
Feature Interaction in PEPA

Stephen Gilmore† Jane Hillston
Laboratory for Foundations of Computer Science

Department of Computer Science
The University of Edinburgh

May 13, 1998

Abstract

We consider the feature interaction problem in the context of the
use of the PEPA stochastic process algebra. We introduce a notation
for characterising a class of features and discuss its implementation.

1 Introduction

The feature-oriented approach to the specification and design of complex
software systems offers great promise. The idea of a system which has been
built by composing a number of well-engineered features appeals to both
system designers—who are concerned with a compositional or structured
approach to the construction of a system—and to system users—who wish
to learn and understand complex systems in terms of substantive concepts.
The widespread acceptance of the importance of features makes them a very
desirable concept to build into a specification language since one of the uses
of a specification language can be to provide a common working language
between designers and users.

The feature interaction problem is concerned with the unexpected con-
flicts which can arise when a new feature is added to a system. Complex
designs of all kinds can give rise to surprising interactions between fea-
tures but the problem has been most intensively studied in the domain of
telecommunications systems engineering. Modern network designs known as
intelligent networks or active networks are presenting significant feature in-
teraction problems [1]. Feature interaction is the subject of an international
workshop [2, 3].

†Corresponding Author: Laboratory for Foundations of Computer Science, Depart-
ment of Computer Science, The University of Edinburgh, James Clerk Maxwell Building,
Mayfield Road, Edinburgh EH9 3JZ, Scotland. Telephone: +44 131 650 5189. Email:
stg@dcs.ed.ac.uk

1

What is a feature? The term does not have an accepted definition but
we could characterise a feature as being a significant aspect or property
of the system which could be used to compare this one to another. Most
importantly, features are qualities which can interact and which can be
measured. Features are not exclusively the province of telecommunications
systems, both software and software-controlled systems have features which
can interact. Taking the example of a lift system one would note that it
has both behavioural features such as giving priority to requests from the
executive floor and performance features such as average wait after pressing
the call button. Our motivation for making this classification is so that we
are able to consider the interaction of these two types of features.

The average waiting time for a lift is a measure of its quality of service.
These types of measurements are a routine part of the assessment of the
complex telecommunications networks which have fuelled the study of the
feature interaction problem. Thus, to consider only behavioural features in
this context with no regard for performance ones seems to us to only be in-
creasing the likelihood of the sort of problems which happen whenever a be-
haviourally acceptable feature makes unreasonable demands on the system’s
performance. The problem of ensuring acceptable service in an increasingly
sophisticated environment is a problem for present day telephony and, along
with feature interaction, ensuring quality of service has been identified as a
significant problem in the design of the next generation of networks [4].

The necessity of describing qualitative and quantitative information to-
gether leads us to judge unified notations for qualitative and quantitative
modelling to be well suited to the analysis of the feature interaction problem.
Examples of such unified notations include stochastic extensions of process
algebras (such as PEPA [5]), stochastic extensions of Petri nets (such as
GSPN [6]) or stochastic automata [7]. The feature interaction problem also
provides a good setting for exemplary use of these formalisms. This arises
because a significant difficulty in all quantitative modelling is the acquisition
of reliable data about the duration of the significant activities of the system.
This data must be accurate because it will be used in the calculation of per-
formance measures of the system and the conclusions which are drawn from
these calculations could be misleading if the data is inaccurate. However, in
the context of the feature interaction problem we are considering the addi-
tion of a feature to an existing software system. In this setting we are able
to monitor the system and acquire accurate performance data to be used in
the calculations of performance measures before and after the new feature is
added. In this way we can ensure the safe interplay of the new behavioural
feature and the existing performance ones.

2

2 Structure of this paper

In the next section we give a very brief summary of the PEPA language and
motivate the need for a formal notation for describing performance features
of a PEPA model. We provide only a very brief summary of PEPA here: the
reader should consult [5] for full details. In Section 4 we introduce a simple
notation for describing performance features and in the following section
we extend it to allow the description of more sophisticated measures. In
Section 6 we show how the satisfaction of these performance measures can
be established through the entension of the model with testing components.
Conclusions and future directions for the work are at the end of the paper.

