises of six orthogonal re-
gions, essentially each of them modelling the interaction with one possible communi-
cation partner along the ports of the component. For a lack of space, Fig.[I4]shows only
two of them. Again, for more details we refer to [9]]. The regions shown illustrate part of
the interplay between the ports d and pe in the course of executing a product exchange
among stores. The upper region specifies the component’s behaviour with respect to
the inventory’s check if the stock is getting low for some products. The check occurs
cyclical after some not further specified time period x. The lower region shows the di-
rect forwarding of a product order actually to be executed. Note, that we do not show
the message exchange related to the transactional data communication with port d. For
this purpose the operation calls on d would simply be framed by begin and commit
transitions analogously to the port behaviour of |-Data.
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9.4 Analysis

9.4.1 Analysis of Functional Requirements

For the analysis of the functional requirements we focus on the semantical properties
of our CoCoME model specified by the behaviour specifications of ports and compo-
nents in Sect. We consider the asynchronous part of our model for the CoCoME
and we will check deadlock-freeness and component correctness. For the synchronous,
information-oriented part we believe that the behavioural aspects of message exchange
and parallel execution, which are in the centre of our interest here, are not so relevant.

The basic idea of our approach is to proceed hierarchically, starting from the analy-
sis of (local) properties of simple components and their ports from which we can then
derive, by a compositionality theorem, properties of composite components. Thus, fol-
lowing the hierarchical construction of components, we obtain results for the behaviour
of the global system. Our analysis process consists of the following steps:

1. For each simple component we analyse
— the behaviour specification of each of its ports,
— the behaviour specification of the component itself, and
— the relationships between the component behaviour and the behaviour specified
for each of its ports.
2. For each composite component we analyse
— the interaction behaviour of connected ports,
— the behaviour of the composite component which can be inferred from the
behaviours of its constituent parts, and
— the relationships between the behaviour of the composite component and the
behaviour of each of its relay ports.

The semantic basis of our study are the given UML state machines for the behaviour
specifications of ports and components. In order to treat them in a formal way, we
represent them by labelled I/O-transition systems which are automata with an initial
state and with distinguished input (or provided), output (or required), and internal la-
bels. Additionally, we assume that there is a special invisible (or silent) action B Two
I/O-transition systems A and B (over the same I/O-labelling) are observationally equiv-
alent, denoted by A ~ B, if there exists a weak bisimulation relation between A and
B, e.g. in the sense of [[I1]], where all actions apart from 7 are considered to be visible.
We also use standard operators on I/O-transition systems like relabelling, hiding and
the formation of productsﬁ In some cases we will need a simple form of relabelling of
an I/O-transition system A, denoted by n.A, where the labels of A are just prefixed by
a given name n thus obtaining a copy of A. An I/O-transition system A is deadlock-
free if for any reachable state there is an outgoing sequence of transitions 7* a 7* with
some label @ # 7 preceeded and followed by arbitrary many 7 actions. The obser-
vational equivalence relation is compatible with deadlock-freeness and, moreover, it

2 Internal actions are not invisible; to construct particular component views, they can, however,
be hidden.

3 The product of two I/O-transition systems is used to model their parallel composition with
synchronisation on corresponding input/output labels.
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is preserved by the above mentioned operators on transition systems. For the precise
technical definitions we refer to [9]].

Let us first consider how behaviour specifications of ports are represented by 1/0O-
transition systems. As pointed out in Sect. a port has a provided and a required
interface. For calls of operations of the provided interface we use input labels; for send-
ing an operation request according to the required interface of a port we use output
labels. In most cases the label is just the name of an interface operation where we have
abstracted from operation parameters and results which is possible if the transitions in
the original state machine do not depend on the arguments and results of the operation.
In the other cases we must assume, for the purpose of model checking later on, that the
impact of arguments and/or results and/or guards occurring on UML transitions can be
resolved by a finitary case distinction which is encoded by appropriate labels. Note, that
transitions with the invisible action 7 can occur in the behaviour specification of a port
in order to model a possible internal choice (of the port’s owner component) which is
not visible at the port but may have an impact on the future behaviour of the port.

