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Abstract

We demonstrate a novel simulation technique for analysing large stochastic process algebra models, applying
this to a secure electronic voting system example. By approximating the discrete state space of a PEPA
model by a continuous equivalent, we can draw on rate equation simulation techniques from both chemical
and biological modelling to avoid having to directly enumerate the huge state spaces involved. We use
stochastic simulation techniques to provide traces of course-of-values time series representing the number of
components in a particular state. Using such a technique we can get simulation results for models exceeding
1010000 states within only a few seconds.
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1 Introduction

Voting is the foundation of the democratic process. All voting systems are fallible

but electronic voting systems have had more profound problems than any of their

enthusiasts could have anticipated. These have ranged from returning erroneous

counts of votes to exposing the database of voters and votes to Internet access during

the voting process on election day [1]. The net effect of these and a catalogue of

other errors has been to undermine voter confidence in electronic voting systems [2].

When errors in computer systems become too problematic to ignore the classical

solution in computer science is to address the problem by modelling the systems in
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well-founded formal description languages and reasoning about these models. This

confers the benefits of abstraction and clarification and sets the discourse on solid

foundations. Such a clarification is obtained by concentrating on the protocol used

to implement the secure voting process.

Methods such as theorem proving [3], model-checking [4] and static analysis [5]

have been successful in discovering flaws in erroneous protocols and in providing

strong guarantees of correct behaviour for sound protocols. The applications con-

sidered in [3,4,5] are concerned with the qualitative evaluation of secure protocols

and are silent with regard to quantitative aspects. In the domain of electronic voting

this is a noticeable omission: an election must be carried out in a timely manner.

Following [6], we consider quantitative analysis of a secure electronic voting

protocol here. As in [6] we use Hillston’s Performance Evaluation Process Algebra

(PEPA) [7] as the formal language in which our models are expressed. PEPA is a

well-known Markovian stochastic process algebra. Readers unfamiliar with PEPA

are referred to Appendix A for an introduction and [7] for the formal definition of

the language.

The meaning of models in the PEPA language is defined by an interleaving

(small-step) structured operational semantics. An interleaving semantics interpre-

tation of any process algebra model is prone to a potentially fatal problem: state-

space explosion. The size of the state-space as a whole is bounded by the product of

the sizes of the local state-space size of sequential components in the model. Even

if a compact representation can be found for the state-space (for example, an aggre-

gated representation [8] or an MTBBD encoding [9]), a stochastic process algebra

model will additionally usually require the probability distribution over the state-

space of the model to be stored. A compact representation of this vector cannot

usually be found, even if one can be found for the state-space.

As noted in [6], numerical solution of the underlying CTMC of the secure elec-

tronic voting model cannot be conducted for voter populations of realistic size.

Therefore, in order to make progress on this problem, where the issue of great-

est significance in model appreciation is scaling up, we try a different approach:

stochastic simulation.

Stochastic simulation methods developed in the domain of computational sys-

tems biology [10,11] and stochastic process algebras, such as Priami’s stochastic

π-calculus [12], have already been used to model biological systems and mapped to

stochastic simulation models [13]. To the best of our knowledge, the present work is

the first paper to apply the stochastic simulation methods known in computational

systems biology to a stochastic process algebra performance model of a comput-

ing application. This is not an entirely simple change of domain, we have had to

implement custom rate functions to model the behaviour of computational systems

which have different interaction characteristics from biological ones.
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2 Related work

There exist already a number of simulators for the PEPA language [14,15,16,17]

so in this section we compare our novel stochastic simulator implementation with

others.

The first simulator which was implemented for the PEPA language was Clark’s

PEPAroni simulator [14]. This was a prototype discrete-event simulator built on

SimJava [18] which directly interpreted the PEPA model. It was used both to

investigate original PEPA models and an experimental clock-based semantics for

PEPA which used general distributions in place of exponentials [19]. The PEPAroni

simulator recorded the states of the model as generated by simulation, together with

the frequency of occurrence of the states for use in later model analysis, and to allow

the results of the simulator to be compared against numerical solution of the Markov

chain, if this solution was available.

The PEPAroni simulator was extended by Stathopoulos [15] and incorporated

into the PEPA Workbench. The PEPAroni simulator proved to be a very useful tool

to investigate general distributions but when applied to purely Markovian PEPA

models user experience was poor. The simulator would run for a long time and still

not generate all of the states of the model, even for very small models (less than

one hundred states). It was always faster to solve the Markov chain than to simu-

late, even if computing a transient solution instead of the steady-state probability

distribution.

