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Abstract. We define a mechanism for specifying performance queries which
combine instantaneous observations of model states and finite sequences of obser-
vations of model activities. We realise these queries by composing the state-aware
observers (called eXtended Stochastic Probes (XSP)) with a model expressed in
a stochastically-timed process algebra. Our work has been conceived in the con-
text of the process algebra PEPA. However the ideas involved are relevant to all
timed process algebras with an underlying discrete-state representation such as a
continuous-time Markov chain.

1 Introduction

When modelling complex systems we generally wish to make queries and therefore
must describe the set of states in which we are interested. The analysis in question may
be a steady-state query asking a question such as: “In the long-run what percentage
of its time does the server spend idle?” The set of states in which we are interested is
then the steady-set. Passage-time queries are often concerned with events, however the
query must still be specified as a set of states, which we will call the passage-set. To
perform a passage-time analysis the solver can extract the set of source states and the
set of target states from the passage-set. The set of source states is taken to be all of
those states in the passage-set which are the target of some transition whose source lies
outside the passage-set. Conversely the set of target states is taken to be the set of states
outside the passage-set which are the target of some transition whose source lies in the
passage-set.

More generally whether we are performing a steady-state or passage-time analy-
sis we will be interested in specifying the query-set. There are currently two kinds of
mechanism for specifying query-sets: state-specifications and activity-specifications.

We are interested in the robustness and portability of our query specifications. For
robustness we would like to ensure that our query specification remains correct when-
ever we make unrelated changes to our model. For portability we would like one query
specification to be used over several differing models. Additionally it is important that
we are able to make many different queries without needing to alter the model. We
have found that the above two query specification techniques alone are insufficient for
our aims. Additionally allowing the user to specify their queries using either is still not
sufficiently expressive. We have found it necessary to combine the two into one spec-
ification language which allows state-specifications to be intermixed within an activity
probe specification. This language we have called eXtended Stochastic Probes (XSP).
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Structure of this paper. The rest of this paper is structured as follows: section 2 dis-
cusses related work and section 3 formally introduces the two separate specification
techniques; state specifications and activity probes as well as formally introducing our
extension which allows the combination of both approaches. Section 4 provides details
of the conversion of extended probe specifications into our target language PEPA as
implemented in our PEPA compiler. A detailed example is provided in sections 5 and
6. Finally conclusions are presented in section 7.

2 Related Work

The use of a regular expression-like language to describe a probe component which is
automatically added to a PEPA model was studied by Katwala, Bradley and Dingle [1].
The addition of probe components has been a feature of the Imperial PEPA Compiler [2]
(now the International PEPA Compiler) since it was first developed and remains so in
the derivative work ipclib [3].

Stochastic probes describe activity-observations. We have previously extended this
formalism to locate activities within structured models [4]. We introduced immediate
actions into communicating local probes to convey state information without perturbing
the performance analysis which was being made. In the present work we add state-
observations to the existing stochastic probes language which specifies location-aware
activity-observations.

A widely-used language for describing logical properties of continuous-time Markov
chains is CSL (Continuous Stochastic Logic), introduced by Aziz, Sanwal, Singhal and
Brayton [5]. An application of CSL to a process algebra must first translate the higher-
level state information exposed to the user to the states of the Markov chain. The well-
formed formulae of CSL are made up of state formulae φ and path formulae ψ. The
syntax of CSL is below.

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ |
P��p[ψ] | S��p[φ]

ψ ::= X φ | φ UI φ | φ U φ

Here a is an atomic proposition, �� ∈ {<,≤, >,≥ } is a relational parameter, p ∈ [0, 1]
is a probability, and I is an interval of R. Derived logical operators such as implication
(⇒) can be encoded in the usual way.

The implementation of the CSL logic in the model-checker PRISM [6] is extended
with additional state-specifications called filters. An example is shown in the following
formula where

P>0.97[true UI φ2{φ1}]
determines whether the probability of, from a state satisfying the filter φ1, reaching a
state satisfying φ2 within interval I is greater than 0.97.

