Scalable Analysis of Scalable Systems

Allan Clark, Stephen Gilmore, and Mirco Tribastone

The University of Edinburgh, Scotland

Abstract. We present a systematic method of analysing the scalabil-
ity of large-scale systems. We construct a high-level model using the
SRMC process calculus and generate variants of this using model trans-
formation. The models are compiled into systems of ordinary differential
equations and numerically integrated to predict non-functional proper-
ties such as responsiveness and scalability.

1 Introduction

Very often, our ability to build complex software systems outstrips our ability
to plan and carry out rigorous analysis which predicts the behaviour of these
systems under conditions of increasing load. This situation is unsatisfactory be-
cause it leads to systems being deployed in active use with no real assurance of
graceful degradation of service as the user population grows. Because we cannot
rely on them to provide service in times of greatest need, such systems are as
unreliable in practice as ones which contain programming errors.

The crippling blow which strikes when trying to scale discrete-state models to
represent user populations of significant size is the well-known problem of state-
space explosion. The discrete-state representation demands memory in quantities
which grow too quickly for us to be able to meet these demands for long. A bold
alternative is to abandon discrete-state representations and take our models
to the continuous-space world using fluid-flow analysis [I]. This allows us to
represent and analyse large-scale systems with modest requirements on memory
and time.

Modelling large populations of users is seldom the only difficulty which we en-
counter with large-scale systems. Scalable systems need to be resilient to changes
in the underlying operational conditions. For this reason they are often struc-
tured with critical services replicated on several hosts in order for the system to
continue to function when some of these hosts fail. It is very unusual indeed for
all of the hosts to have identical performance profiles. It is instead quite common
for them to be running different versions of the software services. Some will be
running an older version, others the latest. Some sites will have disabled certain
features, others not.

As if the above did not already give us enough challenges we also need to
address the issue that large-scale systems are dynamic. Hosts providing one
service may be taken down and redeployed to provide a different service. Some
hosts will fail and might not be replaced if they were thought to be underused.
New hosts will be sourced, purchased and brought online where the need is

M. Chechik and M. Wirsing (Eds.): FASE 2009, LNCS 5503, pp. 1[17]2009.
© Springer-Verlag Berlin Heidelberg 2009

2 A. Clark, S. Gilmore, and M. Tribastone

perceived to be greatest. We would like our modelling study and our analysis
results to be robust in the face of possible changes such as these.

In this paper we work with a process calculus which can be used for modelling
problems such as these. The Sensoria Reference Markovian Calculus (SRMC),
as described in [2], is a high-level modelling language which can be used for
quantitative analysis of systems from the small scale to the large scale. Small-
scale models in SRMC are mapped to continuous-time Markov chains and large-
scale models are mapped to systems of differential equations. The SRMC lan-
guage supports structured modelling via namespaces which accompany a novel
mechanism for specifying uncertainty about binding. This is used to represent
the inherent uncertainty about evaluation sites which is found generally in dis-
tributed computing and specifically in service-oriented computing where services
are replicated across several hosts to provide scalability and robustness. Model
transformations are used to capture changes in service administration leading to
new hosts being commissioned or old ones being decommissioned.

The SRMC language is supported by a framework for experimentation and
analysis which allows SRMC modellers to define their model together with
a set of transformations. Software tools for SRMC generate the instances of
the model which can be obtained through making different binding decisions.
Once these binding decisions have been made the models can be expressed in a

os)
Py
[

TIT I I
TT I

)
A
o
Py
X
o

os)
Py
&

s}
Py
&
os)
Py
o

us)
Py
o
os)
Py
&

I
A
o
k)
A
o

I
A
o
k)
A
o

os)
Py
o

I R I

Fig. 1. The evaluation model. The single SRMC model in the illustration above gives
rise to three PEPA models when possible bindings to services are considered. These
three PEPA models become nine when model transformations are applied. Each of
these nine models is evaluated between three and seven times in order to consider
all of the possible assignments of rate values to rate parameters. This leads to forty-
four systems of coupled ordinary differential equations in all and the same number of
runs of a fifth-order Runge-Kutta (RK5) numerical integrator. These solve the initial
value problem for each system of ODEs and give a time-series plot of the number
of components of each type in the SRMC model as a function of time up to a finite
time horizon. The results from these forty-four runs are combined to form the analysis
results for the SRMC model.

Scalable Analysis of Scalable Systems 3

simpler modelling language, Performance Evaluation Process Algebra (PEPA)
[34]. Variants of each of these PEPA models are obtained by applying the trans-
formations supplied. All models thus generated are evaluated for a range of nu-
merical parameter values and the results from the individual runs are combined
to deliver an evaluation of the model as a whole. Figure [illustrates the evalu-
ation model for SRMC.