3 Relating features to a PEPA model

PEPA (Performance Evaluation Process Algebra) extends classical process
algebra with the capacity to assign rates to the activities which are described
in an abstract model of a system. It is a concise formal language with a
small number of grammar rules which define the well-formed terms in the
language. An activity of action type α performed at rate r preceding P is
denoted by (α, r).P . Using the symbol > instead of a rate denotes passive
participation in a shared activity. Choices are separated by +. Cooperation
between P and Q over L is P ¤¢

L
Q or P ‖ Q if L is empty. Hiding the

activities in L is P/L. The notation for definitional equality is def=. The
syntax may be formally introduced by means of the following grammar:

S ::= (α, r).S | S + S | CS
P ::= P ¤¢

L
P | P/L | C

where S denotes a sequential component and P denotes a model component
which executes in parallel. C stands for a constant which denotes either a
sequential or a model component, as introduced in a definition. CS stands
for constants which denote sequential components. The effect of this syntac-
tic separation between these types of constants is to constrain legal PEPA
components to be cooperations between sequential processes. PEPA is a
high-level notation for Markov modelling because it is possible to gener-
ate directly from a PEPA model a continuous-time Markov process which
faithfully encodes temporal aspects of the PEPA model.

One reason to fix on a formal notation for a task such as performance
modelling is to avoid misunderstanding and misinterpretation of a model. Of
course, even when a notation is carefully defined, as PEPA is, there may still
be errors of misrepresentation of parts of the system within the model but
all of the users of the model can at least agree on the correct interpretation
of a given model through recourse to the formal definition of the language.
However, when we come to undertake a careful consideration of features of

3

a model we see that we now have a need for a formal notation for analysis
of performance models expressed in PEPA. Without this, we would not
be able to state performance features precisely and such a shortfall would
invalidate scientific consideration of the feature interaction problem.

The feature concept stresses the user-centred view of a system. A user
makes an assessment of a system from the outside by collecting observations
over time. Performance measures such as those which relate to perceived
quality of service may be externally measured but there is another type of
performance measure which must be observed by a component within the
system itself. The difference is the following.

Internally measurable features: The measurement of these features re-
quires the detection of activities which are not observable from a view-
point outside the system. Such features would be of interest to the
manager of the system. An example might be that one of the lifts
should be utilised at least 50% of the time. The expression of the
concept of utilisation would be likely to be based on the states of the
system where the lift is moving. If the lift is programmed to home to
a designated floor when it is not in use transporting passengers then it
is likely that to capture this definition of utilisation the performance
modeller would need to refer to operations other than the externally
observable ones such as presses of call buttons.

Externally observable features: These may be measured by recording
the observable activities which are performed by the system. These
features are of interest to the users of the system. In the context of a
lift a typical quality of service requirement might be that the average
waiting time for a user on any floor will be less than two minutes.
Another might be that 90% of calls from the executive floor will be
satisfied in less than two minutes.

There is a further subtlety in the different examples of features which we
have listed. It is our intention that each of these feature specifications should
be expressed with reference to a PEPA model. This model is converted to
an equivalent encoding as a Markov process for analysis. Different types
of analysis of the Markov process are needed to calculate the different per-
formance measures. The average waiting time and lift utilisation can be
calculated from a steady-state analysis but the percentage of calls satisfied
in under two minutes requires a transient analysis. Steady-state analysis is
done through the compilation of the infinitesimal generator matrix of the
Markov process and the solution of this by Gaussian elimination or another
technique from linear algebra. Transient analysis requires the modeller to
use uniformisation or another technique.

We now consider specifying features of the steady-state probability dis-
tribution of the system using an internal view of the system.

4

4 A feature notation for equilibrium properties

We will begin by considering the description of performance features which
can be computed by steady-state analysis. For this we will draw on a combi-
nation of standard mathematical notation together with the notation of the
equivalence relations from stochastic process algebra. For example, we will
specify the probability that component P is in state P1 thus: Pr(P = P1).
Such a specification is interpreted relative to a model of a system in which P
occurs and it succinctly describes the summation of the probabilities of the
states of the system where sub-component P is in state P1. To be pedantic,
we should write Pr(P ≡ P1) if we intend to require P to be literally P1 and
not just isomorphic to P1. Similarly, we would write Pr(P ∼ P1) if we wished
to denote the probability that P is in a state which is bisimilar to P1. These
probabilities may then be used in further calculation such as r × Pr(P = P1)
and those results used in comparisons as in r × Pr(P = P1) > M . More
complex descriptions of states may be expressed via logical operations as in
Pr(P = P1 ∧Q = Q1) or Pr(P = P1 ∨ P = P2).

