
Deep type inference for mobile functions

Stephen Gilmore

Laboratory for Foundations of Computer Science
The University of Edinburgh

King’s Buildings
Edinburgh EH9 3JZ

Scotland.

Telephone: +44 (0)131-650-5189.
Fax: +44 (0)131-667-7209.

Email:Stephen.Gilmore@ed.ac.uk

Abstract. We consider the problem of assessing the trustworthiness of
mobile code. We introduce the idea ofdeep type inferenceon compiled
object code and explain its usefulness as a method of deciding the level of
security management which a unit of mobile code will require.



1. INTRODUCTION

The mobile agent paradigm is emerging as a leading programming paradigm for
the next generation of networked computing architectures. A mobile agent canbe
deployed for evaluation of a computation on a remote host. This remoteevalua-
tion can both improve data locality and make economical use of available network
resources. However, the only reasonable security policy for a computational re-
source provider to adopt is one which considers all computations of non-local
origin to be potentially hostile. Thus programming languages such as Java1 [1]
where the notion of mobility is native to the language enforcesandboxingof mo-
bile code. This prevents anti-social behaviour such as the creation and deletion of
local files, sending and receiving electronic mail and making network connections
other than back to the point of origin of the mobile code. The Java language pro-
vides degrees of programmer-definable control over the amount of libertywhich
mobile code is allowed. The programming abstraction in the Java language which
is responsible for enforcing the sandboxing of non-native code is called asecurity
manager.

In those cases where the code comes from a trusted host, it may be possible to
allow the degree of sandboxing to be relaxed by installing a more liberal security
manager. However, in the general case, it is still always necessary in Java to apply
complete sandboxing to mobile code from an untrusted source. This sandboxing,
and the degree of attendant indirection of execution of system functionswhich
goes with it, only serves to be an unnecessary computational overhead in the cases
where the mobile code actually has no potential for harmful behaviour.

The same reasoning applies in the case of the use of an untrusted library of
potentially side-effecting functions. A mobile agent might wish to exploit data
locality by using a local copy of a library. However, if the agent also wishes to
retain control of its state it could employ astate managerwhich passes copies of
mutable data values to library functions, discarding these copies on completion of
the function invocation, on the assumption that they may have been altered by a
side-effect of the function invocation. In the object-oriented programming model
objects are routinely passed as parameters to method invocations. Here, the atten-
dant object cloning and production of garbage which will require collection later
could impose a significant performance penalty on a mobile agent. As was the
case with the use of a Java security manager, this attendant performance penalty
is entirely unnecessary when the local copy of the library actually has no potential
for harmful behaviour.

The detection of harmful behaviour can be formulated as atype inference
problem which is applied to the object code which is produced from some high-
level source. We term thisdeeptype inference in contrast to theshallow type
inference which is performed on source code expressed in high-level languages
such as Standard ML [2]. Thedeep typeswhich are produced from this type infer-
ence are considerably more complex than traditional shallow types and are even
more complex than those which are produced by type and effect inference. One

1 Java is a trademark of Sun Microsystems.

1



reason why deep types may be allowed to be so complex is that they are purely
internal and serve as an abstract typing valuation within the run-time interpreter.
Thus, in pointed contrast to the shallow types of Standard ML, a deep type is
never seen by an application programmer.

We present examples in the setting of Java byte code which show that this
form of type inference is applicable to byte code which is either of functional or
imperative origin. We use the MLj compiler [3] to compile Standard MLcode
to Java byte code and compare this with the code which is produced from Java
source by Sun’sjavac compiler. We show that even untrusted code which has
functionalessence, rather than just functional syntax, can be allowed to run unre-
stricted without incurring the overhead of a security manager. The benefitswhich
arise from the functional programming paradigm are seen to come from thedis-
ciplined control of state. The use of a purely functional language can be seenas
one which has entirely suppressed the use of state.

2. COMPILING TO JAVA BYTE CODE

There are a number of competing strategies for executing Java byte code. The pri-
mary method of execution is to interpret the byte code although another is just-in-
timecompilation, which compiles it to native machine code for native execution.
Yet another is a combination of interpretation and compiled code execution asdi-
rected by feedback from continuous performance profiling. This technique is used
in Sun’s Java HotSpot system [4]. Regardless of their execution policy, platforms
which execute Java byte code are known as Java Virtual Machines (JVMs) ifthey
conform to the JVM specification [5].