Because CSL can only describe states and not the events which cause state transi-
tions – namely actions – CSL (without filters) was extended with activity-specifications
by Baier, Cloth, Haverkort, Kuntz and Siegle [7] to provide the language asCSL. In
that work the authors added activity observations to a state-aware logic. This has re-
cently been further extended to provide the language CSLT A [8] by Donatelli, Haddad
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and Sproston. This language allows properties referring to the probability of a finite
sequence of timed activities through the use of a timed automaton.

The XSP language presented here is close to the language which would be ob-
tained by extending asCSL with the state-filters used in PRISM. However it would
extend the language of asCSL+filters with observations of activities at locations within
a hierarchically-structured performance model. All prior activity-aware variants of CSL
(including asCSL and CSLT A) make observations of a Markov chain model without hi-
erarchical component structure. This entails that they cannot be used (say) to distinguish
arrivals to server 1 from arrivals to server 2 in the example below

Client ��
{arrive}

((
Server1 ��

L Network
) ‖ (Server2 ��

M Raid
))

but this distinction can be expressed in the language XSP.

3 State and Probe Specifications

The models which we consider consist of compositions of multiple copies of sequen-
tial components cooperating on shared activities. A state-specification is a predicate
involving expressions over the multiplicities of the sequential components in a system.
The expressions in the predicate may compare a multiplicity to a constant or to the
multiplicity of another component. Typical predicates test for the presence, absence
or abundance of a particular component but more complex arrangements are possible.
For example ClientWait > 2 × ServerReady specifies those states in which the number
of clients waiting is more than twice the number of ready servers. The full syntax for
state-specification equations is given in Figure 1(left).

An activity-specification is a labelled regular expression describing the sequence
of activities which lead into and out of the query-set. The labels start and stop are
used to indicate the activities which enter and exit the query-set respectively. Activity-
specifications are realised as stochastic probes which are automatically translated into
a component which is then attached to the model.

Probes may be attached globally to the entire model (thereby observing all of the
model behaviour) or locally to a specific component (therefore observing from the per-
spective of this component). The probe cooperates with the component to which it is
attached over all of the activities in its alphabet. It is important that the probe is always
willing to perform all of these activities in each of its local states in order that it does
not alter the behaviour of the model.

A very simple probe may specify the set of states between a begin and an end activity:
begin:start, end:stop. More complex queries are possible such as:

((pass, pass, pass)/send):start, send:stop

This specifies that if we observe three pass activities without observing a send activity
then the model has entered the query-set. When a send activity has been observed then
the model has left the query-set. The full syntax for activity-probe specifications is given
in Figure 1(right).
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name := ident process name
pred := ¬pred not

| true | false boolean
| if pred

then pred
else pred conditional
| pred ∨ pred disjunction
| pred ∧ pred conjunction
| expr expression

expr := name multiplicity
| int constant
| expr relop expr comparison
| expr binop expr arithmetic

relop := = | � | > | <
| ≥ | ≤ relational operators

binop := + | − | × | ÷ binary operators

Pde f := name :: R locally attached probe
| R globally attached probe

R := activity observe action
| R1,R2 sequence
| R1 | R2 choice
| R:label labelled
| R n iterate
| R{m, n} iterate
| R+ one or more
| R∗ zero or more
| R? zero or one
| R/activity resetting
| (R) bracketed

R := . . . | {pred}R guarded

Fig. 1. The grammar on the left defines the syntax for state-specifications while the grammar
on the right defines the syntax for activity-probe-specifications. The grammar extension at the
bottom defines the additional syntax for eXtended Probe Specifications.

Activity probes have two abstract states, running and stopped. An abstract state of a
(component of a) model, is a set of states with a common property. When the probe is
in between the two labels start and stop the probe is said to be in the running state and
otherwise in the stopped state.

