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Abstract

Model-checking can provide valuable insight into the behaviour of biochemical systems, answering quantita-
tive queries which are more difficult to answer using stochastic simulation alone. However, model-checking
is a computationally intensive technique which can become infeasible if the system under consideration is
too large. Moreover, the finite nature of the state representation used means that a priori bounds must be
set for the numbers of molecules of each species to be observed in the system.

In this paper we present an approach which addresses these problems by using stochastic simulation and
the PRISM model checker in tandem. The stochastic simulation identifies reasonable bounds for molecular
populations in the context of the considered experiment. These bounds are used to parameterise the PRISM
model and limit its state space. A simulation pre-run identifies interesting time intervals on which model-
checking should focus, if this information is not available from experimental data.
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1 Introduction

Model-checking and stochastic simulation techniques have both been applied to the
study of biochemical systems, and both allow researchers to make predictions and
test hypotheses. The questions which they answer can be different and complemen-
tary.

The stochastic simulation approach allows modellers to analyse the time evo-
lution of all species composing a system at the same time. However, since one
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simulation run generates a single trajectory out of all the possible behaviours of
systems, usually average values among several runs need to be considered to achieve
the necessary level of confidence in the results obtained.

Probabilistic model-checking instead answers quantitative temporal queries by
performing an exhaustive exploration of all the possible paths through the system.
Model-checking requires both the model and the specification of the system under
study to be formally specified: this allows the user to detect possible errors in the
model or the presence of deadlock states, and to automatically verify whether or not
relevant properties are satisfied by the model. For these reasons, when analysing
biochemical systems, it is often more desirable to perform model-checking than
simulation. Unfortunately, model-checking has one major problem, the state-space
explosion: a system with too many states becomes intractable and needs to be
constrained.

The aim of the present work is to investigate how combined use of stochastic
simulation and model-checking can lead to a better understanding of biochemical
systems. In particular, we investigate how to exploit the knowledge acquired from
the simulation to make the model-checking feasible. Specifically, the simulation
results are used to establish reasonable lower and upper bounds for the molecule
counts of the species involved. We show with a simple example how, by using
the bounds estimated by our approach, we are able to substantially speed up the
model-checking without introducing significant error.

We use the high-level modelling language Bio-PEPA [6,7], a timed process al-
gebra designed specifically for the description of biological phenomena and their
analysis through quantitative methods such as stochastic simulation and model-
checking. Several alternative representations can be automatically generated from
a Bio-PEPA specification, allowing us to perform different kinds of analyses on the
same model. In particular, we consider here two generated models: one suitable for
stochastic simulation using Dizzy [18], the other suitable for model-checking using
PRISM [17].

The novel contribution offered by the present paper is the use of simulation
and model-checking conjoined in two ways. Firstly, we use simulation to bound
the model-checking problem and later we compare model-checking results obtained
through both exact and approximate probabilistic model-checking. The former
method elaborates the full state-space of the model and uses linear algebra to solve
the underlying Markov chain. The latter uses simulation to answer the model-
checking problem, up to a satisfactory confidence interval.

The rest of the paper is structured as follows. In Sect. 2 we discuss some moti-
vations of our work and we illustrate them by means of a simple example. Sect. 3
is devoted to the description of the background. In Sect. 4 we present our approach
and in the following Sect. 5 we apply it to two biochemical networks. Some related
work is reported in Sect. 6 and finally, some concluding remarks are presented in
Sect. 7.
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2 Motivation

Analysing models of biological processes via probabilistic model-checking has con-
siderable appeal. As with stochastic simulation the answers which are returned from
model-checking give a thorough stochastic treatment of the small-scale phenomena
which are of greatest interest to computational biologists today. However, in con-
trast to a simulation run which generates just one of many possible trajectories, the
analysis results computed by probabilistic model-checking give a definitive answer.
That is, it is not necessary to re-run the analysis repeatedly and compute ensemble
averages of the results. Further, by building a reward structure over the model it is
possible to express complex analysis questions and evaluate these through model-
checking. This form of analysis has the power to expose of the system under study
significant temporal behaviour which could not be appreciated from simple inspec-
tion of the species time-series generated by simulation runs (see for example [10]).

Set against this, the probabilistic model-checking approach faces the well-known
problem of state-space explosion where, as the complexity of the system under study
increases, there is an exponential growth in the state-space of the underlying model.
The use of an exact discrete-state representation of the state-space of the model
restricts the use of probabilistic model-checking to the analysis of problems where
all of the species are available in low copy numbers. Multi-scale models (where some
species are in plentiful supply and others have very low molecule counts) generally
give rise to discrete-state problems whose numerical solution is infeasible.

Even in the case where all of the chemical species involved are present only in low
copy numbers it is still necessary to place a bound on the maximum molecule count
which each species will attain. For models involving biochemical processes such as
synthesis, no such bounds can be established. In the present paper we describe
the application of stochastic simulation to the problem of bounding discrete-state
models allowing us to convert an unbounded model-checking problem into a bounded
one.