The widespread availability of implementations of the Java Virtual Machine
has encouraged implementors of other programming languages to target Java byte
code as a form of portable assembly language. Of interest to the functionalpro-
gramming community in particular are compilers which produce Java bytecodes
from Standard ML [3, 6] and from Haskell [7, 8].

Comparing compilation units2 for Standard ML and Java, as shown in Fig-
ure 1, we have a Standard MLstructurein one case and a Javaclassin the other.
A Standard ML structure may be accompanied with asignaturewhich identifies
the components of the structure which are to be accessible outside the structure
body via long identifiers such as the functionFac.fact in this case. The Java
programming language provides control of visibility and encapsulation through
the use of theaccess control modifierspublic, private andprotected.

2 The termcompilation unitis a little misleading in the context of MLj because it does
not provide a full separate compilation facility. An extension to the system is planned
which would provide some persistent storage of intermediate compiled forms but at the
time of writing, the MLj compiler operates as awhole-programcompiler. As such it
is able to apply more aggressive type-directed optimisation than a separate compiler
would. The subject of cross-module optimisation is the subject of recent research in the
Standard ML community [9].

2



signature Fac =
sig

val fact : int -> int
end;

structure Fac :> Fac =
struct

fun fac (n, m) =
if n = 0
then m
else

fac (n - 1, m * n)

fun fact n =
fac (n, 1)

end;

class Fac {
private int m;

private int fac (int n, int m) {
while (n != 0) {
m *= n;
n--;

}
return m;

}

public int fact (int n) {
m = 1;
return fac (n, m);

}
}

Fig. 1. A Standard ML structure and a Java class

The Java class defines a methodfact()which object instances of the classFac
will provide.

Of the two code extracts which are included in Figure 1, neither are idiomatic
in the sense that they are the implementations would have been produced by pro-
grammers who routinely work in Standard ML or Java. In the Standard ML case it
would be usual for an implementor to define thefac function by pattern match-
ing, exploiting this elegant feature of the language to separate out the two cases
in the function definition. In the Java example, the local variablem does not serve
any very useful purpose and decomposing the methodfac() does not provide
any useful structure since this method is implemented iteratively, not using a tail
recursive function as in the Standard ML case. However, the two example code
fragments are bothrepresentativein the sense that the Standard ML example con-
tains no assignments and defines the function recursively whereas the Java version
uses updates and a loop to compute the same results (ignoring differentbehaviour
on numeric overflow).

The two code fragments also have a common point of comparison in the func-
tionfac and the methodfac(). Neither are visible outside their respective com-
pilation units although they do of course occupy space in their compiledrepresen-
tations. A Java disassembler such as Sun’sjavap provides a convenient way to
inspect these compiled representations. A representative extract of the byte code
produced from these compilation units is shown in Figure 2.

As might be expected, it becomes difficult after compilation to determine
which bytecodes resulted from the functional Standard ML input and which re-
sulted from the imperative Java input. Both compiled representationsinclude
loads (iload instructions) and stores (istore instructions) and both contain

3



Method int fac(int,int)
0 goto 19
3 iload_1
4 ireturn
5 iconst_0
6 istore_2
7 iload_2
8 ifne 3

11 iload_1
12 iload_0
13 imul

14 istore_1
15 iload_0
16 iconst_m1
17 iadd
18 istore_0
19 iload_0
20 ifne 5
23 iconst_1
24 istore_2
25 goto 7

Method int fac(int,int)
0 goto 10
3 iload_2
4 iload_1
5 imul
6 istore_2
7 iinc 1 -1
10 iload_1
11 ifne 3
14 iload_2
15 ireturn

Fig. 2. Java byte code extracts

conditional and unconditional jumps (theifne andgoto instructions). In fact,
the bytecodes on the left come from the Standard ML source and the bytecodes
on the right come from the Java source3.

In order to see how deep type inference can allow us to recover the functional
essence from byte code which seems as though it might have been produced from
imperative source code we first need to understand the role of types in the Java
Virtual Machine. We discuss this subject in the following section.