As a concrete example we consider the component Coordinator and the behaviour
specification of its port C-CD; see Fig. The corresponding I/O-transition system,
shown in Fig. is directly inferred from the behaviour speciﬁcationﬁ According to
the given behaviour specification of the port, the silent action 7 represents a non-visible
choice whether an express mode should be enabled or not.

saleRegistered_ tau

| saleRegistered,
e I e N

_expressModeEnabled

Fig. 15. I/O-transition system for port C-CD

Let us now look to the behaviour specifications of simple components and their rep-
resentation by I/O-transition systems. A simple component contains a set of port dec-
larations of the form p : P[mult] where p is a port name, P its port type and mult
specifies the port multiplicity indicating how many instances of that port a component
(instance) can have. Since a component can only communicate with its environment
via its ports, any input label of a component has the form p.: where p is a port name
and ¢ is an input label of the port. Similarly, the output labels of a component have the
form p.o. For the definition of input and output labels of components we do not take
into account here the multiplicities of ports. This is possible if we assume that actions
of different port instances of the same port declaration are independent from each other
which is indeed the case in our example. In the following we will always omit multi-
plicities in port declarations. In contrast to ports, components can have internal labels
which are just given by some name representing an internal action of the component.

* For the representation of the transition systems we have used the LTSA tool (cf. Sect. [9.9)
which does not support the symbol “/” used in UML state machines. In order to indicate that ¢
is an input label we use ¢ and, symmetrically, to indicate that o is an output label we use o.
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Again, for the purpose of model checking, we assume that arguments, results and/or
guards of internal operations are encoded into appropriate labels.

As an example we consider the behaviour specification of the Coordinator com-
ponent (see Fig. [[2). The behaviour specification uses an entry action and a pseudo-
state for a guarded alternative which both have to be resolved in the corresponding
transition system. For representing the entry action we introduce the (internal) label
entry and for representing the two guarded alternatives we introduce two internal labels
enableExpress, describing the decision that the express mode should be enabled, and
notEnableExpress, expressing the converse case. Operation calls have now the prefix
cds of the port on which the operation is received or sent. The whole transition system
representing the behaviour of the Coordinator component is shown in Fig.

cd.saleRegistered_ entry enableExpress
notEnableExpress cd.saleRegistered_
B gt
_cd expressModeEnabled

Fig. 16. I/O-transition system for component Coordinator

Analysis of Simple Components. In the first step of our model analysis we consider
simple components which are the basic building blocks of our system model. For each
simple component we check the deadlock-freeness of the behaviour specifications of
each of its ports and of the component itself. Obviously, this condition is satisfied for
all simple components and ports of our behavioural model for the CoCoME.

A more subtle point concerns the relationships between the behaviour of a compo-
nent and the behaviour specified for each of its ports which must in some sense fit
together. To consider this issue more closely, let C' be a component with associated be-
haviour represented by the I/O-transition system A¢ and let p : P be a port declaration
of C such that the behaviour specification associated to P is represented by the I/O-
transition system A p. Intuitively, the component C' is correct w.r.t. its port declaration
p : P if the component behaviour supports the behaviour specified for that port. Appar-
ently this is the case if the component’s behaviour observable at port p is observationally
equivalent to the behaviour specification of P (up to an appropriate relabelling).

Formally, the observable behaviour of C at port p, denoted by o0bs,(C'), can be
constructed by hiding all labels of A~ which do not refer to p. Using the hiding operator,
0bs,(C) is just Ac \ H where the set H of hidden labels consists of the internal labels
of A¢ together with all input or output labels g.op of A¢ such that ¢ # p. Since the
transition system obs,(C') has no internal labels and, up to the prefix p, the same input
and output labels as Ap we can now require that it is observationally equivalent to
p.Ap, i.e., 0bs,(C) ~ p.Ap (where p.Ap is the copy of Ap explained above). In this
case we say that the component C'is correct w.r.t. its port declaration p : P.