The novel contribution of the present paper is the use of model transformation
to automatically generate a family of related models from a single SRMC source.
In addition, this paper presents the first application of the fluid-flow analysis
invented for PEPA to large-scale SRMC models. This latter innovation caused
us to develop a supporting software infrastructure for aggregating the analysis
results from the family of related models which we generate.

Structure of this paper: Section2lpresents our modelling concepts and introduces
the ideas behind the process calculus which we use. In Section [3] we describe the
features of the SRMC calculus and relate it to a simpler calculus without explicit
support for dynamic binding, PEPA. In Section 4 we present the language of
model transformations which we use. Our case study of a “virtual university”
is presented in Section Bl The results are in Section [B Software tool support
is crucial for generating models and for managing the experimentation process;
our software tools are described in Section [7l Section [describes related work
and Section [presents conclusions.

2 Modelling Concepts

We are concerned here with non-functional properties of systems, specifically
quantitative aspects such as performance. We investigate these properties using
high-level models built from model components.

Model components are of two kinds, behavioural and virtual. A behavioural
component cycles through a lifetime of timed activities offering sometimes only a
single possible next activity and sometimes a choice between several alternatives.
A virtual component does not perform activities but simply introduces a name
into the model which we can use when querying the model later.

The kind of analysis which we will perform on the SRMC models in this
paper tells us the expected number of behavioural components of every kind at
all points in time. The expectation of the virtual components can be calculated
from the expectations of the behavioural components by evaluating the defining
expressions of the virtual components.

Because our interest is in quantitative modelling our models will contain rates
and probabilities. Because we deal with large-scale systems with replicated com-
ponents we also have arrays of behavioural components. For example, if C' is
a component then C[15] is an array of fifteen independent copies of this com-
ponent. We use these arrays to represent capacity (e.g. a pool of servers) or
workload (e.g. a population of clients).

Our models will contain two kinds of numerical parameters, certain and un-
certain. Certain parameters are bound to a single value: uncertain parameters

4 A. Clark, S. Gilmore, and M. Tribastone

are bound to a set of possibilities. An uncertain parameter which is a probability
might be bound to {0.4,0.5,0.6}, meaning that we should consider each of the
elements of this set as a possible value for the parameter. Rates may be uncer-
tain also, as may array sizes. Binding sites may be uncertain, and we choose one
from a set of behavioural components.

We use model transformation to generate a family of related models from a
single SRMC model. We think of these as plausible modifications of the orig-
inal system which represent what the system might become after foreseeable
reconfiguration or maintenance. Each of these generated models is “close” to the
original model in the sense that they can be obtained by the application of a
single transformation drawn from a set of possible transformations.

3 The Calculus

We work with the Sensoria Reference Markovian Calculus (SRMC), as described
in [2]. SRMC allows modellers to structure their models using namespaces, sep-
arating components which have similar structure. To illustrate the SRMC lan-
guage we will give an example of a simple system which consists of a process
accessing one of two disks, 4 or B.

We first describe disk A which has occasional failures and has just two states,
failed and working. When failed the disk must be repaired before more data can
be read or written. Reads and writes are thought to be nearly equally likely:
the probability that the I/O operation is a read is p,.. Failures occur somewhere
between once every thousand disk operations (py = 0.001) and once every two
hundred (py = 0.005). We will consider three sample values in this range. Rates
A and p dictate the rates at which repairs and reads and writes take place.
Disk A would be described in the SRMC syntax as shown below.

DiskA::{
lambda = 0.3; mu = 1400; // rates
p_.r = { 0.4, 0.5, 0.6 }; // probability of a read
p_f = { 0.001, 0.003, 0.005 }; // probability of failure
Failed = (repair, lambda).Working;
Working = (read, (1 - p_f) * p_r * mu).Working
+ (write, (1 - p_f) * (1 - p_r) * mu).Working
+ (fail, p_f * mu).Failed;
Unavailable = [Failed];
};

This namespace has two behavioural components, Failed and Working and one
virtual component Unavailable. The virtual component introduces the concept
of “unavailability” to our model. In this case a disk is unavailable only if it has
failed.

We can think of the above as a high-level schema representing nine concrete
models differing only in the values assigned to the probabilities p, and ps. In the

Scalable Analysis of Scalable Systems 5

first of the concrete models p, has the value 0.4, and py is 0.001. In the ninth p,.
is 0.6, and py is 0.005. In between all of the other possible assignments of values
to p, and py have been enumerated.

Disk B is slower than disk A. Failures occur more frequently and they take
longer to repair. In addition disk B has a sleep mode which it enters to save
power. The SRMC description is below.