3. TYPES AND THE JVM

The Java Virtual Machine is a typed abstract machine. The types which it directly
supports correspond to a subset of the Java types. Separate instructions implement
conversions between the unsupported types and the supported types. Thedesign
decision which forces this distinction to be drawn is the wish to represent every
JVM opcode by a single byte. If typed instructions were to be provided for each
Java type there would be too many to be represented in a byte. Thus, although the
methodsnot() andneg() in Figure 3 below have different parameter and re-
turn types the JDK 1.1.6 Java compiler emits identical bytecodes for their method
bodies4. Note that additional type information is stored independently of the byte-
codes. This is the information which is retrieved via Java’sreflectioncapabilities.

It is not only booleans which the JVM represents as integers. Characters are
also zero-extended to 32-bit integers and 8 and 16-bit integers are sign-extended

3 It might have been possible to guess this due to the use of theiinc instruction with
arguments (local variable number) 1 and increment�1. This corresponds directly to
the Java commandn-- which has no analogue in Standard ML. The parameter passing
convention in the JVM is that the first parameter to a method isstored into the first local
variable for a non-static method and in the zeroth local variable for a static method.

4 The Java compiler in Sun’s Java 2 SDK will generate more compact byte code for
thenot() method by deploying anixor instruction on the parameterb and the con-
stant 1 but it still encodes boolean values as integers.

4



boolean not (boolean b) {
return !b;

}

int neg (int n) {
if (n!=0) return 0;
else return 1;

}+ +
Method boolean not(boolean)

0 iload_1
1 ifeq 6
4 iconst_0
5 ireturn
6 iconst_1
7 ireturn

Method int neg(int)
0 iload_1
1 ifeq 6
4 iconst_0
5 ireturn
6 iconst_1
7 ireturn

Fig. 3. Boolean values are manipulated as integers in the JVM

to 32 bits. The correspondence between storage types in the languages Stan-
dard ML and Java and computation types in the JVM is shown in Figure 4.

Standard ML type Java type JVM type
bool boolean int
char char int
Int8.int byte int
Int16.int short int
int int int
Int64.int long long
Real32.real float float
real double double

Fig. 4. Storage types and computational types in the JVM

4. DEEP TYPES AND THE JVM

The conclusion is that we evidently cannot reconstruct the Java type ofa method
from its compiled bytecodes. Neither is it possible to reconstruct the principal type
of a Standard ML function since the JVM provides no support for the expression
of parametric polymorphism in routines. However, we are seeking to establish
here instead the presence or absence of potential side-effects in the executionof
a compiled JVM bytecode sequence and to identify the object fields which could
potentially be modified by a method call. We term the formal expression of this
information thedeep typeof a method.

We identify a representative subset of the Java bytecodes which we term
JVMLd. The operational semantics of this subset is presented in Figure 5. Tuples

5



of machine states contain a program counterpc, a total mapf which maps local
variables from the set VAR to values, and an operand stacks.

P[pc] = inc
P ` hpc; f ; n � si ! hpc+ 1; f ; (n+ 1) � si

P[pc] = pop
P ` hpc; f ; v � si ! hpc+ 1; f ; si P[pc] = push 0

P ` hpc; f ; si ! hpc+ 1; f ; 0 � si
P[pc] = load x

P ` hpc; f ; si ! hpc+ 1; f ; f [x] � si P[pc] = store x
P ` hpc; f ; v � si ! hpc+ 1; f [x 7! v]; si

P[pc] = o:getfield x
P ` hpc; f ; si ! hpc+ 1; f ; f [o][x] � si

P[pc] = o:putfield x
P ` hpc; f ; v � si ! hpc+ 1; f [o 7! o[x 7! v]]; si
P[pc] = if L

P ` hpc; f ; 0 � si ! hpc+ 1; f ; si P[pc] = if L n 6= 0
P ` hpc; f ; n � si ! hL; f ; si

P[pc] = goto L
P ` hpc; f ; si ! hL; f ; si P[pc] = new � ol 2 O�pc Unused(ol ; f ; s)

P ` hpc; f ; si ! hpc+ 1; f ; ol � si
Fig. 5. JVMLd operational semantics

We use the variables� to range over any object type and writeO� for the set
of values of that type. A particular object value from that set will be denoted
by o or ol . We useol solely to denote locally generated object accessors, meaning
that they are generated by this method invocation instead of being passed in as
parameters5. We writeUnused(o; f ; s) to abbreviateo =2 s^ o =2 Rng(f ).

