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Abstract. We consider the problem of assessing the trustworthiness of
mobile code. We introduce the idea déep type inferencen compiled
object code and explain its usefulness as a method of dgdidalevel of
security management which a unit of mobile code will require



1. INTRODUCTION

The mobile agent paradigm is emerging as a leading programming paradigm fo
the next generation of networked computing architectures. A mobile agebtcan
deployed for evaluation of a computation on a remote host. This reavalea-
tion can both improve data locality and make economical use of availableretw
resources. However, the only reasonable security policy for a comqpuitétie-
source provider to adopt is one which considers all computations clauath
origin to be potentially hostile. Thus programming languages suclaas [1L]
where the notion of mobility is native to the language enfa@edboxingf mo-

bile code. This prevents anti-social behaviour such as the creation andulelet
local files, sending and receiving electronic mail and making network connsction
other than back to the point of origin of the mobile code. The Javaulage pro-
vides degrees of programmer-definable control over the amount of libdaigh
mobile code is allowed. The programming abstraction in the Java éayegwhich

is responsible for enforcing the sandboxing of non-native code lisccabecurity
manager

In those cases where the code comes from a trusted host, it may be @tssibl
allow the degree of sandboxing to be relaxed by installing a moredlilsecurity
manager. However, in the general case, it is still always necessary in Javdyto app
complete sandboxing to mobile code from an untrusted source. This@end,
and the degree of attendant indirection of execution of system funactrbich
goes with it, only serves to be an unnecessary computational overhead ingke cas
where the mobile code actually has no potential for harmful behaviour.

The same reasoning applies in the case of the use of an untrusted library o
potentially side-effecting functions. A mobile agent might wish tplek data
locality by using a local copy of a library. However, if the agent alsohessto
retain control of its state it could employséate managewhich passes copies of
mutable data values to library functions, discarding these copies onetomof
the function invocation, on the assumption that they may have beeadhgra
side-effect of the function invocation. In the object-oriented programgmodel
objects are routinely passed as parameters to method invocations. Heregithe att
dant object cloning and production of garbage which will require colledater
could impose a significant performance penalty on a mobile agent. As was th
case with the use of a Java security manager, this attendant performandg penal
is entirely unnecessary when the local copy of the library actually has not@dten
for harmful behaviour.

The detection of harmful behaviour can be formulated dgp& inference
problem which is applied to the object code which is produced from sogte hi
level source. We term thideeptype inference in contrast to trshallowtype
inference which is performed on source code expressed in high-leveldgagu
such as Standard ML [2]. Thdeep typesvhich are produced from this type infer-
ence are considerably more complex than traditional shallow types andere ev
more complex than those which are produced by type and effect inference. One

1 Java is a trademark of Sun Microsystems.



reason why deep types may be allowed to be so complex is that they are purely
internal and serve as an abstract typing valuation within the run-titeepireter.
Thus, in pointed contrast to the shallow types of Standard ML, a deepisyp
never seen by an application programmer.

We present examples in the setting of Java byte code which show that thi
form of type inference is applicable to byte code which is either of fomneti or
imperative origin. We use the MLj compiler [3] to compile Standard ktide
to Java byte code and compare this with the code which is produced &een J
source by Sun’$ avac compiler. We show that even untrusted code which has
functionalessencegrather than just functional syntax, can be allowed to run unre-
stricted without incurring the overhead of a security manager. The bendgifité
arise from the functional programming paradigm are seen to come frouaighe
ciplined control of state. The use of a purely functional language can beaseen
one which has entirely suppressed the use of state.

2. COMPILING TO JAVA BYTE CODE

There are a number of competing strategies for executing Java byte dudpriT
mary method of execution is to interpret the byte code although anatjustin-
time compilation, which compiles it to native machine code for native exeoutio
Yet another is a combination of interpretation and compiled code executitin as
rected by feedback from continuous performance profiling. This technéqueeid

in Sun’s Java HotSpot system [4]. Regardless of their executiacypplatforms
which execute Java byte code are known as Java Virtual Machines (JVitieyif
conform to the JVM specification [5].

The widespread availability of implementations of the Java Virtual Nteeh
has encouraged implementors of other programming languages to targeytiava b
code as a form of portable assembly language. Of interest to the fungpicnal
gramming community in particular are compilers which produce Javadndes
from Standard ML [3, 6] and from Haskell [7, 8].