DiskB::{
lambda = 0.1; mu = 1200; // lower rates for the slower device
={0.4, 0.5, 0.6 }; // same probability of a read
= { 0.01, 0.03, 0.05 }; // higher probability of failure
gamma = 0. 001 delta = 0.001; // rates for sleep and wake
Failed = (repair, lambda).Working;
Working = (read, (1 - p_f) * p_r * mu).Working
+ (write, (1 - p_f) * (1 - p_r) * mu).Working
+ (fail, p_f * mu).Failed
+ (sleep, gamma).0ffline;
Offline = (wake, delta).Working;
Unavailable = [Failed + Offline];
};

This too is a high-level schema representing nine concrete models. However, it
introduces a different notion of unavailability. Here a disk is unavailable if it
has failed or is offline. The virtual component Unavailable is defined to be the
arithmetic sum of the number of disks which have failed plus the number of
disks which are offline. Notice that the symbol “+” is overloaded in SRMC. In a
behavioural component “+” denotes choice. In a virtual component “+” denotes
arithmetic sum. Here we will add the expected number of failed disks and the
expected number of offline disks to get the expected number of unavailable disks.
Virtual components are syntactically distinguished because they consist of a
defining expression enclosed in square brackets.

The disk which is in use in the system is either disk A or disk B. To de-
scribe this in SRMC we introduce another namespace, Disk which can stand for
either A or B.

Disk::={ DiskA, DiskB };

The top-level composition of components in our example here introduces a com-
putational process which reads and writes. The disk which is used is initially in
its working state.

System = Process::Idle <read, write> Disk::Working;

In all this SRMC model represents eighteen simpler concrete models. In nine
of these disk A is being used. In the other nine disk B is being used. In eval-
uating this SRMC model we separate out two groups of models. In the first of
these disk A is being used, and disk B is not represented at all—the top-level
composition evaluates to Process: :Idle <read, write> DiskA: :Working and

6 A. Clark, S. Gilmore, and M. Tribastone

the entire DiskB namespace is discarded. In the second group of models disk B
is being used and disk A is not represented at all—the top-level composition
becomes Process: :Idle <read, write> DiskB: :Working and the entire DiskA
namespace is discarded.

We then perform a parameter sweep across the possible assignments of values
to model parameters in each group. This will require us to evaluate the version
of the model with the main disk nine times, and the version of the model with
the spare disk nine times also. Finally, we combine the results.

It is important to understand that the model configuration is fixed during
model evaluation. That is, we will investigate the behaviour of the model up to
a finite time horizon and during this time interval the model configuration will
not change. This ability to divide the initial SRMC model up into a collection
of simpler static models is an important factor in making our analysis scale to
large models.

The simpler models which are generated in the parameter sweep which is
performed after resolution of binding do not have namespaces and do not have
uncertain parameters. The consequence of this is that they can all be expressed
in Performance Evaluation Process Algebra (PEPA) [3/4]. PEPA has both a
discrete-state stochastic Markovian semantics [5] and a continuous-state sure
differential equation semantics [I]. We have considered the evaluation of SRMC
models using the Markovian semantics for PEPA in an earlier paper [2] and we
use the differential equation semantics here because our concern is with evalu-
ating large-scale systems with many users and many replicated services.

Once all of the separate instances of the generated PEPA models have been
analysed we collate the results into what is now a database of results. This
database can be used to select and display various results from results relating
to a single configuration or subset of all configurations to results pertaining to
the entire results space. The latter allows such queries as: “What is the worst
case scenario of long term expected number of unavailable disks” and “Give
a listing of all configurations which fail to satisfy a given throughput of read
operations”.

4 Model Transformation

The previous section relates the process of numerically evaluating an SRMC
model. This included generating PEPA models after resolving dynamic binding.
However, we also wish to investigate related models, reachable by an application
of a model transformation, in order to incorporate possible changes which may
occur. The grammar in Figure 2l defines transformation rules. The description
presented here is sufficiently general that it may be applied at either the SRMC
or the PEPA level.

A rule is specified by providing a pattern which should match some subcom-
ponent of the model and a corresponding replacement, which is syntactically
also a pattern. A transformation rule may contain pattern variables denoted by
a question mark followed by a name. A pattern variable will match anything

Scalable Analysis of Scalable Systems 7

rule = pattern==>pattern rules
pattern = Tname variable
| name named
| pattern <activities> pattern cooperation
| pattern [sizel (Lactivities]) array
activities := (?name,)name” concrete activities
size = 7Tname variable
| integer constant
| size binop size binary op
binop = 4| x|+ operators

Fig. 2. The grammar for transformation rules. The names which appear in the patterns
are component identifiers. The names which appear in activity sets are activity names.
The names which are used in size expressions denote the integer values which are used
in dimensioning arrays of components.

which may appear in the given position, so when it occurs in the place of a
component then it will match any component. If the replacement refers to a
pattern variable then whatever was matched against is inserted at that place in
the replacement.