To illustrate the problem which we are discussing here consider a simple model
of the Michaelis-Menten reactions involving four chemical species: an enzyme E,
a substrate S, a compound E:S and a product P . The species react over three
reaction channels: r1 converting E and S to E:S , the backward reaction r−1 taking
E:S to E and S, and the reaction r2 converting the compound E:S into product
P and releasing the enzyme E. The reaction rates are governed by kinetic laws
involving rate constants (k1, k−1 and k2) and the molecular counts of the species
involved.

The chemical equation describing Michaelis-Menten reactions is

E + S
k1

k−1

E:S
k2

E + P .

In the Bio-PEPA language the notation fri is used to indicate the rate associated
with the reaction ri.
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fr1 = k1 × E × S

fr−1 = k−1 × E:S
fr2 = k2 × E:S

When initiated with low molecule counts (E,S,E:S , P ) = (5, 5, 0, 0) this model
gives rise to a state space of very modest size, as indicated in Fig. 1. Starting in

(5, 5, 0, 0)

(4, 4, 1, 0) (5, 4, 0, 1)

(2, 2, 3, 0) (3, 2, 2, 1) (4, 2, 1, 2) (5, 2, 0, 3)

(3, 3, 2, 0) (4, 3, 1, 1) (5, 3, 0, 2)

(1, 1, 4, 0) (2, 1, 3, 1) (3, 1, 2, 2) (4, 1, 1, 3) (5, 1, 0, 4)

(0, 0, 5, 0) (1, 0, 4, 1) (2, 0, 3, 2) (3, 0, 2, 3) (4, 0, 1, 4) (5, 0, 0, 5)

r1r−1

r1r−1 r1r−1

r1r−1

r1r−1 r1r−1 r1r−1

r1r−1r1r−1

r1r−1

r1r−1 r1r−1 r1r−1 r1r−1 r1r−1

r2

r2 r2

r2 r2 r2

r2 r2 r2 r2

r2 r2 r2 r2 r2

Fig. 1. Discrete state-space representation of the Michaelis-Menten reactions.

the state (5, 5, 0, 0) each of the four species E, S, E:S and P can achieve molecular
counts in the bounded integer range 0 to 5. Of the 6×6×6×6 = 1296 potential states
in the full product state space of this model only 21 of these are actually reachable
by any sequence of reactions. One reachable state, (5, 0, 0, 5), is a “deadlock” state
with no outgoing transitions. Reaction r1 is prevented because S = 0 and reactions
r−1 and r2 are prevented because E:S = 0.

However, if we consider an extension of the model with an additional reaction
r0 which synthesises the compound E:S

∅
k0

E:S

with the synthesis occurring at a constant rate fr0 = k0 then this additional reac-
tion channel changes the analysis of the model dramatically. The state which was
previously a deadlock state now admits an r0 reaction which leads it to a previ-
ously unreachable state, (5, 0, 1, 5). The reactions r−1, r1 and r2 can occur in states
reachable from that one as shown in Fig. 2.

Each of these states, and every other state, now allows an r0 reaction, taking
them to previously unreachable states each of which allows r0 and reactions r−1, r1

and r2 subsequent to that. The effect of introducing this single synthesis reaction
is that we now cannot find any upper bound N such that the molecular species
counts are guaranteed to lie in the bounded integer range 0 to N . In general, if we
are unable to bound the reachable state-space then we cannot analyse our model
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(5, 0, 0, 5) (6, 1, 0, 5)

(5, 0, 1, 5) (6, 0, 0, 6)r0

r1r−1
r2

Fig. 2. Synthesis of the compound adds further states.

by probabilistic model-checking.
Here we seek to bring the unbounded state-space back within bounds by exploit-

ing the following observations.

(i) The generation of the derivation graph of the underlying state-space does not
take into account the numerical values assigned to the rate constants, and the
propensity functions which depend on those. This means that the derivation
graph may include many states which the system is almost sure not to reach
within a particular time bound.

(ii) Most chemical systems involve several widely varying time scales, so such sys-
tems are nearly always stiff [19]. A consequence of this is that the first passage
time to many states is likely to be long and truncation of the state-space using
a time-bounded reachability metric is likely to be productive.

(iii) Many of the logical formulae which we wish to check involve reaching within a
fixed time bound model states which satisfy a given predicate.

(iv) Stochastic simulation methods such as Gillespie’s Direct Method [9] gener-
ate exact stochastic simulations of trajectories from the initial state to states
reachable within a given time bound.

3 Background

The context of application we consider is that of biochemical networks. A bio-
chemical network is composed of n species which interact through m reactions; the
dynamics of reaction j is described by a kinetic law fj . The quantitative behaviour
of a biochemical network depends on the initial values of the involved species and
on the kinetic parameters.

In the following, we distinguish between structurally bounded and structurally
unbounded biochemical networks. A biochemical network is (structurally) bounded
if for each species Si (i ∈ {1, . . . , n}) there exists a value Maxi ∈ N such that
Xi(t) < Maxi ∀t, where Xi(t) is the amount of species i at time t. The values Maxi

for a generic biochemical network, if they exist, depend on the kind of reactions
involved, on their kinetic laws and constants, and on the initial state of the system.
If, instead, the amount of one or more species has the potential to grow without
bound, the network is structurally unbounded.