A process algebra allows the modeller to replicate components so that
there may be, say, several copies of P in the system description. Here,
the effect of the feature specification must not be allowed to vary with the
choice of the copy of P which is considered because this would be a source
of error for any modeller using the notation. Thus, we introduce a notion of
situation (or location) of a copy of a component within a PEPA model. It
could be the case that the component of interest occurs as a sub-component
of another which has only one instance. For example, with

R
def= P ¤¢

L
M

S
def= P ¤¢

L
Q

Sys
def= R ‖ S

we refer to R.P and S.P to identify the two instances of P . If there is no
convenient container for the component which we wish to designate then
we shall simply resort to referring to the copy by number. We use the
convention of numbering the copies of the components by following a pre-
order traversal of the abstract syntax tree of the model, numbering copies of
a component upwards beginning at 1. Thus we identify the left-hand copy
of P in P ‖ P as P#1 and the right-hand copy as P#2.

This extended notation allows us to express feature specifications such
as this: Pr(P#1 ‖ P#2 ∼ P1 ‖ P2). This statement means that one of the
copies of P is in state P1 and the other one is in state P2, without specifying
which is which.

One view of a stochastic process algebra model focuses on the states
which it attains: another on the activities which it performs. In order to
describe features in terms of the performance of activities we introduce a

5

ε ::= ε+ ε | ε− ε | ε× ε | ε/ε (arithmetic expressions)
| ε ≥ ε | ε < ε (comparison expressions)
| R | τ (constants and terms)

τ ::= Pr(φ) (probability terms)
φ ::= φ ∨ φ | φ ∧ φ | ¬φ (logical operators)

| σ ≡ σ | σ = σ | σ ∼ σ (local state conditions)
| α↑ | α↑σ (activity predicates)

σ ::= σ ¤¢
L
σ | σ/L | σ.C | C#N | C (situations)

Figure 1: Syntax of feature notation for equilibrium properties

term for the probability that a type of activity is enabled. We use the
notation Pr(α↑) for this, whenever the action type of the activity is α. Thus
the interpretation of an activity name as a predicate is that the predicate
is satisfied whenever the model is in a state S and there is both a state S′

and a rate r such that S
(α,r)−→ S′. A convenient extension to this notation is

Pr(α↑P), meaning that activity α could be performed by component P of
the model. However, we shall regard these two forms of activity probability as
simply convenient abbreviations for a much more complex predicate where
the components are constrained (or a given component is constrained) to
those states where they may perform an activity of action type α. The cases
where the meanings of these two expressions would differ arise whenever the
model is not PEPA live or not fully live so we restrict our consideration
to fully live models from this point onwards. The definitions of these two
notions of liveness are presented in our adaptation to the stochastic process
algebra setting of the structural theory of Petri nets [8].

We now have performance feature expressions ε, probability terms τ ,
predicates φ and situations σ. These are expressed in the syntax presented
in Figure 1. The plus symbol is used in the syntax to denote real number
addition and not the choice operator of process algebra. The division symbol
is used to denote both real number division (in expressions) and the PEPA
hiding operator (in situations). We write R to denote the real numbers and
N to denote the natural numbers.

The characteristics of this feature notation are that it allows the modeller
to inspect internal local states of model components and to consider the
equilibrium probability of attaining significant states of interest. Under the
interpretation of activity probabilities as abbreviations for more complex
predicates over states we may consider this notation to be entirely based
on model states. In the notation for transient properties we consider the
external observation of activities.

6

5 A feature notation for transient properties

When we come to consider transient measures we need to modify our lan-
guage of probabilistic expressions. In contrast to the steady state proba-
bilities of being a state in which certain local state conditions are satisfied,
e.g. Pr(P = P1 ∧Q = Q1) or in which a particular action type is enabled
Pr(α↑), we now wish to express conditions such as the probability, starting
from a state after α has been performed, that we reach a state where β has
been performed, in less than t time units. For this purpose we introduce
the following additional forms of probabilistic expressions, and clarify the
notation for steady state expressions:

Iteration probability: We use the term Pr(n, t, φ | ι) to denote the prob-
ability, given that condition ι holds initially (meaning, at time t = 0),
that the process can reach a state in which condition φ holds for the
nth time in time less than or equal to t. In general we will be interested
in the first time that the condition φ is met so by default n = 1 and in
this case we omit the first clause from the expression. The conditions
φ and ι are predicates over transient properties of the processes, and
the initial description predicate ι can be omitted if we start from a
state which is chosen at random.