Clark implemented another simulator for PEPA by including his PEPA model

editor into the Möbius multi-paradigm multi-formalism modelling platform. The

Möbius simulator uses evaluation strategies which are considerably more efficient

than those used by SimJava under PEPAroni but again interprets models without

the use of model aggregation before simulation begins.

An alternative implementation method was followed by Powell [17], who simu-

lates a PEPA model by compiling the model into a Java application and executes

it to gather statistics on the use of each activity in the model. The full state-space

is not represented, which has benefits for model scalability. However, this has the

attendant disadvantage that the performance results obtained are not directly com-

parable to the results obtained by numerical solution, if this can be done. Rather,

derived results need to be computed from the numerical solution in order to compare

with the simulation results, and hence validate the simulator. This implementation

strategy has other drawbacks in that the limiting factor can be the number of simul-

taneous threads of execution which can be supported on the Java virtual machine

beneath.

An alternative method for course-of-values analysis in computational biology is

numerical integration of a representation of the model as a series of coupled ordinary

differential equations (ODEs). This use of ODEs is known in biological modelling as

a “deterministic simulation”. Some of the same issues which arise here with respect

to reaction kinetics arise also in the ODE setting, as discussed in [20].
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3 Stochastic simulation

Stochastic process algebras are compositional modelling formalisms so it seems most

appropriate to attempt to make use of the receptiveness to aggregation which is

afforded by compositionality.

Stochastic simulation methods were developed to analyse chemical reactions

involving large numbers of species with complex reaction kinetics. No attempt is

made to track individuals at the molecular level: rather, concentrations are approx-

imated by continuous variables. This provides compact descriptions of the current

state of the simulation as a vector of real-valued variables measuring the quantity

of each species.

When modelling chemical reactions a commonly-used reaction kinetics is mass

action, where the reaction rate for a compound reaction is proportional to the

product of the quantities of species involved. Mass action kinetics are not used

in PEPA, which defines a concept of apparent rate to preserve the notion that an

interacting component has a bounded capacity which it cannot exceed.

Where PEPA implementations such as the PEPA Workbench [21] and the Impe-

rial PEPA Compiler (ipc) [22] use approximations to reduce the cost of apparent

rate evaluation the onus is on the implementors to understand the impact of the

approximations [23]. For this reason, when applying stochastic simulation methods

to PEPA models we compute the rate of synchronised activities in a way which

respects the PEPA semantics of apparent rate and bounded capacity. This rests on

the use of functional expressions for aggregate rates 3 , as explained in the following

section.

This form of simulation is a significant paradigm shift from state-space-based

model analysis approaches which track every state-change of every individual. In

its use of continuous variables stochastic simulation also contrasts with discrete-

event simulation which deals with discrete-valued representations of numbers of

individuals. The closest comparison in traditional simulation approaches would

perhaps be a Monte Carlo Markov Chain simulation of an aggregated representation

of the model.

4 Methodology

In this section, we outline the methodology behind simulation generation from

PEPA models through a short example. Below is a PEPA description of a sim-

ple multi-client and multi-server model:

Client
def
= (compute ,�).Client1

Client1
def
= (delay , μ).Client

Server
def
= (compute , λ).Server 1

Server1
def
= (recover , ν).Server

3 That is, expressing apparent rate as functions of component count and action rate.
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The system equation for the model is:

(Client || · · · || Client︸ ︷︷ ︸
N

) ��
{compute}

(Server || · · · || Server︸ ︷︷ ︸
M

)

This describes a Client that waits to place a compute action on a server and

then sees a delay before attempting another Server compute . The Server controls

the rate of compute , λ, in the interaction, before undergoing a recover phase. Only

after the recover can the Server service another client, by enabling a compute action

again.

The system equation describes how the system is composed together. There are

N parallel Client processes which cooperate on the compute action with M parallel

Server components.

4.1 Rate Equations

We briefly introduce the notation for rate equations which are largely based on

chemical reaction equations.

Evolution, nA
r

−−−→ mB: n copies of reactant A can evolve into m copies of prod-

uct B. This reaction is enabled once there are n or copies of A in the system.

If there is more than one enabled reaction, then they compete to be the first to

evolve (an implicit competitive choice).