Let us illustrate how we can check the correctness of the component Coordinator
w.r.t. to a port instance cd of type C-CD. First we consider the observable behaviour
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of the Coordinator at the port instance cd which is just the transition system shown in
Fig. where all labels which are not prefixed by cd are replaced by 7. If we min-
imise this transition system w.r.t. observational equivalence then we obtain (up to the
prefix cd) the transition system in Fig. [[3] which represents the behaviour of the port
type C-CD. This shows the correctness of the Coordinator component. Indeed we have
checked with the LTSA tool (cf. Sect. that all simple components occurring in the
CashDesk and CashDeskLine composite components (cf. Sect. are correct.

The definition of the observable behaviour of a component at a particular port can
be generalised in a straightforward way to arbitrary subsets of the port declarations of
a component and, in particular, to the case where all ports of a component are simulta-
neously considered to be observable. For a component C, the latter is called the (fully)
observable behaviour of C and denoted by 0bs(C).

Obviously, the above definitions of correctness and observable behaviour apply not
only to simple but also to composite components considered in the next step.

Analysis of composite components. The analysis of composite components is related
to the task of a system architect who puts components together to build larger ones.
Before we can analyse the behaviour of a composite component it is crucial to consider
the connections that have been established between the ports of their subcomponents.

Analysis of connectors. For the analysis of connectors one has first to check whether
the connections between the ports of components are syntactically well-defined. After
that we can analyse the interaction behaviour of two connected ports.

In the following let us consider a connection between two port declarations p; : P
and p, : P, occurring in components C and C| respectively. The connection is syn-
tactically well-defined, if the operations of the required interface of P, coincide with
the operations of the provided interface of P, and converselyﬁ To study the interaction
behaviour of the two ports, let Ap and Ap, be the I/O-transition systems representing
the behaviour of P and P, respectively. Any communication between the connected
ports is expressed by synchronising output labels of one port with the corresponding
input labels of the other port. Hence, the interaction behaviour of Ap and Ap, can be
formally represented by the port product Ap, ® Ap, of Ap, and Ap,; see [9] for the
definition of products.

A first semantic condition which should be required for a port connection is that any
two port instances can communicate with each other without the possibility to run into
a deadlock which means that the port product is deadlock-free. In this case we say that
the ports are behaviourally compatible.

Let us, for instance, consider the composite component CashDeskLine (cf. Fig. [6)
which has one connector between the port CDA-C of the CashDesk component and the
port C-CD of the Coordinator. The transition system representing the behaviour of the
port CDA-C (cf. Fig.[T0) is shown in Fig.[I7(top) and the transition system representing
the behaviour of the port C-CD was shown in Fig. Hence, the interaction behaviour
of the two ports is represented by the transition system of their port product which is

> Our approach would also allow a more general condition where the required operations of one
port are included in the provided operations of the other one which, however, is not needed for
the current case study.
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Fig. 17. Port product of CDA-C and C-CD

shown in Fig. [[7] (bottom). Obviously, the port product has no deadlock and therefore
the two ports are behaviourally compatible.

In general, the potential capabilities for interaction of a port will not be used when
the port is connected to another port. In this case the behaviour specified for that port
is restricted by the interaction with another port. It is, however, often the case that this
restriction applies only to one side of a connection while the behaviour of the other
port is not restricted and hence fully reflected by the interaction. Given two ports P
and P, with behaviours represented by I/O-transition systems Ap,, Ap, respectively,
the interaction behaviour of P and P, reflects the behaviour of B, if the port product is
observationally equivalent to the behaviour of P, i.e. Ap, ~ (Ap, ® Ap,). This property
plays an essential role for the compositionality of component behaviours considered
below. An obvious consequence of this definition is that if the interaction behaviour of
P, and P, reflects the behaviour of P} (P, resp.) and if the behaviour of the port P (P,
resp.) is deadlock-free, then P} and P, are behaviourally compatible.

For instance, let us consider again the port product of CDA-C and C-CD in Fig.[I7]
(bottom). After minimisation of the transition system w.r.t. observational equivalence
with the LTSA tool we obtain just the transition system of the port CDA-C; cf. Fig. [T/l
(top). Hence, the interaction behaviour of CDA-C and C-CD even reflects the behaviour
of the port CDA-C.