Arrival probability: We use Pr(φ @ t | ι) to express the probability, given
that condition ι holds initially, that after elapsed time t the process is
in a state which satisfies φ. As above, the conditions ι and φ are pred-
icates over transient properties, and once again the initial description
predicate ι can be omitted if we start from a state which is chosen at
random.

Expected time: The notation Ti(φ | ι) represents the expected time to
reach a state in which the condition φ is satisfied given that the process
starts in a state which satisfies ι. The uses of the conditions φ and ι
are the same as in the previous cases.

Long run: The long run or steady state probability that the process is in
a state in which condition φ holds is written Pr(∞)(φ). This is the
form of expression we considered in Section 4 and when it is clear from
context we will omit the term (∞).

Summarising the above we have the feature notation for transient proper-
ties which is shown in Figure 2. The notation for predicates is now altered
because we express only observations about the original system. We denote
the second modality on activities (‘has been performed’) with the nota-
tion Pr(α ↓). The notion of situation is modified to allow consideration of
the states of distinguished testing components only. We use CT to represent
a constant which identifies a testing component.

7

ε ::= . . . as before . . . (feature expressions)
τ ::= Pr(n, t, φ | ι) (iteration probability)

| Pr(n, t, φ) (free iteration probability)
| Pr(φ @ t | ι) (arrival probability)
| Pr(φ @ t) (free arrival probability)
| Ti(φ | ι) (expected time)
| Pr(∞)(φ) (long run probability)

ι = φ ::= φ ∨ φ | φ ∧ φ | ¬φ (logical operators)
| σ ≡ σ | σ = σ | σ ∼ σ (local state conditions)
| α↓ (activity predicate)

σ ::= σ ‖ σ | Pass | Fail | CT (testing situations)

Figure 2: Syntax of feature notation for transient properties

6 Testing satisfaction of feature specifications

Thus far it has been possible to present our exposition in the terms of the
PEPA language and to refer to process algebra concepts such as states, local
states or activities. When we wish to check that a particular model satisfies
a feature specification it is necessary to first convert the model into its equiv-
alent Markov process encoding. Transient analysis of an Markov process is
not based on the straightforward solution of the global balance equations
which are used to generate the steady state probability distribution. In-
stead, depending on the measure which must be calculated, modifications
of the Markov process or its matrix representation may be necessary and
other solution algorithms are needed. If we are only interested in transient
properties of our process then we do not need the ergodicity condition which
is necessary for a Markov process to attain steady-state equilibrium.

The objective of our work is to use specifications in the simple proba-
bilistic expression notation outlined above to automatically generate process
algebra components which perform stochastic tests. These testing compo-
nents can then be appropriately composed with the original model and from
this extended model the Markov process and the probability matrix which
are needed for transient analysis can be generated using the algorithms which
are already available for generation of the matrix which is used in steady-
state analysis.

The algorithms for generating the Markov process representation of a
PEPA model are already implemented in the PEPA Workbench [9] and of
course it would also be possible to extend the Workbench implementation
to include an alternative set of algorithms for the generation of the modi-
fied Markov processes which would be needed for transient analysis. As an

8

alternative, it would be possible to extend the input to the Workbench to
include switches which indicate whether steady-state or transient solution
is intended and to provide the additional information which may be needed
for transient analysis but our approach of generating additional testing com-
ponents and using the existing facilities seems more elegant. A sufficiently
expressive fragment of the feature notation for equilibrium properties has al-
ready been implemented in the PEPA State Finder (as described in [10]) so
we now consider the implementation of the notation for transient properties.

6.1 Uniformisation

We base our transient analysis on the technique known as uniformisation
or randomisation. This is briefly outlined below. Our presentation is based
on [11].