If we assume a finite number of molecules for each species in the initial state,
and we do not consider reactions which can increase the amount of any species,
then we have structurally bounded networks. If instead, we consider synthesis
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reactions (e.g. ∅ → A, C → C +A) or arbitrary split reactions, we have structurally
unbounded networks. In many cases a structurally unbounded network may have
a pragmatic bound because of the quantitative relations between the molecules
and the reactions composing the network. Specifically, even though some synthesis
reactions are present, the average value of each species can be bounded.

Note that, in the real world, biochemical networks are generally bounded: degra-
dation, for instance, is an important mechanism cells use to avoid an uncontrolled
increase of molecules. However, structurally unbounded networks are interesting
because an anomalous behaviour of some biological entity could trigger such an
uncontrolled growth. Moreover, biological models are often limited to particular
sub-systems, in which the bounding reaction might not be included.

3.1 Bio-PEPA

The Bio-PEPA language [7,6] allows us to explicitly represent some features of bio-
chemical models, such as the stoichiometry of reactions and the role of each species
in a given reaction, and allows the definition of general kinetic laws. Bio-PEPA mod-
els can be analysed by different techniques (stochastic simulation, analysis based
on ODEs, numerical solution of the continuous-time Markov chain (CTMC), and
probabilistic model-checking), since the mappings of Bio-PEPA models into speci-
fications for those approaches have been defined [6].

The language is based on discrete levels of parameterised species: each compo-
nent represents a species and its parameter may be interpreted as the number of
molecules or discrete levels of concentration depending on the type of analysis to be
applied. Parametric levels are considered for the definition of the transition system
and for the derivation of a CTMC whose states represent the concentration levels
of the species.

The syntax of Bio-PEPA is defined as:

S ::= (α, κ) op S | S + S | C P ::= P ��
L P | S(l)

where op = ↓ | ↑ | ⊕ | 	 | 
.
The component S is called a sequential component (or species component) and

represents the species whereas the component P , called a model component, de-
scribes the system and the interactions among components. The parameter l ∈ N

represents the discrete level of concentration. The prefix term (α, κ) op S contains
information about the role of the species in the reaction associated with the action
type α: κ is the stoichiometry coefficient of the species and the prefix combinator
“op” represents the role of the element in the reaction. Specifically, ↓ indicates a
reactant, ↑ a product, ⊕ an activator, 	 an inhibitor and 
 a generic modifier. The
operator “+” expresses the choice between possible actions and the constant C is
defined by an equation C

def= S. Finally, the process P ��
L Q denotes the cooperation

between components: the set L determines those activities on which the operands
are forced to synchronise.

In order to specify a model in Bio-PEPA, in addition to the definition of the
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species and model components, we need to define a set of functional rates F ex-
pressing the kinetic laws of the reactions, a set of constant parameters K and the
compartment size (in the set V). For discrete state space analysis the behaviour of
the system is defined in terms of an operational semantics. The rules are reported
in [6]. In the following we indicate a Bio-PEPA model with M.

The Bio-PEPA language is supported by software tools which automatically
process Bio-PEPA models and generate other representations in forms suitable for
simulation and model-checking. The generated simulation model can be executed
using the Dizzy stochastic simulator [18]. The representation which is used for
discrete state-space generation and analysis by numerical solution of the underlying
CTMC is expressed in the reactive modules language supported by the PRISM
model-checker. In addition the Bio-PEPA tools generate reward structures and
common CSL formulae used in model-checking.

In this paper we consider only numbers of molecules, therefore the CTMCs
obtained from our Bio-PEPA models are in terms of number of molecules as well.

3.2 Model Analysis

Both stochastic simulation and the probabilistic model-checking that we consider are
based on an underlying mathematical model which is a CTMC. A continuous-time
Markov chain is a discrete-state process whose evolution is governed by exponential
distributions, giving the stochastic process the memoryless or Markovian property.

Gillespie’s stochastic simulation algorithm [9] is a widely-used method for the
simulation of biochemical systems. It applies to homogeneous, well-stirred systems
in thermal equilibrium and constant volume. Broadly speaking, the goal is to de-
scribe the evolution of the system X(t), described in terms of the number of elements
of each species, starting from an initial state.

PRISM [17] is a probabilistic model checker, which can be used to check prop-
erties of discrete-time Markov chains and Markov decision processes, in addition
to CTMCs. It has been used to analyse systems from a wide range of application
domains. Models are described using the state-based PRISM language and for a
CTMC model it is possible to specify quantitative properties of the system using a
temporal logic, called CSL [1,2] (Continuous Stochastic Logic).