A list of activities may contain a pattern variable together with several other
concrete activity names. If this is the case the pattern variable is set to those
names which are not given concretely, however we only match the given set of
activities if the concrete activities are contained within the set.

The transformation P <a> Q ==> P <a,b> Q adds activity b to the cooper-
ation set. This rule uses no pattern variables and so will only match against
the cooperation P <a> Q. Generally pattern variables are used as 7Q here in the
rule P <a> ?7Q ==> P <a,b> 7Q. This will match the cooperation of P with any
component including one which is itself a cooperation or a component array.
Here we match against two cooperating arrays of P and Q components, remove
one P and add a Q instead: P[?m] <a> Q[?n] ==> P[?m - 1] <a> Q[?n + 1].

This style of pattern matching is used with redeployable components where we
wish to analyse our system with different numbers of components deployed in
each role. For example, file servers may be redeployed as web servers. However
the pattern more commonly abstracts over the cooperation set as in the pattern:
P[?m] <7a> Q[?n] ==> P[?m - 1] <7a> Q[?n + 1].

Finally a common pattern is to remove some activities from a cooperation
set. The following pattern matches any component cooperating with a P com-
ponent over the activity b and removes it from the cooperation set allowing the
P component (and the other cooperating component) to perform the activity b
independently. Note though that any other activities in the cooperation set are
preserved. This is written as P <?a, b> 7Q ==> P <7a> 7Q.

5 Case Study

To illustrate the above ideas we consider as an example a distributed e-learning
and course management system. The system is to allow students to enrol in

8 A. Clark, S. Gilmore, and M. Tribastone

courses even when studying remotely. One of the quantitative issues of concern
here is whether or not the system will scale well enough to cope with increased
demand from a larger population of student users.

5.1 The Servers

In this example we consider a fictional virtual university which has two university
sites in the University of Edinburgh and Imperial College, London. Each site
has an HTTP server where students can download course materials, multimedia
content, and other courseware. Each has an FTP server where students can
upload project materials and coursework for assessment. The HTTP and FTP
servers may fail independently and, because each is running other services as
well, availability of the servers varies.

Edinburgh: :{
mu = 0.0001; gamma = 0.125; // rates of fail and repair
avail = {0.6,0.7,0.8,0.9,1.0}; // availability of the server
phi = 10.0; psi = 7.0; // rates for download and upload

// The HTTP serwver
Http::{
Idle = (download, avail * phi).Idle
+ (fail, mu) .Broken;
Broken = (repair, gamma).Idle;

};

// The FTP server
Ftp::{
Idle = (upload, avail * psi).Idle
+ (fail, mu) .Broken;
Broken = (repair, gamma).Idle;
};
};

The servers at Imperial are similar in functionality to those in Edinburgh however
they differ in their performance characteristics, specifically with respect to the
rates at which failures occur and the rates at which downloads and uploads
oceur.

Imperial::{
mu = 0.006; gamma = 0.125; // failures are more likely
avail = {0.6,0.7,0.8,0.9,1.0}; // availability is the same
phi = 20.0; psi = 15.0; // download and upload are faster

// The HTTP server
Http::{
Idle = (download, avail * phi).Idle

};

Scalable Analysis of Scalable Systems 9

+ (fail, mu) .Broken;
Broken = (repair, gamma).Idle;

};

// The FTP server
Ftp::{
Idle = (upload, avail * psi).Idle
+ (fail, mu) .Broken;
Broken = (repair, gamma).Idle;

};

Of course further servers may be added, in our results given in Section [0 we
added a further server which fairly services both HTTP and FTP requests at
the same rate.

5.2 The Clients

We characterise different types of user of the system. The first, Harry, connects
relatively frequently, and uploads or downloads once each session.

Harry::{

};

connect_rate = { 0.01, 0.02, 0.03 };
disconnect_rate = 1.0;

download_rate = { 0.01, 0.02, 0.03 };
upload_rate = 1.0;

Idle = (connect, connect_rate / 2).Upload

+ (connect, connect_rate / 2).Download;
Upload = (upload, upload_rate).Disconnect;
Download = (download, download_rate).Disconnect;
Disconnect = (disconnect, disconnect_rate).Idle;
Uploading = [Upload];
Downloading = [Download];
Inservice = [Uploading + Downloading];

The second type of user, Sally, connects relatively infrequently and downloads
more than uploading.

Sally::{

connect_rate = { 0.009, 0.0095, 0.01 };
disconnect_rate 0.5
download_rate 0.0

= , 0.02, 0.03 };
upload_rate = 0.