Consider a continuous time Markov process {X(t), t ≥ 0} with infinites-
imal generator matrix Q and starting state distribution vector π(0). We
assume that the exit rate from all states is bound by some value R, i.e.
|qii| ≤ R for all states i in the state space S. We choose R = maxi |qii|. In
transient analysis our objective is to find π(t), the state probability distri-
bution vector at time t. From this distribution various other expectations
and measures can be calculated, just as we calculate steady-state measures
based on the steady-state probability distribution π.

If the exit rate from every state is the same i.e. |qii| = R for all i, then
calculating π(t) is relatively straightforward. The approach of uniformisa-
tion is to make all the qii equal by introducing null-events into states as
needed. These null-events have no effect, in that they do not make the
process change state, but they do ensure that the exit rate from all states
becomes equal. Thus for each state i, a do-nothing event is introduced with
rate R+ qii (recall that qii is negative).

Now the rate at which events occur within the system is independent
of the state of the system and is R. The number of events in the interval
from 0 to t has a Poisson distribution with parameter Rt:

Pr(k events in interval (0, t)) = e−Rt
(Rt)k

k!

Let Xk be the state of the system after the kth event and let X0 be the
starting state: the process {Xk, k ≥ 0} is a discrete time Markov process
over the same state space as X(t). Moreover the transition probabilities pij
of Xk are readily derived from the transition rates of X(t):

pij = Pr(Xk = j | Xk−1 = i) = qij/R i 6= j

pii = 1 +
qii
R

9

We denote the probability of being in state j after k events by πkj and note
that πk0 = πi(0). The πkj can be calculated by standard techniques and

πj(t) =
∞∑

k=0

πkj Pr(k events in interval (0, t))

=
∞∑

k=0

πkj e
−Rt (Rt)

k

k!

Clearly when carrying out a numerical evaluation the infinite sum must be
truncated at some value K: from this we can bound the error introduced,
εK [12]:

εK ≤ 1−
K∑

k=0

e−Rt
(Rt)k

k!

Conversely, for a chosen ε we can choose K sufficiently large that

1−
K∑

k=0

e−Rt
(Rt)k

k!
≤ ε.

6.2 Iteration testing

In this subsection we consider the forms of stochastic test which must be
added to the basic PEPA process in order to automatically generate the
Markov process suitable for testing probabilistic expressions of the form
Pr(n, t, φ | ι). In [13] Melamed and Yadin describe a technique for finding
sojourn times based on transient solution via uniformisation. Essentially
their approach relies on complementing the state space with a distinguished
goal state, γ, which is entered when the sojourn is completed. Assuming that
the sojourn began at time 0 then πγ(t) is the probability that the sojourn is
shorter than t. We adopt a similar approach here. The distinguished state is
introduced using an additional PEPA testing component which is composed
with the original model.

The intuition behind the design of the testing component is that it wit-
nesses the starting condition ι and waits for the final condition φ. When
it has witnessed φ it enters a distinguished state which we call Pass. How
we construct the testing component depends on the form of the conditions ι
and φ.

It may be the case that the starting condition ι is satisfied by more than
one state of the process. If this is the case we need to find the distribution
over these states and we take this to be our starting vector π(0). To find this
we calculate the steady-state distribution of the process and then identify
those states in which ι holds, the subset S(ι). We then form the conditional

10

distribution on the assumption that we are within this subset of states.

πi(0) =

πi∑
j∈S(ι) πj

if i ∈ S(ι)

0 if i /∈ S(ι)

Using transient analysis based on uniformisation we then allow the model to
evolve for a time equal to t and then look at the probability that condition φ
has been satisfied, i.e. ∑

i:Test=Pass

πi(t).

Assume that our existing PEPA model is M and that it is fully live. Our
approach will be to reduce feature specifications of the form Pr(n, t, φ | ι)
to one of the form Pr(φ′ @ t | ι) where φ′ is a derived condition in terms
of the model and the test component which we have generated which, in
general, will assert that the test has been passed. The model extended with
the test component typically takes the form M ¤¢

L
Test and φ′ will typically

be Test = Pass for positive predicates and Test = Fail for negative ones.