Combination, nA + mB: This specifies multiple copies of A and B as either reac-

tant or product. If this occurs on the left hand side of an evolution, then at least

n copies of A and m copies of B are required to enable the reaction. This +

operator is distinct from the + operator of PEPA: indeed, in PEPA terms, this

would represent a cooperation between the A components and the B components.

The multiplicity of As and Bs in the reactant, known as the stoichiometry of the

reaction, can be used to represent a PEPA cooperation over a shared action, as

in:

(A ��
{a}

· · · ��
{a}

A)︸ ︷︷ ︸
n

��
{a}

(B ��
{a}

· · · ��
{a}

B)︸ ︷︷ ︸
m

where all n A components and all m B components must simultaneously enable

an a action in order to progress the cooperation.

4.2 Simulation generation

We are aiming to generate a simulation file for input into the Dizzy tool [24], which is

traditionally used to model chemical and biological rate reactions. In doing this we

need to maintain the PEPA semantics which are gleaned from years of performance

research into computational systems. Fortunately, the Dizzy tool gives us flexibility

to migrate from the mass action semantics of the standard chemical modelling

paradigm. This issue only affects the cooperative actions within a model, in this

case it affects the overall rate of the compute action.

The procedure for generating a Dizzy simulation description goes as follows:
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Identify state-changing actions. We have three such actions which modify the

states of the components Client and Server : delay , compute and recover . These

actions become the labels for the rate equations.

Identify source/target component states. For each action, identify the source/target

states of the component that will be affected by that action occurring. For

instance, the delay action has a source state Client1 and a target state Client .

That is to say, the occurrence of a delay action will decrease the number of com-

ponents in state Client1 and increase the number in state Client .

Where there is an interaction, we will have multiple source and possibly mul-

tiple target states. The source states for compute are Client and Server , the

targets are Client1 and Server1. This means that components in both Client and

Server states must exist before the reaction or interaction can take place. The

result is components of state Client1 and Server1 in the same ratio.

Calculate reaction rate. For each action, we generate a reaction rate based on

the number of components capable of performing that action. For instance for the

action delay , if there are n(Client1) components in state Client1 then the overall

observed rate of action delay will be n(Client1)μ. Combining this source/target

state extraction with the rate calculations, we get the equivalent rate equations

of Figure 1.

Client + Server
θ(n(Client))n(Server)λ

−−−−−−−→ Client1 + Server1

Client1

n(Client1)μ

−−−−−−−→ Client

Server1

n(Server1)ν

−−−−−−−→ Server

where θ(x) = 1 if x > 0, else 0.

Fig. 1. The multi-server/multi-client PEPA example as a set of rate equations.

The explanation of θ(n(Client))n(Server)λ rate for the compute action in Fig-

ure 1 can be explained as follows.

Consider C clients utilising S servers to execute the compute action. The overall

rate of the synchronised compute activity, as defined by the PEPA semantics in

terms of the apparent rate of compute , extracted from the cooperating clients and

servers, is given by:

min(C�, Sλ) =

⎧⎨
⎩

Sλ : C > 0

0 : C = 0

= θ(C)Sλ (1)

Hence we can use the θ(·) function on the number of clients to get the simplified

expression of the standard min-formula. This captures the passive synchronisation

in the model.

In general, we would apply the standard apparent rate formula, so in the active

synchronisation case, we would use a combined rate function of min(Cα,Sβ), for C

clients cooperating with S servers at rates α and β respectively.
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// Initialisation of the number of components

Client = N;

Server = M;

Client_1 = 0;

Server_1 = 0;

// Rate equations

delay,

Client_1 -> Client, [ Client_1 * mu ];

recover,

Server_1 -> Server, [ Server_1 * nu ];

compute,

Client + Server -> Client_1 + Server_1,

[ theta(Client) * Server * lambda ];

Fig. 2. Dizzy file description of the multi-Client/multi-Server example

4.3 Dizzy format

Having obtained our rate equations for the individual actions of the PEPA model

example, it is a straightforward process to turn these into the Dizzy file. This trans-

formation is implemented in the PEPA Workbench. The resulting file is shown in

Figure 2. In the Dizzy format, all the rate equations are labelled by the action

name. The number of components in a given state n(X) is given by X in the initiali-

sation block and the rate description. The rate description, itself, is given in square

brackets [ ].