{
2;

)

10 A. Clark, S. Gilmore, and M. Tribastone

Idle = (connect, connect_rate / 3).Upload
+ (connect, connect_rate / 3).Downloadl
+ (connect, connect_rate / 3).Download2 ;
Upload = (upload, upload_rate).Disconnect;
Downloadl = (download, download_rate) .Download2;
Download2 = (download, download_rate).Disconnect;
Disconnect = (disconnect, disconnect_rate).Idle;

Uploading = [Upload];
Downloading = [Downloadl + Download2];
Inservice = [Uploading + Downloading];

};

As with the servers further clients may be added as required, in our results
we added a further client who was likely to perform either two uploads or two
downloads with each connection.

5.3 The Model Configuration
The clients are either like Harry or like Sally.
Client::= { Harry, Sally };

The HTTP server which is used is either the Edinburgh server or the Imperial
server, and analogously for the FTP servers.

Http::
Ftp ::

{Edinburgh: :Http, Imperial::Http};
{Edinburgh: :Ftp, Imperial::Ftp };

There are between three and six servers at each site. Each server has an allocation
of twenty threads to offer. There is a very large pool of clients.

servers = {3, 4, 5, 6};

threads 20;
clients 100000;

The entire model consists of an array of clients uploading and downloading from
an array of servers, with multiple threads on each.

Client::Idle[clients] <download, upload>
(Http::Idle[servers * threads] ||
Ftp::Idle[servers * threads])

5.4 Transformations

The transformations used in this model relate to the redeployment of a server.
This means that a server currently being used as an HTTP server can be rede-
ployed as an FTP server or vice-versa. We use this to test a particular service
configuration’s ability to adapt to varying client behaviours. Recall that one con-
figuration is a set of name space choices. In our given example this means that

Scalable Analysis of Scalable Systems 11

one particular configuration is a selection of a university to supply the HTTP
server, a university to supply the FTP server and finally a client representing
average client behaviour. Here we call a service configuration the part of the
configuration which specifies the two servers in use.

One such configuration is Edinburgh, Imperial and Harry. Suppose we mea-
sure this and we find that the average number of waiting clients is acceptably low,
but in the configuration Edinburgh, Imperial and Sally where we have changed
the client behaviour the system behaves poorly. We may see that it behaves
poorly because the uploading clients are not serviced fast enough. In practice
if such a situation arose one response would be to redeploy one of the HT'TP
servers as an FTP server. For each configuration, which corresponds to a single
PEPA model, we use transformations to obtain three PEPA models; the base
configuration model, the model with one HTTP server redeployed as an FTP
server and the model with one FTP server deployed as an HTTP server. The
first transformation would tell us how the system behaves in the configuration
Edinburgh, Imperial and Sally, with one HTTP server redeployed as an FTP
server. Without this transformation we noted that the performance was poor
because uploading clients were not serviced often enough, with this transforma-
tion though it may be that the system performs satisfactorily. In this case we
would know that the system configuration is robust with respect to changing
client behaviour and thus the system may be recommended. The transformation
rule used to obtain this is:

Http::Idle[?m * threads] || Ftp::Idle[?n * threads] ==
Http::Idle[(?m - 1)*threads] || Ftp::Idle[(?n + 1)*threads]

and similarly for redeploying in the reverse direction.

5.5 Lazy Results

In the example case study we have used a strict semantics for results genera-
tion, that is; all the results were computed before any were viewed by the user.
However an alternative semantics allows the user to generate only those results
which are inspected. In the previous example scenario in which the configuration:
Edinburgh, Imperial and Sally under-performed because the uploading clients
were not serviced enough we would be unlikely to inspect the result obtained
by applying the transformation which redeploys an FTP server as an HTTP
server since this would only exacerbate the situation. In this case we could avoid
computing all the results associated with that particular model — there are more
than one set of results for each model because the model is solved several times
corresponding to the varying rates used within that model instance. Lazy results
can help in the development of a model since often only a small set of the results
are viewed between each update of the entire model. However lazy results are
limited to local obervations, that is results which only depend on a subset of
the entire results space. Many results such as overall average response-time or
worst-case scenario depend on all of the results and in these case lazy results
will behave in the same way as strict results.

12 A. Clark, S. Gilmore, and M. Tribastone

6 Results

We analysed our model on a typical desktop computer. In our first run we
analysed over 1000 configurations within fifteen minutes. In our second run we
increased the variability of the rates involved and performed over 4500 in six
hours. Figure 3 provides a selection of the graphs which were generated from the
second run.

The main result metric we used was the measure of the expected number
of clients currently in the proceess of uploading, downloading or either of the
two. We term this in service. This gives us a measure of how many are gener-
ally competing for the resources of the servers and — in combination with the
throughput of download/upload events — how long each client can expect to wait
to be served.