6.3 Generating testing components

Figure 3 shows the generation of the testing components which are needed
to encode predicates over the transient behaviour of the model. Initialisa-
tion predicates ι which mark the start of the test are incorporated into the
conditional probability distribution as explained in Section 6.2. Thus the
cases of free and non-free iteration can be treated symmetrically. Testing
components are generated which passively witness the completion of activ-
ities thus: (α,>).Passα. Simple tests such as these can be composed in
order to build up the more complex predicates which count the number of
occurrences of the activity of interest. These construct a repeated sequential
prefix of the required number of observations of the designated activity, say

(α,>).(α,>) . . . (α,>)︸ ︷︷ ︸
n times

.Passα

We introduce the abbreviation (α,>)n.Passα to stand for the above expres-
sion.

We decompose compound predicates and recompose those which we gen-
erate in order to recursively unfold conjunction and disjunction and imple-
ment negation via subtraction. Thus, for example, to re-express the predi-
cate α ↓ ∧ β ↓ we generate a testing component for α ↓, Tα↓, and a testing
component for β ↓, Tβ↓, and our new predicate would be

Tα↓ = Passα ∧ Tβ↓ = Passβ.

11

(iteration)
M |= Pr(n, t, α↓ | ι) > k ; M ¤¢

{α}T |= Pr((T =Passα) @ t) > k

where T def= (α,>)n.Passα
and Passα

def= (α,>).Passα

(negation)
M |= Pr(¬φ) > k ; M |= Pr(φ) ≤ 1− k

(conjunction)
M |= Pr(φ ∧ ψ) > k ; M ¤¢

K∪L
(Tφ ‖ Tψ) |= Pr(φ̂ ∧ ψ̂) > k

if K ∩ L = ∅
and M |= Pr(ψ) > k ; M ¤¢

L
Tψ |= Pr(ψ̂) > k

and M |= Pr(φ) > k ; M ¤¢
K
Tφ |= Pr(φ̂) > k

(disjunction)
M |= Pr(φ ∨ ψ) > k ; M ¤¢

K∪L
(Tφ ‖ Tψ) |= Pr(φ̂ ∨ ψ̂) > k

if K ∩ L = ∅
and M |= Pr(ψ) > k ; M ¤¢

K
Tψ |= Pr(ψ̂) > k

and M |= Pr(φ) > k ; M ¤¢
L
Tφ |= Pr(φ̂) > k

Figure 3: Generating testing components for a model

Treating compound predicates by decomposing them into a flat collection
of testing components could lead to confusion in the assessment of compound
properties where an activity name is used more than once. For example,
given the predicate (α ↓ ∧ β ↓) ∨ (β ↓ ∧ γ ↓) performing α and β does
not guarantee that the generated predicate will be satisfied because these
activities might lead to the testing component reaching the state

((Passα ‖ (β,>).Passβ) ‖ (Passβ ‖ (γ,>).Passγ))

instead of

((Passα ‖ Passβ) ‖ ((β,>).Passβ ‖ (γ,>).Passγ)).

We impose the strict condition that predicates may not interfere in this way
by requiring that their sets of free activity names are disjoint.

12

7 Further work

We have focussed here on performance features. The challenge when adding
new behavioural features to an existing model is to hygienically separate the
specification of the new feature from the existing system and to show how
these can be integrated into the given structure. The study of the feature
integration problem in the stochastic process algebra context remains as
further work.

The notations for feature specification presented here could be integrated
with one based on the logical description of specification of rewards. Such a
notation has been created previously for PEPA via an extended application
of the modal µ-calculus [14]. The symmetric integration of the two notations
and the consideration of their use together remains as future work.

8 Conclusions

We have presented a notation for the description of feature specifications
which relate to stochastic process algebra models expressed in the PEPA
modelling notation. Our notation for feature specification separates into
two parts, the first for the specification of internally measurable quantities
of the system’s equilibrium state, and the second for externally observable
patterns in the system’s transient behaviour. We have shown a method
of reducing specifications in the latter to specifications in the former by
extending the system model with testing components.

There are many design decisions to be taken in the creation of any such
specification notation. For the specification of transient properties we re-
stricted ourselves to observing only the activities which are performed by
the system whose features we are studying. This discipline means that our
feature specifications have the desirable property that they are not depen-
dent on the internal structure of the model and could be used across a range
of models to compare them in terms of the chosen feature. It would have
been unwise to similarly restrict ourselves to observing only external activ-
ities of the testing components themselves since these activities must have
rates and they must of course be performed at a much faster rate than the
other activities of the model in order not to compromise the accuracy of the
test itself. Such a wide disparity between rates of performing activities in-
troduces the well-known stiffness problem for Markov processes and would
have been a barrier to their efficient solution although the isolation of the
faster activities in the testing components would provide a promising setting
for the use of time-scale decomposition [15] in the solution of these extended
models. Thus this design decision of the feature specification notation seems
to be justified.