5 PEPA model

In this section we present a simulation model of the voting protocol expressed in

PEPA. There are a number of significant differences from the model of [6].

(i) We model only one round of the election because we are conducting a course-of-

values time series simulation instead of performing a steady-state computation.

In [6] the voting process is made to cycle in order that the model defines an

ergodic Markov chain. Here we have components which conduct their desig-

nated activities and then terminate. We use the definition of a terminated

process in PEPA (denoted by Stop) from [25].

Thus the termination state of this model is an untidy one, as determined

by the end point of the election: some voters may not ever register, some

might not confirm that their votes were correctly recorded, and so forth. This

contrasts with the requirement for tidy termination in order that the system is

irreducible or strongly-connected (required in [6] for meaningful steady-state

computation).
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(ii) In contrast to [6] we use an inversion of control model to have a control process

determining the progress of the election from one stage to the next. This leads

to a simplification of the descriptions of the voters, administrators, collectors

and counters in the model. Choices are removed from the definitions of these

components and moved into the control process at the meta-level.

Thus, the two PEPA models are not in a relationship such as the bisimulation

relation of strong equivalence [7] and are instead only alternative models of the

same system.

5.1 Voting in the election

We do not offer a full description of the voting scheme used here, but instead provide

only an outline and refer the interested reader to [26] or [6].

Electronic voting can be divided into a preparation phase which is ended by

contacting the administrator, voting which ends by contacting the collecting officer,

and checking which may or may not lead to an appeal.

In the preparation phase the voter’s activities include choosing the voting strat-

egy and commiting to it using a bit commitment protocol. Blinding is used to ensure

anonymity of ballots and digital signatures are used to ensure authentication.

The blinded, signed ballot is sent to an administrator for checking, and returned

verified. The voter unblinds this and checks the signature. The last activity in the

voting phase is to send the ballot to the collecting officer.

Vote counting begins, and ends when the vote counters publish a list of votes.

A voter might appeal at this stage if their vote does not appear on the list.

Voter0
def
= (choose , c1).Voter0 1

Voter0 1
def
= (bitcommit , b1).Voter0 2

Voter0 2
def
= (blind1, b2).Voter0 3

Voter0 3
def
= (blind2, b3).Voter0 4

Voter0 4
def
= (voter sign, s1).Voter0 5

Voter0 5
def
= (sendA, s2).Voter0 5b

Voter0 5b
def
= (sendV ,�).Voter1

Voter1
def
= (unblind1, u1).Voter1 1

Voter1 1
def
= (unblind2, u2).Voter1 2

Voter1 2
def
= (verify1, v2).Voter1 3

Voter1 3
def
= (verify2, v3).Voter1 4

Voter1 4
def
= (sendC , s6).Voter2

Voter2
def
= (check fail , p × c4).Voter3

+ (check succeed , (1 − p) × c4).Voter2b

Voter2b
def
= (sendCo, s7).Voter Finished

Voter3
def
= (appeal, a1).Voter2b

Voter Finished
def
= Stop
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5.2 The role of the administrator

The adminstrator becomes active once the voter has registered, and takes them

through to the point where they are able to cast their vote. This involves checking

and verification of eligibility to vote, followed by digital signing of the ballot. The

administrator finally sends the blinded ballot back to the voter.

Administrator
def
= (sendA,�).Administrator 2

Administrator 2
def
= (check1, c2).Administrator 3

Administrator 3
def
= (check2, c3).Administrator 4

Administrator 4
def
= (verify , v1).Administrator 5

Administrator 5
def
= (admin sign1, s3).Administrator 6

Administrator 6
def
= (admin sign2, s4).Administrator 7

Administrator 7
def
= (sendV , s5).Administrator Finished

Administrator Finished
def
= Stop

5.3 Collection of the votes

Votes are received by a collecting officer. Their role is in the voting phase to check

that the ballot has been correctly signed by an administrator. If this is verified then

the collecting officer adds the vote to a list, labelling this with a unique reference

number. This list will be published when the collecting period is over.

Collector 0
def
= (sendC ,�).Collector 0a

Collector 0a
def
= (collector verify1, v4).Collector 0a1

Collector 0a1
def
= (collector verify2, v5).Collector 0a2

Collector 0a2
def
= (add, a2).Collector Finished

Collector Finished
def
= Stop

5.4 Vote counting

The responsibility is placed with those counting votes to check that the strategy

chosen by the voter in the first stage of the election process is a valid one and to

make all cast votes ready for the final election count which ends the election.