Graph (a) plots for a single configuration the number of clients in service
against time. Fach line corresponds to a single permutation of the variable rates
which are used with the particular configuration (Edinburgh, Edinburgh and
Harry), without any redployment of servers. We see that in the long run the
expected number of clients waiting varies from just over thirty thousand to over
eighty thousand of a total of one hundred thousand users. This shows that there
is substantial variation in system performance caused only by varying the rates
within a single configuration.

In graphs, (b), (c) and (d) respectively we have plotted for a single configu-
ration the effect that redeploying a server has on the number of clients either
uploading, downloading or either of the two. These three graphs all refer to the
first configuration (Edinburgh, Edinburgh and Harry). In the graphs (b) and
(c) it is shown that redeployment gives a large benefit to the recipient of the
redeployment. So in the case that an HTTP server is redeployed as an FTP
server the number of currently uploading clients (in graph (b)) falls almost to
zero. Whereas redeployment of an FTP server reduces the number of currently
downloading clients (graph (c)). In this particular configuration we note that re-
deploying an FTP server has only a small benefit to the number of downloaders
since this is low anyway (the red/middle line in graph (c)). However redeploy-
ing an HTTP server has a large benefit in reducing the number of uploaders
(the blue/bottom line in graph (b)). Finally from graph (d) we see that either
redeployment increases the total number of in service clients for this particu-
lar configuration. However this is not always the case as in graph (e) in which
the configuration (Edinburgh, Imperial and Sally) is considered the number of
overall in service clients reduces when an FTP server is redeployed.

The graphs (f), (g) and (h) plot the experiment number against the total
number of clients in service, uploading and downloading respectively. In each
graph the experiments which correspond to an initial configuration (without
any redeployment of servers) are shown in red on the left. The experiments in
which the configuration has been altered by redeploying an FTP server as an
HTTP server are plotted in green (in the middle) and finally those in which an
HTTP server has been redeployed as an FTP server are plotted on the right in
blue. From graph (f) we see that the redeployment of a server has a relatively

Scalable Analysis of Scalable Systems 13

minor effect on the total number of clients in service. Redeploying an FTP server
does worsen both the worst case scenario and the best case scenarios and in
general decreases the performance by our metric — though not for all individual
configurations as we have already seen from graph (e). Redeploying an HTTP
server actually gives better worse and best case scenarios but performance in
the general case is mildly impaired. From graphs (g) and (h) we see that the
redeployment of a server generally has the intuitive effect. That is if we redeploy
an FTP server the number of clients downloading decreases while the number
of clients uploading increases and vice-versa. However it is encouraging to note
that there are some configurations in which the redeployment of an FTP server
still results in very low numbers of uploaders and conversely the redeployment
of an HTTP server still results in very low numbers of downloaders.

7 Software Support

The software support which is available for SRMC has its basis in the parameter
sweep developed for PEPA [6] and implemented in IPC [7]. We use the Pepato
library of the PEPA Eclipse Plug-in Project [8] to compile our generated PEPA
models to systems of ODEs. The Pepato library gives us access to differential
equation integrators [9T0]. The model transformation engine used for our process
algebra models was developed for the present work. The software used here is
available for download from http://groups.inf.ed.ac.uk/srmc.

8 Related Work

We have considered the distributed e-learning and course management system
example previously. In [2] we considered the problem of how service-level agree-
ments can be evaluated for service-oriented systems at all. In [TIIT2] we consid-
ered the scalability of such a system in the absence of possible modifications as
generated through model transformation.

Considering the method of evaluation rather than the example, the quantita-
tive modelling approaches which seem similar to ours in spirit are PEPA itself,
stochastic Petri nets, and PRISM model-checking. We consider each of these in
turn, giving attention to the way in which parameters can be varied, the type of
results which can be computed, and the query languages which are available to
query models.

PEPA Eclipse Plug-in. The analysis paradigm for PEPA as supported by the
PEPA Eclipse Plug-in [8] is that we have a single model with rates which can
be varied using the experimenter of the Plug-in. Models can be evaluated
to determine utilisation, throughput and many other criteria. Queries are
expressed using state filters.