Analysis of the behaviour of composite components. In contrast to simple components
the behaviour of a composite component is not explicitly specified by the developer
but can be derived from the behaviours of the single parts of the composite component.
For that purpose we construct the product of the transition systems representing the ob-
servable behaviours of all subcomponents declared in a composite component whereby
the single behaviours of the subcomponents observed at their ports are synchronised
according to the shared labels determined by the connectors. Hence, we focus on the
interactions between the subcomponents (via their connected ports) and on the actions
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on the relay ports of the composite component while the internal behaviour of the sub-
components is not relevant; see [9]] for the detailed definitions.

Of course, one may again construct the observable behaviour of a composite compo-
nent which then could be used for further analysis but also for the construction of the
behaviour of another composite component on the next hierarchy level. When climbing
up the hierarchy of composite components one can always first perform a minimisation
of the observable behaviour of the subcomponents before the behaviour of the com-
posite component on the next level is constructed. This technique can indeed be very
efficient to reduce the state space of nested components because, depending on the ap-
plication, many (or even all) 7-transitions may be removedld In fact, our experience
shows that in this way there is often not even an increment of the size of the state
space [12]].

In the following we focus on checking the deadlock-freeness of the behaviour of a
composite component. It is well-known that, in general, the deadlock-freeness of sub-
components does not guarantee the deadlock-freeness of a global system (as nicely
illustrated by Dijkstra’s philosophers example). Indeed this is unfortunately still the
case if all components are correct w.r.t. their ports (in the sense from above) and if
all ports are connected in a behaviourally compatible way, as soon as more than two
subcomponents are involved. Hence, we are looking for particular topologies of com-
ponent structures where deadlock-freeness is preserved. An appropriate candidate are
(acyclic) star topologies as shown in Fig. [I8 containing one central component C' with
n ports such that each port is connected to the port of one of the components C; for
1=1,...,n.

==COMmponent=»=
i g]

cl:C1 E

qt - at

ci+d 1 Cisl g'

ol+1 Qi+l

pi+1 Pl pn PR

rl: Rl L. tkIRk

Fig. 18. Star topology of composite component

We assume that all single subcomponents, C' and C;, are correct w.r.t. their ports
and that their local behaviours are deadlock-free. Then, if all connected ports are be-
haviourally compatible, the composite component C'C' can only deadlock if at least
two ports p,, : Py, pg : Pg of the central component C' are connected to ports ¢, : Qq,
qs : @ of components C', and Cg resp. such that the behaviours specified for both port

® Only 7-transitions occurring in an alternative may not be removable according to the well-
known fact that alternatives are i.g. not compatible with the observational equivalence.
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types (Q, and () properly restrict the behaviour of F,, and of Pg in an incompatible
wayl] This may happen, if C' introduces a dependency between P, and P that is in-
compatible with the simultaneous restrictions imposed by the connections with @), and
Qg on both sides of C. An example for such a situation is provided in [12]. If, however,
at most the behaviour of one port of C' is restricted by the connection and the interac-
tion behaviours of all other connections reflect the behaviour of all other ports of C' then
deadlock-freeness is preserved by the component composition. This fact is expressed by
the following theorem (for the proof see [12]]) which shows that indeed for the global
deadlock check it is enough if the subcomponents are locally checked for deadlock-
freeness and correctness and if the architect of the composite component checks each
single port connection on the basis of the interaction behaviour of the connected ports.

Theorem 1 (Deadlock-freeness of composite components). Ler CC' be a composite
component with component structure as shown in Fig.[[8 Let the following hold:

1. The components Cy,...,C,, are correct w.r.t. their ports q1 : Q1,...,Gn : Qn
resp., and C'is correct w.r.t. to each of its ports p1 : Py, ..., py : Py.

2. All I/O-transition systems representing the behaviours of C1,...,C,, and C are
deadlock-free.

3. Foralli € {1,...,n — 1} the interaction behaviour of P; and Q; reflects the
behaviour of P;.
4. The ports Py, and Q,, are behaviourally compatible.