The PRISM language is composed of modules and variables. A model is com-
posed of a number of modules which can interact with each other. From a Bio-PEPA
model there will be one module for each species. A module contains a number of
local variables. The values of these variables at any given time constitute the state
of the module. Such a variable will be used to record the number of molecules
which are currently present in the system. The global state of the whole model
is determined by the local state of all modules. This corresponds to X(t) in the
stochastic simulation. The behaviour of each module is described by a set of guarded
commands. Each command describes a transition which the module can make if
the guard is true. A command includes an update which gives new values to the
variables. In the mapping from a Bio-PEPA model the transitions correspond to
the activities of the Bio-PEPA model and the updates take the stoichiometry into
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account. Transition rates are specified in an auxiliary module which defines the
functional rates corresponding to all the reactions.

The well-formed formulae of CSL are made up of state formulae φ and path
formulae ψ. The syntax of CSL is below.

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ | P��p[ψ] | S��p[φ]

ψ ::= Xφ | φ UI φ | φ U φ

Here a is an atomic proposition, �� ∈ {<,≤, >,≥} is a relational parameter, p ∈
[0, 1] is a probability, and I is an interval of R

+. The operator P��p[ψ] is used to
express transient properties (i.e. dependent on time) whereas the operator S��p[φ] is
used to express steady state properties (i.e. hold in the long run). The operators X
and U are used to express neXt and Until properties, respectively. Time-bounded
Until formulae UI are indexed by an interval I. Derived logical operators such as
implication (⇒) can be encoded in the usual way.

3.3 Model-checking with PRISM

PRISM [17] includes support for the specification and analysis of properties based on
rewards: real values are associated with certain states or transitions of the model.
In this way it is possible to reason about various quantitative measures such as
“expected number of processes/proteins” or “expected number of reactions”. The
PRISM reward language allows the expression of both instantaneous and cumulative
rewards.

PRISM supports both exact and approximate probabilistic model-checking (in
the style of the APMC tool [13,14]). In approximate model-checking Monte-Carlo
simulation is used together with the theory of randomised approximation schemes
to give accurate approximations of satisfaction probabilities. Properties of large
discrete-state systems can be checked using very little memory but in practice the
run-times of such simulations can be very long. In our experience a simulation pre-
run followed by exact probabilistic model-checking is less costly than computing the
same results using approximate model-checking alone. We will compare the results
obtained from the two methods.

4 Estimating Lower and Upper Bounds on Molecules

As mentioned above, from a Bio-PEPA system M we can generate a Dizzy model for
stochastic simulation and a PRISM model for model-checking. The initial amount
of each species, stoichiometric information and the kinetic laws with the associated
parameters are needed for the simulation model. This information can be collected
from M. In addition, the lower and upper bounds for each species are also needed
in the PRISM model in order to build a finite CTMC and, hence, to make the
analysis by means of CTMC feasible. Especially in the case of unbounded networks
it is essential to define an upper bound that makes the analysis feasible but still is
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able to capture the behaviours of interest of the system.
The main issue we investigate in this work is: how to specify the minimum and

maximum amount of each involved species? In principle, in some networks, bounds
on the number of molecules can be obtained from pre-existing biological knowledge
about the system and from experimental data. However, this information is of-
ten incomplete, we could have only little pre-existing knowledge of the (normal and
anomalous) behaviour of the system and there can be a high variability among differ-
ent experiments. In these cases the derivation of the bounds is particularly hard to
face. Furthermore, the bound values are tightly dependent on the initial conditions
and on the parameter values; since wet experiments are generally time-consuming
and costly, assuming that such bounds are known for each relevant parameter set
is not realistic.

Even in the complete absence of experimental data it is possible for a struc-
turally bounded network to derive theoretically both lower and upper bounds for
the number of molecules. For instance, in the simple case with stoichiometry equal
to one and no arbitrary split of molecules/complexes, the lower bound can be fixed
to 0, while an upper bound is given by the sum of the initial amount of each species.

However, in general, for real life complex systems, it is hard to derive this infor-
mation and, depending on the relative rates of the reactions, the theoretical bounds
could be practically unreachable. Unfortunately, bounds calculated in this way are
very loose and the system is almost always intractable for model-checking if these
bounds are used. Furthermore, when unbounded networks are considered it is not
even possible to derive these loose theoretical bounds.

Here we use stochastic simulation to estimate the minimum and maximum num-
ber of molecules for each species. We run a number of simulation experiments and
use the output results as a rule of thumb for selecting lower and upper bounds for
model-checking. The number of simulation runs should be chosen depending on
the variability of the specific system under study. Due to the nature of stochastic
simulation, the more simulation experiments we perform, the higher will be our
confidence in the derived bounds. This approach is the sole way of deriving bounds
if the total number of molecules present in the system can increase compared to the
initial state.

In the case of structurally bounded networks, the species can assume values be-
tween a minimum and a maximum value. From the simulation results, we can derive
an estimate of the maximum value for each species Si as Maxi = max{Xj

i (t), j =
1, . . . , Nruns, t ∈ [0, T ]}, where Xj

i (t) is the amount of the species i, in the simu-
lation j at time t, Nruns is the number of simulation runs and T is the simulation
stop-time, which depends on the specific network and is usually defined according
to experimental data or set to some time of interest. A similar approach is used to
derive the minimum value Mini.