Probes are stateful components which advance to a successor state whenever an ac-
tivity is observed which is in the first-set of the probe. The first-set of a probe is the set
of activities which are enabled at the current position of the probe specification. For ex-
ample the probe (a|b),R can advance to a state represented by the probe R on observing
the activities a or b and its first-set is {a, b}. A given probe will self-loop on any activity
which is in the alphabet of the full probe but is not in the current first-set. This means
that the probe observes the occurrence of the activity and hence does not prevent the
model from performing it, but does not advance.

The novelty in the present paper is the combination of state-specifications, activity-
specifications and both local and global observations.

We do this by allowing a sub-probe of an activity-probe specification to be guarded
by a state-specification. Having already done the work of describing states earlier, the
additional syntax—shown in Figure 1(bottom)—is very light.

The meaning of the probe {p}R is that any activity which begins the probe R must
occur when the state of the model satisfies the state-specification predicate p. If this
predicate is not satisfied then the probe self-loops on the given activity. For example
the extended probe: {Server broken > 0}request : start, response : stop is similar to
a common query which analyses the response time between the two activities request
and response. Here though the initial observation of the request activity is guarded by
the state specification Server broken > 0 and hence all occurences of request will be
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ignored by this probe unless there is at least one process in the Server broken state. This
could be used to analyse the response time in the specific case that at least one server is
down.

In this paper we will express models in the stochastic process algebra PEPA [9]
extended with functional rates [10] (known as “marking-dependent rates” in Petri nets).
The definition P

def
= (α, f ).P′ denotes a component P which performs an activity α at an

exponentially-distributed rate determined by evaluating the function f in the current
model state. After completing activity α, P behaves as P′.

Another model component Q
def
= (α,�).Q′ could cooperate with P on activity α thus:

P ��
{α} Q

We write P ‖ Q when the cooperation set is empty and P[3] as an abbreviation for
P ‖ P ‖ P. The component R

def
= (α, rα).R′ + (β, rβ).R′′ chooses to perform activity α

with rate rα with probability rα/(rα + rβ), and β similarly. The process a.P performs an
immediate action a and evolves to P.

4 Implementation

The XSP language is implemented in the International PEPA Compiler (ipc), a stand-
alone modelling tool for steady-state and transient analysis of PEPA models. When
presented with a PEPA model and an XSP probe, ipc first translates the probe specifica-
tion into a PEPA component. This translated component is then attached to the model to
form a new model. It is this subsequent model which ipc then translates into a Markov
chain representing the augmented model and solves the resulting Markov chain for the
stationary probability distribution. In the case of a passage-time analysis uniformisa-
tion [11,12] is then used to compute the probability density and cumulative distribution
functions for the passage across the XSP probe.

Translating probe specifications into valid PEPA components and attaching them
to the model before any compilation of the model is performed has several advantages.
The user may provide several probe specifications which are translated and added to the
model in turn resulting in subsequent augmented models. Thus additional probes may
refer not only to activities (and immediate actions) performed by the original model
but also those performed by other probes. In this way probes may use immediate ac-
tions to perform immediate communication between probe components. Furthermore,
although in this paper we have focussed on translating the model augmented with the
translated probe using ipc via its Markov Chain representation, we could also analyse
the augmented model using other techniques developed for analysing PEPA models,
notably stochastic simulation and translation to ordinary differential equations[13] al-
lowing us to cope with models with much larger state spaces. Finally the static analysis
used to reject (or warn about) suspect PEPA models can now be run over the entire
augmented model including the translated probe components providing further assur-
ance that we have not made a mistake with our specification. This is in addition to some
sanity checking over the probe specification itself.
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The implementation of XSP follows a tradition of translating regular-expression lan-
guages to finite-state automata. We first translate the probe specification into a non-
deterministic finite-state automaton. This cannot itself be translated directly into a PEPA
component so we next translate this into a deterministic finite automaton. Having done
this the self-loops may then be added to each state (recall from section 3 that self-loops
must be added to each state of the probe to avoid the probe affecting the behaviour of
the model).