Counter 1
def
= (sendCo,�).Counter 1a

Counter 1a
def
= (check strategy , c5).Counter Finished
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Counter Finished
def
= Stop

5.5 The election process

The Election process itself is of a different character to the others in the model. The

election itself is not an actor in the electoral process: rather it exists at the level

of a virtual process controlling phases of the simulation, it could be considered as

being part of the legal framework of the election. There is a similarity both with

the net structure in a PEPA net [27] and with the stochastic probes [28] used to

witness events in a PEPA model, but the control process is different from either

in that it structures the voting process into phases (preparation, voting, counting,

and finished), allowing selected activities in each phase, and prohibiting them where

they are inappropriate.

A stochastic probe observes performance-significant events. A meta-level con-

trol process allows performance-significant events and generates simulation-control

events (ending one phase, beginning another, and terminating the simulation over-

all).

It would be possible to realise the same effect in an alternative way using PEPA

extended with functional rates [29]. The election process would be a function over

the global state space of the model, allowing the appropriate actions at the appro-

priate times and disallowing them otherwise. We have chosen here to represent this

function instead as a PEPA component and observe that the θ function would be a

very suitable way in general to implement functional rates.

Election Preparation
def
= (choose ,�).Election Preparation

+ (bitcommit ,�).Election Preparation

+ (blind1,�).Election Preparation

+ (blind2,�).Election Preparation

+ (voter sign,�).Election Preparation

+ (sendA,�).Election Preparation

+ (check1,�).Election Preparation

+ (check2,�).Election Preparation

+ (verify ,�).Election Preparation

+ (admin sign1,�).Election Preparation

+ (admin sign2,�).Election Preparation

+ (sendV ,�).Election Preparation

+ (publishA, er).Election Voting

Election Voting
def
= (unblind1,�).Election Voting

+ (unblind2,�).Election Voting

+ (verify1,�).Election Voting
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+ (verify2,�).Election Voting

+ (sendC ,�).Election Voting

+ (collector verify1,�).Election Voting

+ (collector verify2,�).Election Voting

+ (add,�).Election Voting

+ (publishC , er).Election Counting

Election Counting
def
= (check fail ,�).Election Counting

+ (check succeed ,�).Election Counting

+ (sendCo,�).Election Counting

+ (appeal,�).Election Counting

+ (check strategy ,�).Election Counting

+ (final publish, er).Election Finished

Election Finished
def
= Stop

The system which we analysed was composed of the above sequential components

in the following assembly:

Election Preparation ��
L

Electoral Personae

where:

Electoral Personae
def
= Voter0[N ] ��

M
Electoral Apparatus

Electoral Apparatus
def
= Collector 0[N ] || Counter1[N ] || Administrator [N ]

and:

N = 10, 000

L= {choose , bitcommit , blind1, blind2, voter sign, sendA, sendV ,

unblind1, unblind2, verify1, verify2, sendC , check fail , check succeed ,

sendCo, appeal , publishA, check1, check2, verify , admin sign1,

admin sign2, collector verify1, collector verify2, add, publishC ,

check strategy ,final publish}

M= {sendA, sendV , sendC , sendCo, publishC }

5.6 Simulation results

Figures 3 to 9 show information extracted from simulations of the voting model. In

each case, the numbers of derivatives of a component (possible successor states of

a component) are shown against time. So as not to over-clutter the diagrams, we

have only shown qualitatively distinct derivative traces.

In Figure 3, we present a selection of simulations for different derivatives of the

Administrator component. The first component plot is of the number of Admin-

istrator components which have not seen a transition sendA out of the Admin-
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Fig. 3. A simulation of the Administrator component
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Fig. 4. A simulation of the Collector component

istrator state. There is a slight delay while the Administrators wait to synchro-

nise with the first sendA actions from the population of Voters, but thereafter

the decline in number is almost exponential. The derivatives Administrator 2 and

Administrator 7 are transient states of the component and so the populations here

almost approach 0. The last state and also the absorbing state of the component is

Administrator Finished , which ends up with the bulk of the population in this trace.

In interpreting these results quantitatively, we can say that within 17 seconds, 95%

of Administrator components reached the absorbing state Administrator Finished .