Comparing compilation unitsfor Standard ML and Java, as shown in Fig-
ure 1, we have a Standard Mitructurein one case and a Jaetassin the other.

A Standard ML structure may be accompanied witsignaturewhich identifies
the components of the structure which are to be accessible outsideubeise
body via long identifiers such as the functibac. f act in this case. The Java
programming language provides control of visibility and encapsuiatioough
the use of theaccess control modifiengubl i ¢, pri vat e andpr ot ect ed.

2 The termcompilation unitis a little misleading in the context of MLj because it does
not provide a full separate compilation facility. An extemsto the system is planned
which would provide some persistent storage of intermediampiled forms but at the
time of writing, the MLj compiler operates asvehole-programcompiler. As such it
is able to apply more aggressive type-directed optimigatitan a separate compiler
would. The subject of cross-module optimisation is the scthpf recent research in the
Standard ML community [9].



sighature Fac = cl ass Fac {
sig privateint m
val fact : int -> int
end; privateint fac (int n, int m {
while (n I'=0) {
structure Fac :> Fac = m *= n;
struct n--;
fun fac (n, m = }
ifn=20 return m
then m }
el se
fac (n - 1, m=* n) public int fact (int n) {
m= 1,
fun fact n = return fac (n, n;
fac (n, 1) }
end; }

Fig. 1. A Standard ML structure and a Java class

The Java class defines a metli@tt () which object instances of the claBac
will provide.

Of the two code extracts which are included in Figure 1, neither are @licm
in the sense that they are the implementations would have been produpeat b
grammers who routinely work in Standard ML or Java. In the Standard Mé& itas
would be usual for an implementor to define frec function by pattern match-
ing, exploiting this elegant feature of the language to separate euth cases
in the function definition. In the Java example, the local variabii®es not serve
any very useful purpose and decomposing the meftaxx{ ) does not provide
any useful structure since this method is implemented iteratively, singa tail
recursive function as in the Standard ML case. However, the two exampée cod
fragments are bottepresentativén the sense that the Standard ML example con-
tains no assignments and defines the function recursively whereas thedsioa v
uses updates and a loop to compute the same results (ignoring diffeteiour
on numeric overflow).

The two code fragments also have a common point of comparison inrtke fu
tionf ac and the methotlac( ) . Neither are visible outside their respective com-
pilation units although they do of course occupy space in their compala@sen-
tations. A Java disassembler such as Spyagap provides a convenient way to
inspect these compiled representations. A representative extract of thedug
produced from these compilation units is shown in Figure 2.

As might be expected, it becomes difficult after compilation to determine
which bytecodes resulted from the functional Standard ML input and wigich r
sulted from the imperative Java input. Both compiled representatiarisde
loads { | oad instructions) and stores$ §t or e instructions) and both contain



Met hod int fac(int,int) Met hod int fac(int,int)
0 goto 19 14 istore_1 0 goto 10
3iload_1 15 iload_0O 3 iload_2
4 ireturn 16 iconst_nil 4 iload_1
5 iconst_0O 17 i add 5 i nmul
6 istore_2 18 istore_0 6 istore_2
7 iload_2 19 iload_ O 7 iinc 1-1
8 ifne 3 20 ifne 5 10 iload_1
11 iload_1 23 iconst_1 11 ifne 3
12 iload_0 24 istore_2 14 iload_2
13 i mul 25 goto 7 15 ireturn

Fig. 2. Java byte code extracts

conditional and unconditional jumps (thé ne andgot o instructions). In fact,
the bytecodes on the left come from the Standard ML source and the bytecodes
on the right come from the Java soutce

In order to see how deep type inference can allow us to recover the functional
essence from byte code which seems as though it might have been produmeed fro
imperative source code we first need to understand the role of typee iatta
Virtual Machine. We discuss this subject in the following section.