Then the I/O-transition system representing the behaviour of CC' is deadlock-free.

This theorem is related to a result of Bernardo et al. which is also motivated by
the derivation of global properties from local ones, not using an explicit port concept,
however. In a significantly stronger condition is used requiring what we call “be-
haviour reflection” for all connections between components with no exception where
behavioural compatibility is sufficient as in the above theorem. A further generalisation
of the theorem to arbitrary many non behaviour reflecting but behavioural compatible
connections is given in [12]] which, however, needs further assumptions.

We can directly apply Thm. [l to analyse the behaviour of the composite compo-
nent CashDesk (cf. Fig. [7) where CashDeskApplication plays the role of the central
component C'. As pointed out above all subcomponents of CashDesk are correct w.r.t.
their respective ports and their behaviour is deadlock-free. We also have analysed (with
HuGO/RT and the LTSA tool, see Sect. the given connectors between the ports
of CashDeskApplication and the ports of the other subcomponents of CashDesk. It
turns out that the port CDA-CB of CashDeskApplication is behaviourally compatible
with the port CB-CDA of the CashBox component and that for all other connected
ports the interaction behaviour even reflects the behaviour of the corresponding port
of CashDeskApplication. Hence, Thm. [Tl shows that the component CashDesk does not
deadlock. We can also show (see [9]) that the CashDesk component is correct w.r.t. its
relay ports.

" Note that it is sufficient to consider the behaviours of the ports of C\, and Cjs instead of
considering the observable behaviour of the components C', and Cj since both components
are assumed to be correct w.r.t. their respective ports.
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Following our analysis method we now go one step up in the component hierar-
chy and consider the composite component CashDeskLine (cf. Fig. [6)) which has con-
nected subcomponents of type CashDesk and Coordinator. Obviously, the structure of
CashDeskLine fits again to the component structure assumed in Thm. [ Hence, we
can directly apply Thm. 1] since we know that CashDesk is correct and deadlock-free,
Coordinator is correct and deadlock-free (see paragraph on the analysis of simple com-
ponents), and that the connection between the ports (of type) CDA-C and C-CD reflects
the behaviour of CDA-C (see paragraph on the analysis of connectors). Thus component
CashDeskLine does not deadlock and, according to the reflection of the appropriate port
behaviour, it is also correct w.r.t. its relay ports.

Note again that we did not take into account here multiplicities of component decla-
rations which means in this example, that we have disregarded the number of CashDesk
instances that are connected to one Coordinator instance. This abstraction works be-
cause, first, the Coordinator instance has as many port instances of type C-CD as there
are cash desks connected, and, more importantly, the interactions of the coordinator
with the single cash desks are independent. More formally, this means that if there are
n cash desks connected to the coordinator then arbitrary interleaving is allowed and
thus deadlock-freeness of the cash desk line does not depend on n.

Let us now come back to the original proposal of the CashDeskLine structure which
has used an event bus for communication [10]. We have refrained from using the event
bus in the design model, as we believe that the introduction of an event bus is an imple-
mentation decision to be taken after the design model has been established and analysed.
Indeed we could introduce right now an implementation model which implements the
communication between the components of the CashDesk and CashDeskLine in terms
of an event bus, provided that the bus follows the first-in first-out principle. Then, ob-
viously, the order of communications between the single components specified in our
design model would be preserved by the implementation model and hence the deadlock-
freeness of the design model would also hold for the event bus based implementation.

This concludes the behavioural analysis of the asynchronous part of our model for
the CoCoME which was in the centre of our interest. For the synchronous, information-
oriented part we suggest to apply pre-/post-condition techniques which have been lifted
to the level of components in our previous [[14] and recent [13] work.

9.4.2 Non-functional Requirements

We perform quantitative analysis of the Process Sale Use Case 1 by modelling the ex-
ample in the process algebra PEPA [J3] and mapping it onto a Continuous-Time Markov
Chain (CTMC) for performance analysis. The analysis shows that the advantage of ex-
press checkout is not as great as might be expected. Currently, however, this analysis
has to be performed manually; a closer integration could be achieved by decorating
UML state machines and sequence diagrams with rate information using the UML per-
formance profile as in the Choreographer design platform [[16], allowing a PEPA model
to be extracted from the UML diagrams.