Similar, quantitative timeliness statements can be drawn from the other stochastic

simulations in this study. Further information on the likelihood of a given timely

result could be gleaned from multiple simulations which would yield additional error

bar information.

Figure 4 traces the number of Collector component derivatives over time sees

similar population dynamics to that of the Administrator. The only difference being

a much longer delay, in this case, before the initial Collector 0 state is left. This is

down to the sendC action which is seen much later on in the Voter lifecycle and
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initiates the Collector process.

Similarly, Figure 5 traces the number of Counter component derivatives over

time. The only point of interest here is the very sharp decline in the trace of

Counter 0 components which is unlike the smooth decline of previous components.

We attribute this to the Election component shown in Figure 6, which controls the

phases of the election and has a square-tooth profile. Since the sendCo action which

sends the vote to the Counter and initiates the counting process is closely allied to

the initiation of the last phase of the Election component, we see a replication of

this sharp derivative change in the Counter component as well.

The simulations of the Voter component are shown in Figures 7 and 8. Figure 7

shows the smooth evolution of Voter to derivative Voter1. Figure 8 shows just the

key derivatives through the whole evolution from Voter to Voter Finished . Again

the sharp derivative changes at the end of the plots for derivatives Voter1 and

Voter2 are due to the synchronisation with the controlling Election component.

This close relationship between Election and Voter can be seen more closely in

Figure 9, which shows both Voter and Election derivatives in the same simulation.

J.T. Bradley, S.T. Gilmore / Electronic Notes in Theoretical Computer Science 151 (2006) 5–25 17



 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30

N
um

be
r

Time, t

Number of Voter components in derivative states

Voter0
Voter0_4

Voter0_5b
Voter1

Fig. 7. A simulation of the Voter component through its early evolution to Voter1

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  10  20  30  40  50  60

N
um

be
r

Time, t

Number of Voter components in derivative states

Voter0
Voter1
Voter2

Voter_Finished

Fig. 8. A simulation of the different phases of the Voter component from Voter0 to Voter Finished

Clearly, the termination of the Voter1 and Voter2 phases is attributed to the time-

out for that phase of the election as dictated by the Election component, in its state

change to Election Voting and Election Counting respectively. The end of the final

Election phase is not seen by the Voter as it concerns the completion of counting

the votes.

6 Implementation

We implemented our novel stochastic simulator for PEPA by extending the open-

source Dizzy simulation and analysis platform [24] with our pre-existing analysis tool

for PEPA, the PEPA Workbench [21]. Dizzy is implemented as a Java application

with a graphical user interface whereas the PEPA Workbench is a command-line tool

implemented in the functional programming language Standard ML. We brought

these two tools together in an unusual way, by compiling the ML edition of the

PEPA Workbench to Java bytecodes using the MLj compiler, which targets the

JVM.
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Fig. 9. A joint simulation of Voter and Election components where the phases of the Voter follow those of
the Election

Dizzy has its own modelling language, and supports other modelling languages

also, including the well-known Systems Biology Markup Language [30]. By adding

the PEPA Workbench to Dizzy it is now possible to evaluate PEPA models on Dizzy

and, because there exists a mapping from UML to PEPA [31], it is also possible to

model with UML and use Dizzy as an analysis tool. A schematic of the extended

Dizzy platform is shown in Figure 10.

Dizzy ⇒

SBML ⇒

PEPA ⇒

UML ⇒

Dizzy

Analysis tools Language tools

Stochastic
simulators PEPA Workbench

ODE integrators
SBML model

translator

Fig. 10. Model processing on the Dizzy simulation and analysis platform

A screenshot of the Dizzy application processing the PEPA model of the secure

electronic voting system is shown in Figure 11.

Stochastic simulators for both Gillespie’s Direct method [10] and the Gibson-

Bruck method [11] are implemented in Dizzy. The Gibson-Bruck algorithm is

O(log(M)) in the number of reactions so it is preferred over the Gillespie algo-

rithm for models with a large number of reactions and/or species. We found in

practice for our model that Gillespie’s method was faster, although we note that

the availability of an implementation of Gibson-Bruck will be advantageous for more

complex models.

A screenshot of the dialogue with respect to simulation parameters for Gillespie’s

Direct method is shown in Figure 12. (Recall that we use Gillespie’s Direct method

with rate functions which respect PEPA’s apparent rate definition, not with the

mass action semantics used in computational systems biology.)
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Fig. 11. Processing a PEPA model on the Dizzy platform.