IPC. The paradigm for PEPA supported by IPC [7] is that we have a single
model and rates defined in the model can be overridden at evaluation time.
Models can be evaluated to determine transient or steady-state behaviour.

http://groups.inf.ed.ac.uk/srmc

14

Number Inservice

Number Downloading

Number Inservice

Uploading

A. Clark, S. Gilmore, and M. Tribastone

Edinburgh-Http, Edinburgh-Ftp, Harry

90000 T T T T T
80000
70000
60000
50000
40000
30000
20000
10000
0
[200 400 600 800 1000 1200
Time
(a)
Http, Ftp, Harry, D
80000
neutral
redeploy ftp
70000 redeploy http
60000 1
50000 1
40000 & 1
30000
20000
10000
0
0 200 400 600 800 1000 1200
Time
(c)
Edinburgh-Http, Imperial-Ftp, Sally, Inservice
90000
80000 1
70000 1
60000 1
50000
. s
40000 e 1
30000 1
20000 1
neutral
10000 redeploy ftp 1
o redeploy http -
0 200 400 600 800 1000 1200
Time
(e)
100000 T T y T T T T T T
90000 sk S x E
80000 e Mot)]
v P o g et
70000 | <+ v+ o+ o4+ e x0T 1
N T 0 s coimbes opige
60000 [+t s P i ,
B ,,&xtsg&n;»&f;,
50000 [+ w & o+ie)&g,*§ %]
a0000 22t T R SRR]
30000 [+ ¢ E o GG Rk]
bt T e .
20000 T ‘ii’”"‘x.;‘fé’yj?ix —
ey Mo e % oo x| . N
10000 |- TR T
[
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Experiment Number

()

Number Uploading

Number Inservice

In service

Downloading

Edinburgh-Http, Edinburgh-Ftp, Harry, Uploading

80000 T T T T T
A
70000 - e
60000 |
50000 *
40000
30000 o
20000 [. —
L neutral
10000 redeploy ftp -
o redeploy http -
[200 400 600 800 1000 1200
Time
Edinburgh-Http, Edinburgh-Ftp, Harry, Inservice
90000
L - JNT—
80000 i B
70000 i
60000
50000 | I
40000
30000
20000 1.
neutral
10000 redeploy fip +
o . . redeploy http
[200 400 600 800 1000 1200
Time
100000 T T y T T T T T T
o A X X X
90000 - oo v e Y
205 52 2 PR
80000 |° T AR L
LT s T AL ety
70000 om0 T o
60000 ;f "&MW%N?‘
b . . w xx
50000 l 7
& okt | S i
40000 [I o1 Sl *““"”} R
e o
30000 gl IS —
o e x -
20000
B
10000
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Experiment Number

100000
90000
80000

70000
60000
50000

40000

A T A WY
30000 :M“ e xmm e *"...:.’;* P—
20000 = W ooy

10000 f;

0

0 500

1000 1500 2000 2500 3000 3500 4000 4500
Experiment Number

(h)

Fig. 3. Selection of generated graphs

Scalable Analysis of Scalable Systems 15

Passage-time quantiles are computed. Queries are expressed in the language
of eXtended Stochastic Probes (XSP) [13].

PIPE and PQE. Generalised Stochastic Petri net (GSPN) models are sup-
ported by the PIPE editor [14]. Here a single model with fixed rates is evalu-
ated against many criteria. Queries are expressed as Performance Trees [15]
built graphically in the Performance Query Editor (PQE) module for PIPE.

PRISM. The PRISM model-checker supports a language of reactive modules
[16] together with a rich reward language. Queries are expressed in Contin-
uous Stochastic Logic (CSL) [I7]. Experimentation is supported by leaving
constants in the model or the CSL formula undefined until the time of eval-
uation.

9 Conclusions

We have placed the emphasis here on modelling rather than models, and on
evidence rather than fact. We start from a position of uncertainty about the
configuration of the computational framework and consider a family of related
models in an attempt to understand the sweep of possibilities. We believe that
this position is a realistic one. In service-oriented computing the critical services
are replicated across hosts so we have a choice of service instances, possibly mod-
ified by system administrators, performing at different rates. For these reasons,
the SRMC calculus provides support for namespace selection, model transfor-
mation, and parameter sweep.

Model transformations work at the level of the PEPA model and can therefore
be deployed as a means of analysing possible changes in one particular model.
In this work we have used the ability to specify generic transformations in order
to apply such a transformation to a large range of PEPA models generated from
our SRMC model.

Collating results allows us to answer questions of a general nature about all
configurations. In our case study there were few general statements that could
be made because the transformations and rate variations provided substantial
changes in performance. This is in itself a useful fact, that the system under
consideration is sensitive to modifications in the running conditions. However
we were able to ascertain worst and best case scenarios for the average number
of currently downloading and currently uploading clients. Of particular note was
that the number of waiting uploading clients can be all but eliminated through
the redeployment of an HT'TP server regardless of the initial configuration. We
also saw that in general the redeployment of a server would most often benefit
one kind of user (say uploaders) at the cost of denying some service capacity
to the other (downloaders). This was also shown by the fact that the number
of clients in service either as an uploader or a downloader was relatively less
affected by redeployment of servers.