Although for some probe specifications it is unavoidable that we increase the state
space of the model we wish to keep the cost of this as low as possible. With this in mind
the translated deterministic finite automata is minimised. It is the minimised DFA with
the addition of the self-loops which can be translated directly into a PEPA model. This
final step is a trivial re-formatting stage – we must only take into account whether or not
the model performs each observed action as a timed activity or an immediate action. In
the case of the former the probe component must passively observe the activity at rate
� and in the case of the latter it is simply added itself as an immediate action.

Probe definitions, and in particular local probe definitions, may use labels to commu-
nicate important events to a master probe which the user provides. The :start and :stop
labels are special cases of this communication whereby the event is the transition of the
probe into the abstract running or stopped states. All communication labels are imple-
mented as immediate actions so as not to distort the behaviour of the model. Care must
be taken not to add self-loops to a state in which immediate communication is possi-
ble in case the observed action on which the self-loop is performed is itself immediate,
which would lead to non-determinism.

The guards on the activities of a probe in an extended probe specification are im-
plemented as guards on the activities of the translated probe component. These in turn
may be implemented as functional rates in which the rate is zero if the predicate is false.
Care must be taken when adding the self-loops. Previously a self-loop on activity x in
the alphabet of the probe was added to a given state if activity x could not currently be
performed to advance the state of the probe. Now whenever it is possible for a guarded
activity x to advance the state of the probe we must add a self-loop for the case in which
the guard is false. However it must not self-loop whenever the guard is true hence the
self-loop is itself guarded by the negation of the guard predicate.

To attach the translated probe component to the model we synchronise over the al-
phabet of the probe. For a global probe it is trivial to attach since we cooperate with the
whole model. For the global probe, if Probe is the name given to the translated PEPA
component in the initial state of the probe and System is the original system equation
then the augmented model’s system equation is given by:

Probe ��
L System

where L is the alphabet of the probe. A local probe P :: R is attached by descending
through the cooperations (and hiding operators) which make up the System compo-
nent. We attach the probe to the leftmost occurrence of P splitting an array if required.
Therefore if System is represented by the cooperation (L ��

M
P[4]) ��

N
Q then the system

equation of our augmented model becomes:
(L ��

M
((Probe ��

L
P) ‖ P[3])) ��

N
Q
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5 An Example Scenario

Our example scenario involves the arbitration of many processes accessing a shared
resource. Here we are considering a symmetric multi-processing architecture in which
there are several processors which must be allowed access to a shared memory. However
the models and query specifications can be applied to similar scenarios involving access
by many clients to a shared resource, for example a wireless network in which the
clients must compete to send or receive over a shared channel.

With our models we wish to compare choices for arbitration. Here we will compare a
round-robin scheme with a first-come, first-served queueing system. In the round-robin
scheme each client is given the chance to use the shared resource in turn, at each such
turn the client may choose to pass up the opportunity or it may use the resource. In
a first-come, first-served queue a client continues to work without the shared resource
until it is required and then signals its interest in access to the shared resource. At this
point the client is put to the end of the queue of clients and must wait until all the clients
ahead of it in the queue have finished with their turn at the resource before being granted
access.

We will be concerned with the time it takes from after a specific client has performed
some internal work (indicating that it is now ready to use the shared resource) until after
it has completed a send. Here the send activity is used as the name for accessing the
shared resource and can be thought of as either sending data to the shared memory in
a symmetric multi-processor environment or using the shared channel to send data in a
wireless network.