In structurally unbounded networks it is possible that a species does not have
an upper bound on the number of molecules on the long run. However here we
are interested in the behaviour of the system until a fixed time T of interest and
therefore we consider the maximum value for each species in the interval [0, T ]. By

F. Ciocchetta et al. / Electronic Notes in Theoretical Computer Science 232 (2009) 17–38 25



considering the simulation results, we can derive an estimate of the maximum and of
the minimum value as before. It is worth noting that, by this approach, we impose
some bounds on systems which are not bounded. As a consequence, we can only
verify time-bounded formulae over the interval [0, T ]. In practice this is not a severe
restriction because almost all of the formulae which we use are time-bounded Until
formulae.

A final observation is about the time interval [0, T ]. In our experience tran-
sient properties (i.e. dependent on time) are of greatest interest to biologists, not
steady-state behaviour. Generally, the time bound considered is the one used in the
experimental work. When analysing models, therefore, we are interested in checking
properties within that time bound, as these can be validated against the available
experimental data. However, when experimental data is not available or is par-
tial or incomplete, the time bound needs to be arbitrarily defined. Since checking
properties can be very time-consuming for models representing real life systems, it
is desirable to focus on the shortest time interval which allows us to capture the
interesting behaviour. For example, if a steady state exists, it is pointless to con-
sider a time longer than the one at which the steady state is reached. On the other
hand, one might not be interested in the very first time steps. Again, the time-series
generated by a simulation pre-run can provide a good estimate of the time interval
to choose for the verification of transient properties.

5 Application and Results

We consider here two simple models in order to illustrate our approach, to show the
computational advantage of using the estimated bounds in model-checking, and to
discuss the error which is introduced by truncating the state space. These models are
abstract representations, under different assumptions, of a general genetic network
with a negative feedback. An example of this kind of network is the control circuit
for the λ repressor protein CI of λ-phage in E.Coli, modelled in [3].

A schema of the general network is reported in Fig. 3. We have four biochemical
entities that interact with each other through six reactions. The biochemical entities
are the DNA (D), the mRNA (M ), a protein in monomeric form (P) and a protein
in dimeric form (P2 ). The first reaction in the network is the transcription of the
mRNA from the DNA. The protein in dimeric form, which is the final product
of the network, has an inhibitory effect on the transcription process. The second
reaction is the translation of the protein from the mRNA. Reactions degradation M
and degradation P represent the possible degradation of mRNA and of the protein,
respectively. Finally, dimerization and monomerization are the protein dimerization
and its inverse reaction. All reactions are described by mass-action kinetics, apart
from transcription, which follows Michaelis-Menten kinetics.

The network is structurally unbounded, since both transcription and translation
lead to the creation of new molecules. However, the two degradation reactions and
the transcription inhibition by means of the dimeric protein have a regulatory effect
on the protein synthesis and therefore, under some conditions, all the species reach
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DNA (D)

degradation _P 

degradation_M
 mRNA (M)

Protein (P)

 Dimer Protein (P2)

    transcription

  translation

 dimerization monomerization

Fig. 3. Genetic network model.

a finite average value.
Our two models represent the network described above with two different sets

of parameters and a different assumption on the degradation of the protein. The
set of parameters used in the first model makes the protein degradation fast enough
to yield to a pragmatically bounded system (on average). In the second model,
instead, we consider different values for some of the parameters and the complete
absence of protein degradation. These assumptions have a dramatic effect on the
systems behaviour: it makes the amount of protein increase indefinitely.

5.1 Specification of the Networks in Bio-PEPA

5.1.1 The Network with Protein Degradation (M1)
In the following we define the Bio-PEPA system M1 representing the first network.

The set of species components and the model component are defined as follows.

D
def= (transcription, 1) 
 D;

M
def= (transcription, 1)↑M + (translation, 1) 
 M + (degradation M, 1)↓M ;

P
def= (translation, 1)↑P + (dimerization, 2)↓P + (monomerization, 2)↑P+

(degradation P, 1)↓P ;

P2 def= (transcription, 1) 	 P2 + (dimerization, 1)↑P2 + (monomerization, 1)↓P2;

Res def= (degradation M, 1) 
 Res + (degradation P, 1) 
 Res;

(((D(1) ��
{transcription} M(0)) ��

{translation} P (0)) ��
{dimerization,monomerization} P2(0)) ��

{degradation M,degradation P} Res(1)

All the species are in the same compartment, defined as vcell : 1 nM−1. Initially
we have one molecule of DNA and one molecule of the generic modifier Res. We
omit the information about levels, since in this work we consider the molecular level,
as usual in stochastic simulation. The set of functional rates FR and stochastic
parameters K are reported below.
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ftranscription =
v × D

KM + P2
; ftranslation = k2 × M ;

fdegradation M = k3 × M ; fdegradation P = k4 × P ;

fdimerization =
k5 × P × (P − 1)

2
; fmonomerization = k−5 × P2;

KM = 356 molecules; v = 2.19 s−1; k2 = 0.043 s−1;

k3 = 0.039 s−1; k4 = 0.0007 s−1;

k5 = 0.025 s−1; k−5 = 0.5 s−1 .