Fig. 12. Setting parameters for to simulate a PEPA model using Gillespie’s Direct method. Simulation
results from the Dizzy application can be rendered for on-line viewing or stored in a machine-processable
format such as comma-separated values.

When run, the implementation generates results as shown in Figure 13.

7 Conclusion

The aim of this paper is to show that stochastic simulation offers new possibilities for

the analysis of massive state-space stochastic systems. By systematically converting

a stochastic process algebra model to a set of chemical rate equations, we construct

a continuum approximation of the number of components in a given state within

that model. This gives us the advantage of being able to run a simulation of a

process model which would be totally impractical using traditional discrete-event

simulation techniques. To our knowledge, this is the first time that this style of
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Fig. 13. Viewing simulation results from the Dizzy application interactively in a Java graphics window

simulation has been attempted within a stochastic process algebra framework.

To demonstrate the benefits of this method, we analysed a model of a secure

electronic voting protocol with 10,000 voter agents. This system has approximately

1011750 states and is therefore not amenable to existing state-based analytic or

simulation techniques. Further there is virtually no overhead in increasing the agent

population size using this technique, rather the simulation performance is dependent

on the log of the number of distinct rate equation generated by the model.
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A PEPA

A.1 Standard syntax

This appendix provides a brief introduction to PEPA in order to make the paper

self-contained. It can safely be skipped by anyone who already knows the PEPA

language. For a full explanation which complements the brief description presented

here the reader is referred to [7].

Prefix: The basic mechanism for describing the behaviour of a system with

a PEPA model is to give a component a designated first action using the prefix

combinator, denoted by a full stop. For example, (α, r).S carries out activity (α, r),

which has action type α and an exponentially distributed duration with parameter

r, and it subsequently behaves as S.

Choice: The component P + Q represents a system which may behave either

as P or as Q. The activities of both P and Q are enabled. The first activity to

complete distinguishes one of them: the other is discarded. The system will behave

as the derivative resulting from the evolution of the chosen component.

Constant: It is convenient to be able to assign names to patterns of behaviour

associated with components. Constants are components whose meaning is given

by a defining equation. The notation for this is X
def
= E. The name X is in scope

in the expression on the right hand side meaning that, for example, X
def
= (α, r).X

performs α at rate r forever.

Hiding: The possibility to abstract away some aspects of a component’s behaviour

is provided by the hiding operator, denoted P/L. Here, the set L identifies those

activities which are to be considered internal or private to the component and which

will appear as the unknown type τ .

Cooperation: We write P ��
L

Q to denote cooperation between P and Q

over L. The set which is used as the subscript to the cooperation symbol, the

cooperation set L, determines those activities on which the cooperands are forced

to synchronise. For action types not in L, the components proceed independently

and concurrently with their enabled activities. We write P ‖ Q as an abbreviation

for P ��
L

Q when L is empty.

However, if a component enables an activity whose action type is in the cooper-

ation set it will not be able to proceed with that activity until the other component

also enables an activity of that type. The two components then proceed together

to complete the shared activity. The rate of the shared activity may be altered to

reflect the work carried out by both components to complete the activity (for details

see [7]).

In some cases, when an activity is known to be carried out in cooperation with

another component, a component may be passive with respect to that activity. This

means that the rate of the activity is left unspecified (denoted �) and is determined

upon cooperation, by the rate of the activity in the other component. All passive

actions must be synchronised in the final model.
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A.2 Derived forms and additional syntax

We now describe some additional derived forms (“syntactic sugar”) for PEPA.

These do not add any expressive power to the language or require any semantic

rules in addition to those in [7]. We have seen one derived form already: P1 ‖ P2 is

a derived form for P1 ��
∅

P2.

Because we are interested in transient behaviour we use the deadlocked process

Stop as defined in [25] to signal a component which performs no further actions.

We consider this to be simply an abbreviation for a deadlocked process, as shown

below.

Stop
def
=

((
(a, r).Stop

)
��
{a,b}

(
(b, r).Stop

))
/{ a, b }

Finally, because we will be working with large numbers of copies of components,

we introduce another abbreviation: we write P [n] to denote n copies of component

P executing in parallel. For example,

P [5] ≡ (P ‖ P ‖ P ‖ P ‖ P )

and refer to such an abbreviation as an array of components.
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