5.1 The Round-Robin Model

For the round-robin scheme we model the resource as a token which may be in one
of several places where each place represents a slot in which exactly one client may
use the resource. A client is able to perform the work activity before being able to use
the resource. It must cooperate with the resource and can of course only do this if the
token of the resource is in the correct place. In addition to being able to perform a work
activity the client may pass up the opportunity to use its slot. The Client component
then is modelled as:

Client
def
= (work,work rate).Wait
+ (pass,�).Client

Wait
def
= (send, send rate).Client

The resource is modelled by the Token process. The Token when in position zero may
cooperate with the client over the send or the pass activity. To model each of the other
places for the token we could model more clients. Instead we assume that the token
moves on from each place at a given rate which encompasses both the possibilities that
the respective client sends or passes. In position i the token is modelled by:

Tokeni
def
= (delay, delay rate).Tokeni−1

When the token is in position zero it is defined as:
Token0

def
= (send,�).TokenM

+ (pass, pass rate).TokenM
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where M is the number of other places/clients on the network. The main system equa-
tion is defined to be:

Client ��
L Token0 where L = {send, pass}

Figure 2 depicts the entire state space of the model where M is set to four.

0 Client ��L Token0

1 Wait ��L Token1

2 Wait ��L Token2

3 Wait ��L Token3

4 Wait ��L Token4

5 Wait ��L Token0

6 Client ��L Token1

7 Client ��L Token2

8 Client ��L Token3

9 Client ��L Token4

0

5
work

9pass

1

delay

2
delay3 delay4

delay
send

6

delay

work

7

work

delay8

work

delay

work

delay

Fig. 2. States of the round-robin model with a passage-time analysis states marked

5.2 The Queue Model

The queue model is a little more complex since the client we are analysing may join
the queue at any time but must only be served when it is at the head of the queue. The
queue is modelled in a similar fashion to the Token process. It may be in one of M states
Queuei where i is the current length of the queue.

The client is now modelled as being in a state of working or in one of a set of M states
Clienti each of which corresponds to a position in the queue. When the client performs
the work activity and is ready to use the shared resource it cooperates with the Queue
process over an action which indicates into which state the client should proceed. Only
once the client is in state Client0 can it perform the send activity which will end our
passage of interest. Again the other clients in the model may be modelled explicitly but
here we allow the queue to move from state Queuei to state Queuei+1 at the (functional)
rate (M− i−Client)×work rate since when there are i clients in the queue there will be
M − i clients which may join the queue. We subtract one from that if the queried client
is not in the queue since this performs its own work activity to join the queue. The full
model is shown in the appendix.

5.3 The Random Model

The random model is used for comparison. The random scheme operates in a similar
fashion to the queue scheme, except that there are a number of clients in the queue and
the client which is given access to the shared resource is entirely random. It may be the
client that was the first to enter the queue but it may be the client that was last to enter
the queue.
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In this model we do model the other clients. The client is defined as for the round-
robin model except that it need not perform a pass activity.

Client
def
= (work,work rate).Wait

Wait
def
= (send,�).Client

The queue as before may be in one of i states representing how many clients are in
the queue. The queue now cooperates with a random waiting client to perform the send
activity or a random working client to perform a work activity. The queue with i waiting
clients is defined as:

Queuei
def
= (work,�).Queuei+1
+ (send, send rate).Queuei−1

In position zero the queue cannot perform a send activity and cannot perform a work
activity when the queue is full. Finally the system definition is given by:

Client[5] ��
{work,send}Queue0

5.4 The Passage-Time Analysis

With these models we wish to analyse the expected time it takes for the resource to
be granted to the client once the client is ready. For this we wish to analyse from after
a work activity has been performed until after a send activity has been performed. We
therefore must identify the passage-set. That is, the set of states which lie between those
two events.

In Figure 2 the states in the passage-set for this particular query are identified using
double circles.

To specify this set using a state-specification we must use our knowledge of the
system to identify the conditions which hold at all of the states in the passage-set.

For the round-robin model this is simply when the client is in the Wait state.
Wait = 1

A similar specification also works for the random model with the caveat that we must
specify which Client we consider. For the queue model it is whenever the client is in
any of the queue states.