Model. Markovian models associate an exponentially distributed random variable
with each transition from state to state. The random variable expresses quantitative
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information about the rate at which the transition can be performed. Formally, a ran-
dom variable is said to have an exponential distribution with parameter A (where
A > 0) if it has the probability distribution function F' with F(z) = 1 — e if
x > 0, and F(z) = 0 otherwise. The mean, u, of this exponential distribution is
p= [, xAe"*dx = 1/A. Thus if we know the mean value of the duration associ-
ated with an activity then we can easily calculate from this the rate parameter of the
exponential distribution: A = 1/p.

In the case where we only know the mean value then the exponential distribution
is the correct distribution to use because any other distribution would need to make
additional assumptions about the shape of the expected distribution. However, for ex-
ample in the case of waiting for credit card validation, the extra-functional properties
state that we have a histogram representing the distribution over the expected durations
stating that with probability 0.9 validation will take between 4 and 5 seconds and with
probability 0.1 it will take between 5 and 20 seconds.

We encode distributions such as these in the process algebra PEPA as an immediate
probabilistic choice followed by a validation occurring at expected rate (4.5 is mid-way
between 4 and 5 and 12.5 is mid-way between 5 and 20 so we use these as our means).

(7,0.9 : immediate).(validate,1/4.5) . ..
+ (7,0.1 : immediate).(validate, 1/12.5) . ..

Whichever branch is taken, the next activity is validation; the only difference is the
rate at which the validation happens. In Fig. [19 we show how 700000 values from a
uniformly-distributed interpretation of the histogram for credit card validation would
differ from the exponentially-distributed interpretation.

In our experience, a distribution such as that shown in Fig. [19] (left) is unlikely to
occur in practice. For example, it has the surprising property that delays of four seconds
are very likely but delays of three seconds are impossible. Also, there is a very marked
difference between the number of delays of five seconds and delays of six. In contrast,
distributions as seen from our sample in Fig.[T9](right) occur frequently because they are
a convolution of two heavy-tailed distributions. Other histogram-specified continuous
distributions are treated similarly. We first make a weighted probabilistic choice and
then delay for a exponentially-distributed time.

350000 T T T T T T T T T T T T 350000

300000 1 300000

250000 9 250000

200000 9 200000

150000 - 9 150000 -

100000 - 9 100000

50000 - 9 50000 -

0 0

1234567 8 91011121314151617181920 12345678 91011121314151617181920

Fig. 19. Specified (left) and sampled (right) distributions for credit card validation
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Analysis. From our process algebra model we obtain a finite-state continuous-time
Markov chain represented as a matrix, ), to be analysed to find the probability of being
in each of the states of the model. At equilibrium the probability flow into every state is
exactly balanced by the probability flow out so the equilibrium probability distribution
can be found by solving the global balance equation w@) = 0 subject to the normal-
isation condition ), w(z;) = 1. From this probability distribution can be calculated
performance measures of the system such as throughput and utilisation.

From this information we can assess a service-level agreement for the system. A
service-level agreement typically incorporates a time bound and a probability bound
on paths through the system behaviour. We considered the advantage to be gained by
using the express checkout where customers in the queue have no more than 8 items to
purchase. As would be expected, the sale is always likely to be completed more quickly
at the express checkout but the advantage is not as great as might be expected. At the
express checkout 50% of sales are completed within 40 seconds as opposed to the 44
seconds spent at a normal checkout (see Fig.[20] (right)). In our model we included the
possibility of customers with 8 items or fewer choosing to go to a normal checkout
instead of the express checkout, because we have seen this happening in practice. This
goes some way to explaining why the difference in the results is not larger.