13

Acknowledgements

Stephen Gilmore is supported by the ‘Distributed Commit Protocols’ grant
from the EPSRC and by Esprit Working group FIREworks. Jane Hillston
is supported by the ESPRC ‘COMPA’ grant. The authors are grateful to
Nigel Thomas for helpful comments on an earlier draft of the paper.

References

[1] C. Capellmann, R. Demant, R. Galvez-Estrada, U. Nitsche and
P. Ochsenschläger. Verification by behaviour abstraction: A case study
of service interaction detection in intelligent telephone networks. In
Computer Aided Verification, Springer, LNCS 1102, pages 466–469,
1996.

[2] K. E. Cheng and T. Ohta, editors. Feature Interactions in Telecommu-
nications III, Tokyo, Japan, October 1995. IOS Press.

[3] P. Dini, R. Boutaba and L. Logrippo, editors. Feature Interactions in
Telecommunications Networks IV, Montreal, Canada, 1997. IOS Press.

[4] S. Bhattacharjee, K. Calvert and E.W. Zegura. On active networking
and congestion. Technical Report GIT-CC-96-02, College of Comput-
ing, Georgia Tech., 1996.

[5] J. Hillston. A Compositional Approach to Performance Modelling.
Cambridge University Press, 1996.

[6] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli and G. France-
schinis. Modelling with Generalized Stochastic Petri Nets. John Wiley,
1995.

[7] P.R. D’Argenio, J-P. Katoen and E. Brinksma. A stochastic automata
model and its algebraic approach. In E. Brinksma and A. Nymeyer,
editors, Proceedings of the Fifth Annual Workshop on Process Algebra
and Performance Modelling, pages 1–16. University of Twente, June
1997. Centre for Telematics and Information Technology, Technical
report number 97-14.

[8] S. Gilmore, J. Hillston and L. Recalde. Elementary structural analysis
for PEPA. Technical Report ECS-LFCS-97-377, Laboratory for Foun-
dations of Computer Science, Department of Computer Science, The
University of Edinburgh, 1997.

[9] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Sup-
port a Process Algebra-based Approach to Performance Modelling. In

14

Proceedings of the Seventh International Conference on Modelling Tech-
niques and Tools for Computer Performance Evaluation, number 794 in
Lecture Notes in Computer Science, pages 353–368, Vienna, May 1994.
Springer-Verlag.

[10] G. Clark, S. Gilmore, J. Hillston and N. Thomas. Experiences with the
PEPA performance modelling tools. In R.J. Pooley and N. Thomas,
editors, Proceedings of the Fourteenth UK Performance Engineering
Workshop, Edinburgh, Scotland, July 1998. To appear.

[11] W. Grassmann. Finding transient solutions in Markovian event systems
through randomization. In W.J. Stewart, editor, Numerical Solution of
Markov Chains, volume 8 of Probability: Pure and Applied, chapter 18,
pages 357–371. Marcel Dekker, 1991.

[12] W.J. Stewart. Introduction to the Numerical Solution of Markov
Chains. Princeton University Press, 1994.

[13] B. Melamed and M.Yadin. Numerical computation of sojourn-time
distributions in queueing networks. ACM Transactions on Computer
Systems, 3(1):839–854, 1984.

[14] G. Clark. Formalising the specification of rewards with PEPA. In
M. Ribaudo, editor, Proceedings of the Fourth Annual Workshop on
Process Algebra and Performance Modelling, pages 139–160. Diparti-
mento di Informatica, Universitá di Torino, CLUT, July 1996.

[15] J. Hillston and V. Mertsiotakis. A simple time scale decomposition
technique for stochastic process algebras. In S. Gilmore and J. Hillston,
editors, Proceedings of the Third International Workshop on Process
Algebras and Performance Modelling, pages 566–577. Special Issue of
The Computer Journal, 38(7), December 1995.

15