Client1 = 1 ∨ Client2 = 1 ∨ Client3 = 1 ∨ Client4 = 1 ∨ Client5 = 1
To specify this query using an activity probe we use the two activities themselves as the
begin and end events for the probe. The probe definition is given as:

Client :: work:start, send:stop
Note that this same probe works for all three models. For the round-robin and queue
models it is not strictly necessary for us to attach the probe to the Client component
since there is only one client component which may perform the observed activities.
However doing so leads to a more robust probe as evidenced by the fact that the same
probe can be used for the random model in which there are additional client processes.

Having performed this analysis for all three models we can compare the speed
with which each arbitration method allows a waiting client to use the shared resource.
Figure 3 shows a comparison of both the cumulative distribution function and the prob-
ability density function for the passage-time queries on the three models representing
the three arbitration schemes. These functions have been evaluated by applying the uni-
formisation procedure [11,12] to the CTMC which is generated from the PEPA model.
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Fig. 3. Comparison between the passage-time results for the three models

From the results we can see that the queue and random models perform very similarly
and both outperform that of the round-robin scheme.

The robustness of the query specification in general depends on what the modeller
is likely to modify. In our example above the state-specification is vulnerable to any
change in the model which increases the number of states in which the client may be in
either the abstract state of ‘waiting’ or the abstract state of ‘working’. The abstract state
of ‘waiting’ in our model corresponds to exactly one state of the client, namely: Wait.
Similarly the abstract state of ‘working’, which is used to specify that the send activity
has completed, maps to exactly one component state, namely: Client. If the model is
modified such that either of these two mappings from abstract state to a concrete set of
states is disturbed then the state specification will be invalid and must be revised.

In contrast the activity probe need not be modified since there could for example
be any number of unobserved activities and associated intermediate states between the
work and the send activities. However if we modify the set of activities which may
cause the model to transition between the abstract states then we must revise our probe
specification. For example above there were only two activities which the Token0 com-
ponent may perform to become a Token4 component, namely : pass and send. However
if this were to change then our probe specification would be invalid and would require
updating.

5.5 Splitting the Analysis

We may wish to partition the passage-time results we have obtained for our three mod-
els to enable us to report the expected time the client has to wait depending on the state
of the model at the time at which the client becomes ready to use the shared resource.
So for example in the round-robin model above we may wish to ask the question: “What
is the expected time between the client performing a work activity and the client per-
forming a send activity given that the work activity occurs when the token process is
in state Token4?” This question may be of particular interest because it represents the
worst case scenario. We have shown that the overall performance in the general case of
the round-robin scheme is worse than that of the queue and random schemes. However
it may be that the round-robin scheme has less erratic performance in that it matters
less at what time the client becomes ready to use the shared resource. It may be that
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the worst case performance for the round-robin scheme is better than that for both the
queue and random schemes. This may be of particular interest in say a network, where
traffic can become congested at particular times and hence the worst case performance
is of more interest than the average case performance.

To write this exact query as a state-specification we must resort to specifying the
source set and the target set explicitly. This is because if we specify the states as a
passage-set it will include the states where the token is in places 1. . . 3, while the client
is still waiting. Clearly these states are reachable by a transition from a state outside
the passage-set. In fact specifying the passage-set in this manner would give identical
results to analysing the time the client must wait regardless of when the work activity
was completed. With this in mind our source and target sets for the round-robin model
worst case scenario are specified respectively by:

source : Wait = 1 ∧ Token4 = 1
target : Client = 1

Note however that it is a little unsatisfactory that we had to know so much about the
behaviour of the model. Even if one considers this a good thing – modellers should
know about the behaviour of their models – the query specification is very fragile in that
if we modify our model it is likely that this query specification must also be updated.
In addition the target set is larger than necessary. This will not affect the results of
the analysis but may cause the analysis time to increase. Again a very similar state-
specification can be used for the random model.