Differences between the express checkout and a normal checkout Differences between the express checkout and a normal checkout
0.6

express checkout express checkout
normal checkout -~ | normal checkout_~<--

05
0.4

0.3

Probability
Probability

02

0.1

10 0 5 10 15 20 25 30 35 40 45 50
Time Time

Fig. 20. Graphs showing how the advantage of using the express checkout (8 items or fewer) over
using a normal checkout (100 items or fewer) varies over 10 (left) and 50 seconds (right)

9.5 Tools

9.5.1 Qualitative and Quantitative Analysis

HUGO/RT. HUGO/RT is a UML model translator for model checking, theorem
proving, and code generation: A UML model containing active classes with state ma-
chines, collaborations, interactions, and OCL constraints can be translated into the sys-
tem languages of the real-time model checker UPPAAL, the on-the-fly model checker
SPIN, the system language of the theorem prover KIV, and into Java and SystemC code.
The input can either be directly be given as an XMI (1.0, 1.1) file or in a textual format
called UTE (for an example see Fig.22).

In the CoCoME, we use HUGO/RT for two purposes: On the one hand, we check
the deadlock-freedom of connectors by translation into a model checker; however,
as currently HUGO/RT’s model checking support is limited to finite-state systems,
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abstraction has to be applied (manually) to infinite parameter domains. On the other
hand, we use code generation into Java for component behaviours (see Sect.[9.5.2)).

LTSA. For producing the graphs of the I/O-transition systems used in the behavioural
analysis of our model and for the analysis of component correctness and behaviour
reflection of ports we have used the Labelled Transition System Analyser (LTSA [11]]).
The LTSA tool supports the process algebra FSP and, indeed, we have defined
appropriate FSP processes for most of the transitions systems used in our model for
the CoCoME. In this way we have expressed port products by parallel composition
with synchronisation on shared labels and we have proved observational equivalence
of transition systems by exploiting the minimisation procedure of LTSA. The concrete
form of the used FSP processes is not shown here but can be examined in [9].

PEPA. PEPA (Performance Evaluation Process Algebra [3]]) is a process algebra that
allows for quantitative analysis of the CoCoME using Continuous-Time Markov Chains
(CTMC). For the quantitative analysis of Sect. we used the TPC tool [6]).

9.5.2 Architectural Programming

Java/A [1I7] is a Java-based architectural programming language which features syn-
tactical constructs to express JAVA/A component model elements (see Sect.[0.2) directly
in source code. Thus, the implementation of a component-based system using JAVA/A
is straightforward. Additionally, JAVA/A programs gain robustness with respect to ar-
chitectural erosion: it is obvious to software maintainers which parts of the code belong
to the architecture and therefore need special attention during maintenance.

We implemented a subset of the CoCoME, consisting of one component CashDesk
including all of its sub-components and a simplified component Inventory to highlight
JAVA/A as implementation language for component-based systems. Fig. 21| shows the
source code of the top level composite component SimplifiedStore which contains the
CashDesk and the Inventory. The assembly (l. 2-3) declares the sets of component
and connector types which may be used in the configuration of the composite com-
ponent. The initial configuration, consisting of one cash desk connected to one inven-
tory, is established in the constructor of the composite component (1. 4-11). Compo-
nents which are declared with the additional keyword active will be started after the

composite component SimplifiedStore {
2 assembly { components { Inventory, CashDesk }
connectors { Inventory.Sale, CashDesk.CDAI; } }
4 constructor Store() {
initial configuration {

6 active component Inventory inv = new Inventory();
active component CashDesk cd = new CashDesk() ;
8 connector Connector con = new Connector () ;

con.connect (inv.Sale, cd.CDAI);

Fig.21. JAVA/A composite component SimplifiedStore
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simple component CashDeskApplication {
2 int itemCounter = 0;
port CDACB {