3. TYPESAND THE JVM

The Java Virtual Machine is a typed abstract machine. The types whicledtlyir
supports correspond to a subset of the Java types. Separate insisuctplement
conversions between the unsupported types and the supported typetesidre
decision which forces this distinction to be drawn is the wish toesent every
JVM opcode by a single byte. If typed instructions were to be pexibr each
Java type there would be too many to be represented in a byte. Thusigtitthe
methodsnot () andneg() in Figure 3 below have different parameter and re-
turn types the JDK 1.1.6 Java compiler emits identical bytecodes formttethod
bodie$. Note that additional type information is stored independently@biyte-
codes. This is the information which is retrieved via Javeffectioncapabilities.
It is not only booleans which the JVM represents as integers. Characters are

also zero-extended to 32-bit integers and 8 and 16-bit integers arexignded

3 It might have been possible to guess this due to the use dfithe instruction with
arguments (local variable number) 1 and increment This corresponds directly to
the Java commana- - which has no analogue in Standard ML. The parameter passing
convention in the JVM is that the first parameter to a methatigeed into the first local
variable for a non-static method and in the zeroth localalde for a static method.

4 The Java compiler in Sun’s Java 2 SDK will generate more compgte code for
thenot () method by deploying anxor instruction on the parametérand the con-
stant 1 but it still encodes boolean values as integers.



int neg (int n) {
bool ean not_(bool ean b) { it (nl=0) return O:
return !b;
el se return 1;
I }
4 4
Met hod bool ean not ( bool ean) Met hod i nt neg(int)
O iload_1 O iload_1
l1ifeq6 lifeq 6
4 iconst_0O 4 iconst_0O
5 ireturn 5 ireturn
6 iconst_1 6 iconst_1
7 ireturn 7 ireturn

Fig. 3. Boolean values are manipulated as integers in the JVM

to 32 bhits. The correspondence between storage types in the languages Stan-
dard ML and Java and computation types in the JVM is shown in Figure 4.

Standard ML type| Java type | JVM type
bool bool ean | i nt

char char int
Int8.int byt e int
Int16.int short int

int int int
Int64.int | ong | ong
Real 32. real fl oat fl oat

r eal doubl e doubl e

Fig. 4. Storage types and computational types in the JVM

4. DEEP TYPESAND THE JVM

The conclusion is that we evidently cannot reconstruct the Java typenethod
from its compiled bytecodes. Neither is it possible to reconstructtineipal type
of a Standard ML function since the JVM provides no support for kpression
of parametric polymorphism in routines. However, we are seeking abksi
here instead the presence or absence of potential side-effects in the exetution
a compiled JVM bytecode sequence and to identify the object fields which could
potentially be modified by a method call. We term the formal expressiohi®
information thedeep typef a method.

We identify a representative subset of the Java bytecodes which we term
JVML4. The operational semantics of this subset is presented in Figure 5esTupl



of machine states contain a program coumigra total mag which maps local
variables from the setAR to values, and an operand steck

Plpc] = inc
PF(pcf.n 9 — (pctr L, n+1)-3)

Plpd = pop Plpd = push 0
PF(pc f,v-s) = (pc+ 1, f, s Pr{(pc f,s) = (pc+1,f, 0.9

Plpd = load x Plpc] = store x
PE(pc f,s) = (pc+1,f, f[X]-s) PF{pc f,v-5 — (pc+ 1, f[x+—V], s

P[pc = 0.getfield X
PF{(pc f,s) — (pc+ 1, f, flo][X -9

P[pc = o.putfield X
PF(pc f,v-s) = (pc+ 1, f[o— ox— V]|, S)

Plpd = if L Plpd =if L n#0
PF{pc f,0-s) = (pc+ 1 f, 9 PF(pc f,n-s) = (L, f, 9
P[pd = goto L Plpd =newo 0 € 0% Unusedo,f,s)
PE(pc f,s) = (L, f, 9 Pt {(pc f,s) = (pc+1,f,0 -9

Fig.5. JVML, operational semantics

We use the variables to range over any object type and wrif® for the set

of values of that type. A particular object value from that set will be denoted
by o or ;. We usep; solely to denote locally generated object accessors, meaning
that they are generated by this method invocation instead of being passed in as
parameter’s We write Unusedo, f, s) to abbreviat® ¢ sA o ¢ Rng(f).

In defining the static semantics of the language we begin by iderdifsén
mantic objects which shadow the roles of the state fundtiamd the operand
stacks which are found in the dynamic semantics. We name the corresponding
static semantic object&sandS. The former is a mapping from addresses to func-
tions which map local variables to types. The latter is a mapping from askebes
to stack types. Thuss;[y] is the type of local variablg at linei of the program
and§ is the type of the operand stack at the same place.