For the queue model worst case scenario analysis we can use our knowledge of the
system to make our state specification simpler than in the average case, this is because
there are fewer source states. Our state query is written as:

source : Client5 = 1
target : Client = 1

To write this query as an activity probe we must identify a sequence of activities
which will place the model in the source-set and the sequence of activities which will
complete the passage (from a source state). Specifying this using an activity probe
means that the query need not be split up. This is because the probe is in the abstract
running state only when it has passed through a source state. This means that we need
not split our specification into two separate ones however the drawback is that the state
space is increased. Our query for the round-robin model is specified by:

Client :: ((pass|send),work)/delay:start, send:stop
The (pass|send) component ensures that the token has moved to state Token4 before we
observe the work activity. By restricting the delay activity (with /delay) we assert that
the probe will not move past the start label unless the sequence ending with the work
occurrence does not contain a delay activity. This in turn ensures that the token is in the
state Token4 when the probe transitions to running. If a delay is observed this resets the
probe which must then wait to observe a pass or send once again.

The state space is increased because there are states in the passage which must be
duplicated. For example the state in which the token is in state Token3 and the client is
in state Wait is duplicated since the probe component may be in either the running or
the stopped state depending on whether the given state was reached via a source-state.
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For both the random model and the queue model specifying this condition as an ac-
tivity probe is particularly difficult. In the following section we detail a far more portable
and robust method of obtaining these analysis results, namely the use of eXtended Sto-
chastic Probes (the XSP language).

6 Using eXtended Stochastic Probes

In the previous section we discussed the two main methods for specifying a query-set.
Both have advantages and disadvantages and can be used in different circumstances.
We used these to obtain a passage-time analysis and then proceeded to split this into
distinct queries depending on the state of the model when the passage is begun. We
have shown that either of the two methods alone are sometimes unsatisfactory. In this
section we provide the same split queries using the combined approach, eXtended Sto-
chastic Probes. The following probe can be used on the round-robin model to analyse
the passage in the worst case when the token is as far away as possible.

Client :: {Token4 = 1}work:start, send:stop
This probe will only be started by an observation of the Client performing a work ac-
tivity if the token is currently in the state Token4. All other occurrences of the work
activity will be ignored.

To specify the same worst case scenario query for the queue we can specify the
extended probe:

Client :: {Queue4 = 1}work:start, send:stop
This specification works in exactly the same way. The only difference is the name of
the state of the resource in the worst case scenario. For the random model the probe is
exactly the same.

Without changing the models we can make additional queries corresponding to all
of the different possible states of the resource at the time at which the client becomes
ready to make use of the shared resource. In the case of the round-robin scheme this is
the different places that the token may be in. In the case of queue and random models
this is the length of the queue. We provide the probes:

Client :: {TokenN = 1}work:start, send:stop
Client :: {QueueN = 1}work:start, send:stop

The graphs in Figure 4 show the cumulative distribution and probability density func-
tions of the passage-time responses given by restricting the probe to the conditions of
the shared resource.

6.1 Discussion of Results

With the basic analyses we determined that the average case response-time was worst
for the round-robin scheme and very similar for the queue and random schemes. The
results for the individual circumstances for the round-robin and the queue models are
identical. This is because in both cases the number and rates of the timed activities
that we must observe between the source and target are identical for each equivalent
circumstance. For example when the queue is empty and the token is in the correct
place both models are only measuring one activity, namely the send activity. This tells
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Fig. 4. Graphs of the PDF and CDF functions for the split passage-time results for the three
models

us that the reason the average case is worse for the round-robin model is because the
unfavourable cases happen more frequently than for the queue model. This may only be
the case because of the particular rate values which we have chosen and we may wish
to change those rates to see if we could make the round-robin model outperform the
queue model (in the average case). Indeed one should perform these experiments with
varying rates for both models as we have previously done using a distributed computing
platform to analyse the separate instances of each model [14].