In defining the static semantics of the language we begin by identifying se-
mantic objects which shadow the roles of the state functionf and the operand
stacks which are found in the dynamic semantics. We name the corresponding
static semantic objectsF andS. The former is a mapping from addresses to func-
tions which map local variables to types. The latter is a mapping from addresses
to stack types. Thus,Fi [y] is the type of local variabley at line i of the program
andSi is the type of the operand stack at the same place.

5 Java calls by value. In passing objects to methods it is important to distinguish between
passing an object reference by value and passing an object value by reference. Java does
the former and not the latter.

6



P[i] = inc
Fi + 1 = Fi

Si + 1 = Si = INT � �
Di + 1 = Di

i + 1 2 Dom(P)
F;S;D; i ` P

P[i] = if L
Fi + 1 = FL = Fi

Si = INT � Si + 1 = INT � SL
Di + 1 = DL = Di
i + 1 2 Dom(P)

L 2 Dom(P)
F;S;D; i ` P

P[i] = pop
Fi + 1 = Fi

Si = � � Si + 1
Di + 1 = Di

i + 1 2 Dom(P)
F;S;D; i ` P

P[i] = push 0
Fi + 1 = Fi

Si + 1 = INT � Si
Di + 1 = Di

i + 1 2 Dom(P)
F;S;D; i ` P

P[i] = load x
x 2 Dom(Fi)
Fi + 1 = Fi

Si + 1 = Fi [x] � Si
Di + 1 = Di

i + 1 2 Dom(P)
F;S;D; i ` P

P[i] = store x
x 2 Dom(Fi)

Fi + 1 = Fi [x 7! � ]
Si = � � Si + 1
Di + 1 = Di

i + 1 2 Dom(P)
F;S;D; i ` P

P[i] = o:getfield x
o 2 Dom(Fi)

x 2 Dom(Fi [o])
Fi + 1 = Fi

Si + 1 = Fi [o][x] � Si
Di + 1 = rd(o; x;Fi [o][x]) �Di

i + 1 2 Dom(P)
F;S;D; i ` P

P[i] = o:putfield x
o 2 Dom(Fi)

x 2 Dom(Fi [o])
Fi + 1 = Fi [o 7! o[x 7! Fi [o][x]]]

Si = Fi [o][x] � Si + 1
Di + 1 = wr(o; x;Fi [o][x]) �Di

i + 1 2 Dom(P)
F;S;D; i ` P

P[i] = halt
F;S;D; i ` P

P[i] = goto L
FL = Fi
SL = Si
DL = Di

L 2 Dom(P)
F;S;D; i ` P

P[i] = new �
Fi + 1 = Fi

Si + 1 = �i � Si
Di + 1 = Di�i =2 Si�i =2 Rng(Fi)

i + 1 2 Dom(P)
F;S;D; i ` P

Fig. 6. JVMLd static semantics

7



To this we add a static semantic object to accumulate the deep typing informa-
tion from the method body. This records the field accesses and stores of objects
which are accessed by this method invocation. We regulate the correct use of the
program counter by checking the successful progression through to the next in-
struction in most cases. Exceptionally, thegoto andhalt instructions do not
need this test since the immediately following instruction is not reachedin either
case. Theif instruction has two possible destinations, both of which must be
checked. This gives rise also to two possible subsequent semantic values for each
of the functions for state typing, stack typing and deep typing.

5. RELATED WORK

Because security properties must ultimately be verified on Java bytecode the im-
portance of thoroughness here was identified early by authors interested inthe
subject [10]. The absence of a formal description of the type system forJava byte-
code was an obvious source of concern. Another was the deviation of Java byte-
code type-checking from traditional type-checking where the type-correctness
of a construct depends upon the current typing context, the type-correctness of
subexpressions, and whether the construct is typable by one of a fixed set of rules.
In contrast, the Java bytecode verifier must show that all possible execution paths
lead to the same virtual machine configuration.