Model evaluation must be rapid to support the investigation of many alter-
native models. Fluid-flow analysis allows us to obtain meaningful results from a
large family of models, at low computational cost. The result from a fluid-flow

16 A. Clark, S. Gilmore, and M. Tribastone

analysis performed by numerically integrating a system of ordinary differential
equations is precise and definitive. We need to evaluate our system of ODEs only
once, not many times as would be needed for simulation models. This supports
the scalability of our analysis: running many models once is feasible, running
many models many times is less so.

Because fluid-flow analysis does not use a representation of the discrete state-
space of the system we are not crippled by the state-space explosion problem,
unlike any analysis which is based on continuous-time Markov chains. By build-
ing on the foundation provided by fluid-flow analysis and creating software tools
which automate the generation of models by model transformation and the quan-
titative evaluation of these we hope to provide a strong basis for scalable analysis
of scalable systems.

Acknowledgements. The authors are supported by the EU FET-IST Global
Computing 2 project SENSORIA (“Software Engineering for Service-Oriented
Overlay Computers” (IST-3-016004-1P-09)).

References

1. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Sec-
ond International Conference on the Quantitative Evaluation of Systems, Torino,
Italy, pp. 33-43. IEEE Computer Society Press, Los Alamitos (2005)

2. Clark, A., Gilmore, S., Tribastone, M.: Service-level agreements for service-oriented
computing. In: Montanari, U., Corradini, A. (eds.) Proceedings of the 19th Interna-
tional Workshop on Algebraic Development Techniques (WADT 2008), Pisa, Italy.
LNCS. Springer, Heidelberg (2008)

3. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

4. Hillston, J.: Tuning systems: From composition to performance. The Computer
Journal 48(4), 385-400 (2005); the Needham Lecture paper

5. Hillston, J.: Process algebras for quantitative analysis. In: Proceedings of the 20th
Annual IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 239-248.
IEEE Computer Society Press, Chicago (2005)

6. Clark, A., Gilmore, S.: Evaluating quality of service for service level agreements.
In: Brim, L., Leucker, M. (eds.) Proceedings of the 11th International Workshop
on Formal Methods for Industrial Critical Systems, Bonn, Germany, pp. 172-185
(August 2006)

7. Clark, A.: The ipclib PEPA Library. In: Harchol-Balter, M., Kwiatkowska, M.,
Telek, M. (eds.) Proceedings of the 4th International Conference on the Quantita-
tive Evaluation of SysTems (QEST), pp. 55-56. IEEE, Los Alamitos (2007)

8. Tribastone, M.: The PEPA Plug-in Project. In: Harchol-Balter, M., Kwiatkowska,
M., Telek, M. (eds.) Proceedings of the 4th International Conference on the Quan-
titative Evaluation of SysTems (QEST), pp. 53-54. IEEE, Los Alamitos (2007)

9. Ascher, U.M., Ruuth, S., Spiteri, R.: Implicit-explicit Runge-Kutta methods
for time-dependent partial differential equations. Applied Numerical Mathemat-
ics 25(2-3), 151-167 (1997)

10. Dormand, J., Prince, P.: A family of embedded Runge-Kutta formulae. Journal of
Computational and Applied Mathematics 6(1), 19-26 (1980)

11.

12.

13.

14.

15.

16.

17.

Scalable Analysis of Scalable Systems 17

Gilmore, S., Tribastone, M.: Evaluating the scalability of a web service-based dis-
tributed e-learning and course management system. In: Bravetti, M., Nafez, M.,
Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 214-226. Springer, Hei-
delberg (2006)

Bravetti, M., Gilmore, S., Guidi, C., Tribastone, M.: Replicating web services for
scalability. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp.
204-221. Springer, Heidelberg (2008)

Clark, A., Gilmore, S.: State-aware performance analysis with eXtended Stochastic
Probes. In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS, vol. 5261, pp. 125-140.
Springer, Heidelberg (2008)

Bonet, P., Lladé, C., Puijaner, R., Knottenbelt, W.J.: PIPE v2.5: A Petri net tool
for performance modelling. In: 23rd Latin American Conf. on Informatics (CLEI
2007) (September 2007)

Suto, T., Bradley, J.T., Knottenbelt, W.J.: Performance Trees: A new approach
to quantitative performance specification. In: MASCOTS 2006, 14th International
Symposium on Modelling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, pp. 303-313 (August 2006)

Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441-444. Springer, Heidelberg (2006)

Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Software Eng. 29(7), 1-18 (2003)

	Scalable Analysis of Scalable Systems
	Introduction
	Modelling Concepts
	The Calculus
	Model Transformation
	Case Study
	The Servers
	The Clients
	The Model Configuration
	Transformations
	Lazy Results

	Results
	Software Support
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