5.1.2 The Network Without Protein Degradation (M2)
The definition of the Bio-PEPA system M2 representing the second network is very
similar to the case of the first network. Below we report only the parts of the
specification of M2 that differ from M1. The changes concern the definition of the
species components P and Res (the term for protein degradation is removed), the
elimination of the functional rate fdegradation P (representing the kinetic law for the
protein degradation), and some parameter values in the set K.

P
def= (translation, 1)↑P + (dimerization, 2)↓P + (monomerization, 2)↑P ;

Res def= (degradation M, 1) 
 Res;

(((D(1) ��
{transcription} M(0)) ��

{translation} P (0)) ��
{dimerization,monomerization} P2(0)) ��

{degradation M} Res(1)

The new set of parameters K′ is:

KM = 356 molecules; v = 2.19 s−1; k2 = 0.03 s−1;

k3 = 0.039 s−1; k5 = 0.06 s−1; k−5 = 0.5 s−1 .

With respect to M1, the rate of dimerization (k5) is increased, the rate of
translation (k2) is decreased, and k4 is removed as we assume that there is no
protein degradation.

5.2 Simulation and Model-Checking

Here we apply our approach to both M1 and M2. Notice that since both describe
an unbounded network, it is not possible to calculate even loose theoretical bounds
from the initial conditions.

5.2.1 Network M1

We focus first on M1. We perform 1000 independent stochastic simulation runs
using Gillespie’s Direct Method [9]. The chosen number of runs is large enough to
take into account the variability of the system, but still makes the total simulation
time reasonable (in the order of minutes). We used T = 20000 s as a simulation
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stop-time: by that time the system has reached a stable state.
The simulation results are reported in Fig. 4, which shows the average values

obtained over all the runs. As the figure shows, both the monomeric protein P and
the dimeric protein P2 rapidly increase until they reach levels which remain stable
within the considered time bound.

This simple network is an interesting example because, despite being structurally
unbounded, a stable behaviour is observed by looking at the average values of
multiple runs: the amount of all the species is not unbounded.

We can estimate the upper bounds for the amounts of each species as the max-
imum values obtained in any run at any time instant,

MaxM = 5; MaxP = 33; MaxP2 = 18

and we can use these values in the PRISM model. The amounts of the other
species, D and Res, are not affected by the reactions in which they are involved
and, therefore, they are constant at value 1.

In this example, the lower bounds for all the interesting species are 0, since they
are not present at system initialisation.

In Fig. 4 we also report the expected values for the amounts of the interesting
species (M , P and P2) obtained by PRISM using the derived bounds. The results
are in agreement with the average values calculated from the simulation runs. These
values have been obtained by checking the instantaneous reward properties

RM
=?[I = t], RP

=?[I = t], RP2
=?[I = t]

varying the time t ∈ [0, T ], where M , P and P2 are reward structures associating
with each state the current number of molecules of each species. In the same Fig. 4
we consider the standard deviation of the number of molecules for the PRISM
model. Specifically, we define reward structures associating with each state the
square of the number of molecules of each species and the standard deviation is
then calculated as the square root of the variance E(Y )2 − E(Y 2), where Y is the
random variable representing a species in the network, whereas E(Y ) and E(Y 2)
indicate the expected values for the amount of the species Y and for its square
value.

In order to confirm the belief that the choice of the bounds is crucial for having
the right compromise between correctness and efficiency, we performed a few more
experiments, both with smaller and with bigger upper bounds. The result is that, if
the selected bounds are too low, the obtained behaviour is not in agreement with the
average simulation result. On the other hand, using bounds which are too high has
the effect of dramatically increasing the state space and, thus, it makes the model-
checking much slower. For instance, the verification of the next set of properties in
a model where the bounds for the three species are doubled is over 20 times slower,
while verifying the previously-used CSL formulae (with no increase in the bound to
be reached to satisfy the formula) produces the very same values reported in Fig. 5.
All values are equal up to the fifth decimal digit at least. This confirms that the
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Fig. 4. Simulation, exact and approximate probabilistic model-checking results for M1: average number
of molecules over 1000 simulation runs (thick lines), expected number of molecules at time t (points) and
its standard deviation (thin dashed lines), obtained by using reward structures in PRISM. We observe that
the agreement between the three sets of results is good.

bounds we have imposed do not alter the behaviour of the system.
The agreement of the stochastic simulation results and the expected values

computed by model-checking is a form of validation of our approach per se: it
shows that we have not introduced significant errors. As another form of valida-
tion of the derived bounds, we have calculated the probabilities of reaching them
at different time instants (P=?[true U≤t M = 5], P=?[true U≤t P = 33], and
P=?[true U≤t P2 = 18]). The results, reported in Fig. 5, provide a means for
estimating the error which might have been introduced by bounding the system.