A compelling type system for Java bytecode subroutines has previously been
given by Stata and Abadi [11]. Their main theorem shows that for methods ex-
pressed in a subset of Java’s bytecodes (JVML0) when method execution stops it
is because of ahalt instruction and not program counter overflow or violation
of an instruction precondition. Further, the operand stack, with the return value
on top, is well-typed. This work has been continued by Hagiya and Tozawa [12]
and by Freund and Mitchell [13] leading in the latter case to the detection of a
previously unknown bug in the Sun JDK 1.1.4 bytecode verifier. Other work by
Qian [14] is being developed and may lead to the first provably-correct implemen-
tation of the JVM bytecode verifier [15].

Ours is the first attempt to considerinterferenceproperties [16] in the types
which are inferred for Java bytecode subroutines. The application of type infer-
ence to a low-level, imperative language such as Java byte code might seem to
be ill conceived. However, although type inference has primarily found favour in
the functional language community, there is no reason why it cannot be applied
to imperative languages. Successful examples of such application include dialects
of Pascal [17] and C [18].

Acknowledgements. Stephen Gilmore is supported by the ‘Distributed Commit
Protocols’ grant from the EPSRC and by Esprit Working group FIREworks.

8



References

1. K. Arnold and J. Gosling.The Java Programming Language. Addison-Wesley, Second
edition, 1998.

2. R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of Standard ML:
Revised 1997. The MIT Press, 1997.

3. N. Benton, A. Kennedy, and G. Russell. Compiling StandardML to Java bytecodes.
In Third ACM SIGPLAN International Conference on Functional Programming, pages
129–140, Baltimore, 1998.

4. D. Griswold. The Java Hotspot Virtual Machine Architecture. SUN Microsystems
White Paper, March 1998.

5. T. Lindholm and F. Yellin.The Java Virtual Machine Specification. Addison-Wesley,
Second edition, 1999.

6. N. Benton and A. Kennedy. Interlanguage working without tears: Blending SML
with Java. InProceedings of the 4th ACM SIGPLAN International Conference on
Functional Programming, Paris, France, September 1999.

7. J. Peterson and K. Hammond, editors. Haskell 1.4: A non-strict purely functional
language. The Haskell Committee, April 1997.

8. D. Wakeling. Mobile Haskell: Compiling lazy functional programs for the Java Virtual
Machine. InProceedings of the 1998 Conference on Programming Languages, Imple-
mentations, Logics and Programs (PLILP’98), volume 1490 ofLNCS, pages 335–352.
Springer Verlag, September 1998.

9. M. Blume and A. Appel. Lambda-splitting: A higher-order approach to cross-module
optimizations. InProceedings of the ACM SIGPLAN International Conference on
Functional Programming, pages 112–124, June 1997.

10. D. Dean, E.W. Felten, and D.S. Wallach. Java security: From HotJava to Netscape
and beyond. InIEEE Symposium on Security and Privacy, Oakland, California, May
1996.

11. R. Stata and M. Abadi. A type system for Java bytecode subroutines. Technical Report
158, Digital Equipment Corporation Systems Research Center, June 1998. To appear
in ACM Transactions on Programming Languages and Systems.

12. M. Hagiya and A. Tozawa. On a new method for dataflow analysis of Java Virtual
Machine subroutines. InSIG-Notes, PRO-17-3, pages 13–18. Information Processing
Society of Japan, 1998.

13. S. Freund and J.C. Mitchell. A type system for object initialization in the Java bytecode
language. InACM Symp. Object-oriented Programming: Systems, Languages and
Applications (OOPSLA), 1998.

14. Z. Qian. A Formal Specification of Java Virtual Machine Instructionsfor Ob-
jects, Methods and Subroutines, chapter 8 ofFormal Syntax and Semantics of Java.
Springer-Verlag LNCS 1523, 1999.

15. A. Coglio, A. Goldberg, and Z. Qian. Toward a provably-correct implementation of
the JVM bytecode verifier. Kestrel Institute, Palo Alto, California, July 1998.

16. R.D. Tennent. Semantics of interference control.Theoretical Computer Science,
27:297–310, 1983.

17. O.I. Hougaard, M. Schwartzbach, and H. Askari. Type inference of Turbo Pascal.
Software—Concepts and Tools, (16):160–169, 1995.

18. G. Smith and D. Volpano. A sound polymorphic type system for a dialect of C.Science
of Computer Programming, 32(1–3):49–72, 1998.

9