In the case of the random model we can see that although the average case perfor-
mance is very similar to that of the first-come, first-served queue the performance is
actually much less varied. This is because for each state of the queue at the time of the
client becoming ready to use the resource there are still more paths to the target states
over which to average out the performance. For example if the client becomes ready
when the queue is empty this is no guarantee that our client will be the next client to
use the resource. Similarly if the queue is full we may still be the next client to use the
resource. The random queue may have some other less desirable properties, for example
a client may wait in the queue while arbitrarily many other clients are processed ahead



138 A. Clark and S. Gilmore

of it. However our results show that – at least for the parameters we have specified – a
client is highly unlikely to spend a long time in the queue.

7 Conclusions

We have described an extension – eXtended Stochastic Probes – to the language of
stochastic probes. Our extension allows the modeller to refer to the states of components
which are located in a hierarchically-structured performance model expressed in the
stochastic process algebra PEPA.

We consider state-specifications alone to be insufficient since they cannot be used
to distinguish states based on the activities which have been performed to reach that
state. Sometimes to perform the desired analysis we must increase the state-space of
the model and state-specifications offer no way to do this automatically. Activity probe
specifications are also insufficient for all purposes and in particular are poor at describ-
ing states which represent a balancing of activities. This is a frequent kind of query such
as “how likely is the server to be operational?” which may be the result of a balance
of ‘break’ and ‘repair’ activities. Finally allowing either state specifications or activity
probes is still not an acceptable solution. Situations which call for a combination of
the two approaches arise when the modeller wishes to combine observations with state
descriptions. A common example of such a combination is to ask about the response
time when the request is made at a time when a particular system component is in a
particular (abstract) state. A standard query is: “What is the response time when at least
one of the servers is broken”.

We have shown an example consisting of three models describing similar scenarios
but each using different modelling techniques. In the round-robin and queue models
we have represented only the client component that we wish to analyse while in the
random model all of the clients in the system were represented explicitly. The queue
model makes use of immediate actions and functional rates. Despite this the extended
probe specifications we used to split-up our passage-time analyses were portable across
the three models.

Our language of extended probe specifications has been fully implemented in the
ipclib library used and distributed with the International PEPA Compiler. This is avail-
able for download as open source software from http://www.dcs.ed.ac.uk/pepa/
tools/ipc.

Acknowledgements. The authors are supported by the EU FET-IST Global Computing 2
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(IST-3-016004-IP-09)).
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A. The Full Queue Model

A.1. The Client Behaviour

This component represents the system workload.
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Client
def
= (work,work rate).ClientQ
+ (delay,�).Client

ClientQ
def
= place0.Client1 + place1.Client2 + place2.Client3
+ place3.Client4 + place4.Client5

Client1
def
= (delay,�).send.Client

Client2
def
= (delay,�).Client1

Client3
def
= (delay,�).Client2

Client4
def
= (delay,�).Client3

Client5
def
= (delay,�).Client4

A.2. The Queue Component

This model component has the responsibility of correctly implementing the intended
first-in first-out behaviour of the queue. It ensures that the functional rates are correctly
evaluated by counting the number (either 0 or 1) of components in the Client state.

Queue0
def
= ( join,work rate × 4).Queue1
+ place0.Queue1

Queue1
def
= ( join,work rate × (4 − Client)).Queue2
+ place1.Queue2
+ (delay, send rate).Queue0

Queue2
def
= ( join,work rate × (3 − Client)).Queue3
+ place2.Queue3
+ (delay, send rate).Queue1

Queue3
def
= ( join,work rate × (2 − Client)).Queue4
+ place3.Queue4
+ (delay, send rate).Queue2

Queue4
def
= ( join,work rate × (1 − Client)).Queue5
+ place4.Queue5
+ (delay, send rate).Queue3

Queue5
def
= (delay, send rate).Queue4

A.3. The System Equation

Finally, the model components are composed and required to cooperate over the activi-
ties in the cooperation set.

Client ��
L Queue0

where L = {delay, place{0..4}}
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