In this case the state space truncation has almost no impact on the behaviour
of the system. However, it is worth mentioning that, in general, the effect of such
truncation is dependent on the nature of the specific system under study. Notably,
the results obtained by checking the last property shown can be used to refine the
model, by increasing the bounds in case the probability of them being reached is
considered to be too high. When one is satisfied with the resulting probabilities,
PRISM can be used to evaluate other CSL formulae on the defined model, in order
to provide additional insight into the system behaviour.

We consider in the following a number of properties which can be automatically
checked, though for such a small example the behaviour of the system is simple and
the model-checking approach does not happen to be particularly meaningful. In the
case of real life systems with complex behaviour further specific properties could be
verified.
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Fig. 5. Model-checking results for M1: probability of each species reaching its upper bound.

As a first example we consider the cumulative reward property

R〈react〉
=? [C ≤ t]

where 〈react〉 is a reaction name (e.g. “transcription”, “translation”, “degrada-
tion M”, etc.), with which a transition reward is associated. These properties,
analysed at different time instants t ∈ [0, T ] return the expected number of occur-
rences of a reaction by that time (see Fig. 6, where we have separated slow and fast
reactions in two different graphs for the sake of readability because of their very
different scales).

 0

 20

 40

 60

 80

 100

 120

 140

 0  5000  10000  15000  20000

E
xp

ec
te

d 
nu

m
be

r 
of

 o
cc

ur
re

nc
es

Time

transcription
translation

degradationM
degradationP

(a) slow reactions

 0

 5000

 10000

 15000

 20000

 25000

 0  5000  10000  15000  20000

E
xp

ec
te

d 
nu

m
be

r 
of

 o
cc

ur
re

nc
es

Time

dimerization
monomerization

(b) fast reactions

Fig. 6. Model-checking results for M1: expected number of occurrences of reactions by time t.

Fig. 7 shows the expected amounts of monomers (P ) compared to the total
amount of proteins (P + P2) present at time t. Specifically, it refers to the formula
Rratio

=? [I = t] where “ratio” is a reward structure which associates the reward P
P+P2
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with each state.
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Fig. 7. Model-checking results for M1: expected ratio between protein monomers and total proteins at
time t.

We point out that properties such as the ones just mentioned and many others
(e.g. the expected time at which a protein dimer is first produced, the probability
of having more dimers than monomers at some time t, etc.) can be evaluated in a
probabilistically precise manner by model-checking: all the user needs to do is to
provide the model-checker with the CSL specification of the desired property and
wait for the definitive answer. On the other hand, the analysis of these properties by
simulation, if possible, requires the use of reward-based simulation tools in which
the user often needs to implement the reward functions themselves; in addition,
the answers regarding the satisfaction of properties obtained by simulation could
only be up to some confidence interval and, often, an extremely high number of
simulation runs would be required to achieve a satisfactory confidence.

In this example, we have checked all properties at time instants in the interval
[0, T ]. However, as one can easily see from Fig. 4, the system reaches a stable
behaviour much before time T . In cases like this, and if the time required for
model-checking experiments is long, the number of experiments to run could be
reduced by considering this further information from the simulation results.

5.2.2 Network M2

We consider here M2. The simulation results reported in Fig. 8 show that the
system does not reach a stable (average) state within the simulation time in which
we are interested (T = 20000s): since in the model there is no protein degradation,
both the monomeric protein P and the dimeric protein P2 increase without limit.

Again, we estimate the upper bounds for the amounts of each species as the
maximum values obtained in any run at any time instant up to the simulation
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stop-time,
MaxM = 5; MaxP = 51; MaxP2 = 64

and we use these values in the PRISM model. The amounts of D and Res are
constant in this case, too.

In Fig. 8 we report the expected values (and their standard deviation) of the
amounts of the interesting species obtained by PRISM, which are in agreement
with the average values calculated from the simulation runs. These values have
been obtained by checking the instantaneous reward properties

RM
=?[I = t], RP

=?[I = t], RP2
=?[I = t] .

Fig. 9 reports on the probabilities of reaching the upper bounds at different time
instants (P=?[true U≤t M = 5], P=?[true U≤t P = 51], and P=?[true U≤t P2 =
64]).

The occurrences of each reaction by time t are reported in Fig. 10, while Fig. 11
shows the expected amounts of monomers (P ) compared to the total amount of
proteins (P +P2) present at time t (they refer to the same properties described for
M1).