5 Java calls by value. In passing objects to methods it is itapoto distinguish between
passing an object reference by value and passing an objeetlwareference. Java does
the former and not the latter.



Pli] = if L

Pli] = inc Fit1=FL=F;
Fit1=F; S§S=INT-§4+1=INT-§
S+1=S=INT-a Dj+1=DL=D
Dj+1=D;j i+1¢e DomP)
i +1ec DomP) L € Dom(P)
F.SD,iFP F.SD,iFP
P[i] = pop P[i] = push 0
Fir1=F; Fit1=F;
S=7-S+1 S+1=INT-§
Di+1=Dj Di+1=Dj
i +1 € Dom(P) i +1€ DomP)
F.SD,iFP F.SD,iFP
P[i] = load X P[i] = store X
x € Dom(F;) x € Dom(F;)
Fivr1=Fi Fi+1=Fix— 7]
S+1=Filx-§ S=7-S+1
Dj+1=Dj Dj+1=D
i +1¢c DomP) i +1 € Dom(P)
F.SD,iFP FSD,iFP
Pli] = 0.getfield X P[i] = o.putfieldX
0 € Dom(Fj) 0 € Dom(Fj)
x € Dom(F;[o]) x € Dom(Fj[o])
Fie1=Fi Fi+1=Fi[o— o[x— Fj[0][x]]]

S+1=Filo[¥-§
Dj+1= rd(0, X, Fj[0][X]) - Dj

S=FolX-S+1
Dj+1 = wr(0, X, Fj[0][X]) - D;

i +1 € Dom(P) i +1 € DomP)
F.SD,iFP FSD,iFP
Pli] = newo
Fiv1=Fi
Pli] = goto L S+1=0i-S
FL=Fi Di+1 =D
S =5 oi ¢ §
DL =D oi ¢ RngF;)
P[i] = halt L € Dom(P) i + 1€ DomP)
F.SD,iFP F.SD,iFP F.SD,iFP

Fig. 6. JVML, static semantics



To this we add a static semantic object to accumulate the deep typing aform
tion from the method body. This records the field accesses and storeseefbj
which are accessed by this method invocation. We regulate the correct umge of t
program counter by checking the successful progression through texténa
struction in most cases. Exceptionally, thet o andhal t instructions do not
need this test since the immediately following instruction is not reagheiher
case. The f instruction has two possible destinations, both of which must be
checked. This gives rise also to two possible subsequent semantic \aleesl
of the functions for state typing, stack typing and deep typing.

5. RELATED WORK

Because security properties must ultimately be verified on Java byteaada-th
portance of thoroughness here was identified early by authors interestled in
subject [10]. The absence of a formal description of the type systedalarbyte-
code was an obvious source of concern. Another was the deviation of yi&va b
code type-checking from traditional type-checking where the type-correctnes
of a construct depends upon the current typing context, the type-aoesscof
subexpressions, and whether the construct is typable by one of adixetkales.

In contrast, the Java bytecode verifier must show that all possible tixepaths
lead to the same virtual machine configuration.

A compelling type system for Java bytecode subroutines has préyioesn
given by Stata and Abadi [11]. Their main theorem shows that for methods e
pressed in a subset of Java’s bytecodes (JVMLO) when method execufigritsto
is because of &al t instruction and not program counter overflow or violation
of an instruction precondition. Further, the operand stack, with ¢erm value
on top, is well-typed. This work has been continued by Hagiya and Tozh#}a [
and by Freund and Mitchell [13] leading in the latter case to the detection of a
previously unknown bug in the Sun JDK 1.1.4 bytecode verifiereOttork by
Qian [14] is being developed and may lead to the first provably-correceimgh-
tation of the JVM bytecode verifier [15].

Ours is the first attempt to consideterferenceproperties [16] in the types
which are inferred for Java bytecode subroutines. The applicatiorpefityfer-
ence to a low-level, imperative language such as Java byte code might@seem t
be ill conceived. However, although type inference has primarily foamddr in
the functional language community, there is no reason why it cannot be@&pp
to imperative languages. Successful examples of such application inchldetdi
of Pascal [17] and C [18].
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