4 provided { async saleStarted();
async productBarCodeEntered (int barcode) ;
6 async saleFinished() ;
async paymentModeCash(); ... }
8 required { void changeAmountCalculated(double amount) ;
void saleSuccess(); }
10 protocol <! behaviour {
states { initial init;
12 simple a; simple b; simple e; ... simple h; }
transitions { init -> a;
14 a -> b { trigger saleStarted; }
b -> b { trigger productBarCodeEntered; }
16 - ..
e -> h { effect out.saleSuccess(); }
18 h -> b { trigger saleStarted; }
P}y o>
20 Yoo,
void saleStarted() implements CDACB.saleStarted() {
2 Event event = Event.signal ("send saleStarted", new Object[]{});
this.eventQueue.insert (event) ;
24 ...
void processSaleStarted() {
26 try {
CDAP.saleStarted() ;
28 CDACDG. saleStarted() ;
}
30 catch (ConnectionException e) { e.printStackTrace(); }

}

Fig.22. The JAVA/A simple component CashDeskApplication

initialisation process (which basically consists of initialising and connecting the
components).

In Fig. 22l we give a very brief overview of the JAVA/A implementation of the com-
ponent CashDeskAppIicationﬁ In lines 3-20 the port CDACB is declared (see Fig. Q).
Provided operations annotated with the keyword async instead of a return type are
asynchronous. The port protocol (lines 10-19) is specified using the language UTE. In
order to verify the absence of deadlocks of the connection of two ports, the JAVA/A
compiler is closely integrated with HUGO/RT (see Sect. 051D [

The operations declared in a port’s provided interface must have a realisation
in the respective port’s component. The implementation of the provided operation
saleStarted of the port CDACB is shown in lines 21-24. In the body of the private
helper method processSaleStarted (lines 25-31) required port operations are in-
voked. These invocations leave the component’s boundaries and therefore the checked
exception ConnectionException has to be handled.

We have used HUGO/RT to generate Java-based implementations of the state ma-
chines to realise the components’ behaviour. Thus the components’ behaviour adheres

8 Of course, most of the component’s body is omitted here. However, the complete implemen-
tation is available online [9].

% In contrast to Sect.[03] in the JAVA/A implementation port names are written without hyphens
due to Java naming conventions.
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strictly to the specifications given in the previous sections. However, to use the spec-
ified state machines for code generation, a few minor adoptions have been neces-
sary: i.e., calls to required port operations are delegated to internal helper operations
(e.g. processSaleStarted in Fig. lines 25sqq.) and parameter values of in-
coming operation calls are stored in helper variables. The complete JAVA/A implemen-
tation of the simplified CoCoME is available online [9].

9.6 Summary

Our approach to modelling the CoCoME has been based on a practical component
model with a strong focus on implementability and modular (component-wise)
verification. In fact our UML based component model was originally introduced for the
architectural programming language JAVA/A supporting encapsulation of components
by ports. Based on the semantic foundations, we have that our strategy for modular
verification of properties of hierarchically constructed components works for the
architectural patterns used in the CoCoME. The semantic basis of our functional
analysis was given in terms of I[/O-transition systems to which we could apply standard
operators, for instance for information hiding, thus focusing only on the observable
behaviour of components on particular ports. Although the port-based approach alone
does not suffice for guaranteeing full component substitutability, the analysis method
can be used to ensure special properties, like deadlock-freedom, compositionally.
These properties are transferred to the architectural programming language JAVA/A by
code generation where deadlock-freedom corresponds to the ability of the components
to communicate indefinitely. For non-functional properties, we used continuous-time
Markov chains to quantify performance.

Currently we are developing support for modelling runtime reconfigurations of
component networks. This will be necessary if the CoCoME requirements would be
extended, e.g., to use cases for opening and closing cash desks. Also, the current com-
ponent model does not directly integrate means for specifying non-functional proper-
ties. Our component model assumes that all connectors are binary which, due to the
possibility to define ports with an arbitrary multiplicity, is no proper restriction. How-
ever, our analysis method actually supports multiplicities greater than one only if the
actions of parallel executing instances of the same port or component declaration can
be arbitrarily interleaved, which was indeed the case in the example. In the centre of our
behavioural analysis was the interaction behaviour of components with asynchronous
message exchange via their ports. For synchronous, data-oriented behaviours we still
should add assertion-based techniques (e.g., in terms of pre- and post-conditions) whose
integration in a concurrent environment, however, needs further investigation.
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