Finally, Fig. 12 shows the probability of the amount of P2 being greater than the
amount of P at different time instants (P=?[true U[t,t] P2 > P ]). As expected, this
probability increases as time increases. However, it does not reach 1. Indeed, even if
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Fig. 8. Simulation, exact and approximate probabilistic model-checking results for M2: average number
of molecules over 1000 simulation runs (thick lines), expected number of molecules at time t (points) and
its standard deviation (thin dashed lines) obtained by using reward structures in PRISM. We observe that
the agreement in all three cases is good but that the strongest agreement is between the average simulation
results and the probabilistic model-checking results. The results obtained by approximate model-checking
appear to indicate higher numbers of both monomers and dimers than the other two methods.
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Fig. 10. Model-checking results for M2: expected number of occurrences of reactions by time t.

the average behaviour shows that in the long run the amount of P2 is greater than
the amount of P (see Fig. 8), this is not generally true for all possible behaviours:
the system is highly variable, and there can be some paths in which P2 < P even
when approaching the simulation stop-time. This is not very surprising because the
confidence intervals around the times series for P and P2 are still overlapping up to
the stop time of 20000 seconds (see Fig. 8). The formal confirmation of this remark
is given by the fact that the probability of P2 being greater than P in every state
after time t (P=?[G[t,T ] P2 > P ]) is 0 for any t ∈ [0, T ).

6 Related Work

In this work, as in our earlier work [4], we are concerned with obtaining the exact
probability distribution across all of the states of the reachable state-space of a
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Fig. 12. Model-checking results for M2: expected probability of P2 > P at time t.

network of chemical reactions. In our earlier work we used the stochastic process
algebra PEPA [16,15] to express the model and applied numerical linear algebra
to solve the underlying Markov chain. In this paper we are using the Bio-PEPA
language and applying model-checking to obtain our results.

The use of probabilistic model-checking for the analysis of models of biological
phenomena is already well established. In [5] the authors consider signal trans-
duction in the RKIP-inhibited ERK pathway and manage the state-space explosion
problem by using approximate techniques where concentrations are modelled by dis-
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crete abstract quantities. In [10] the authors apply model-checking to the complex
FGF (Fibroblast Growth Factor) signalling pathway.

Another programme of work bringing together the analysis methods of stochastic
simulation and the numerical solution of the Markov chain is perfect sampling [11].
This work joins the “Dominated Coupling From The Past” Algorithm from Monte-
Carlo Markov Chain theory with Gillespie’s Stochastic Simulation Algorithm in
the DCFTP-SSA [12]. The DCFTP-SSA guarantees sampling from the stationary
probability distribution of the Chemical Master Equation and can be used to study
steady-state properties of a broad class of stochastic biochemical networks. Our
work guarantees that we are using the transient probability distribution of the CME
and can be used to study time-dependent properties of a broad class of stochastic
biochemical networks up to the stop-time of the simulation pre-run.

We have focused here on relating different stochastic approaches to the analysis
of biochemical systems. Much work remains still to be done in relating discrete
stochastic models and continuous sure models [8] and understanding when each of
these is the appropriate model to use [20].

7 Conclusions

Summing up, our approach is the following:

• We consider a Bio-PEPA system M representing a biochemical network, and
we automatically derive from it a model specification to be used for stochastic
simulation (by Dizzy) and one to be used for model-checking (by PRISM).

• We set the simulation time T and the number of simulation runs.
• We pick as bound for a species the largest number of molecules which that species

has obtained in any simulation run within time T .
• We update the PRISM model derived from the Bio-PEPA model with the es-

timated bounds, and we validate this model by comparing the expected values
calculated by PRISM with the average values obtained by simulation.

• We use PRISM to analyse the model by verifying specific CSL properties.

In addition to the fact that simulation allows us to set some bounds which
make model-checking feasible, the combination of those two analysis techniques is
itself advantageous. Simulation and model-checking are complementary techniques
and they can be used to investigate different properties of the same system in
order to give a more complete understanding. Moreover, since the Dizzy model
and the PRISM model are equivalent, we expect the results obtained with the
two approaches to be in agreement. If this is the case, that can give us staunch
confidence about the correctness of the results. If, instead, we get different results,
that means there is some mistake in either approach (e.g. more simulation runs
need to be performed, the chosen bounds are too low, or the simulation stop-time is
too small), and this information could be used to refine the model or the simulation
settings.
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We have automated the generation of the simulation model and the model-
checker input from a model expressed in the Bio-PEPA process algebra. We have
automated the repeated execution of a set of independent simulation runs and
the identification of the maximum and minimum values of each species from the
simulation results. The user then only needs to load the PRISM model, supply
the identified parameters and execute it. However, the choice of the number of
simulation runs to be performed remains in the hands of the modeller.

We point out that the upper bounds estimated by using this approach are ap-
proximate because, given the stochastic nature of the simulation, we can have gen-
uine confidence in the chosen bounds only if we run a suitably large number of
simulations. However, this issue is not specific to this approach. The choice of the
number of simulation runs is needed for any stochastic simulation experiment; on
top of that, we use the simulation just as a supporting technique to the model-
checking, and we believe that the combined use of the two approaches helps to
minimize the uncertainty due to the stochastic simulation.

The good agreement between the results obtained by simulation and by model-
checking on the presented example makes us confident that, provided an adequate
number of simulation runs is performed, then our approach does not introduce
significant errors. However, we stress again the fact that the sensitivity to the
truncation of the state space is strongly dependent on the system itself; therefore,
in order to assess the correctness of the estimated bounds for a specific system,
the results obtained by model-checking should be validated against the behaviour
obtained by simulation and against previous experimental and computational data,
if there is any available.
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