
End-to-End Integrated Security and
Performance Analysis on the DEGAS

Choreographer Platform

Mikael Buchholtz 1, Stephen Gilmore 2, Valentin Haenel 2,
and Carlo Montangero 3

1 Informatics and Mathematical Modelling, The Technical
University of Denmark, Lyngby, Denmark

mib@imm.dtu.dk
2 Laboratory for Foundations of Computer Science,

The University of Edinburgh, Scotland
stg@inf.ed.ac.uk, valentin.haenel@gmx.de

3 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
carlo.montangero@di.unipi.it

Abstract. We present a software tool platform which facilitates secu-
rity and performance analysis of systems which starts and ends with
UML model descriptions. A UML project is presented to the platform
for analysis, formal content is extracted in the form of process calculi
descriptions, analysed with the analysers of the calculi, and the results
of the analysis are reflected back into a modified version of the input
UML model. The design platform supporting the methodology, Chore-
ographer, interoperates with state-of-the-art UML modelling tools. We
illustrate the approach with a well known protocol and report on the
experience of industrial users who have applied Choreographer in their
development work.

Keywords: security analysis, performance analysis, process calculi, UML.

1 Introduction

The safety and reliability of networked software applications becomes a highly
significant matter as such systems play an ever-increasing role in society and pub-
lic life. Software systems win the trust of users by being secure against attack
and by remaining available and responsive under increasing workload. Security
and quality-of-service valuations such as these give rise to subtle and complex
questions about these complex systems. Determining the answers to these ques-
tions necessitates careful modelling and analysis of these systems in well-founded
formal calculi. Such reasoning is both too detailed and too arduous to be under-
taken by hand and so modelling and design tools play a crucial role in designing
and evaluating the computing applications of today and tomorrow.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 286–301, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Choreographer is an integrated design platform for qualitative and quanti-
tative modelling of software systems. The main idea is to cater for formal veri-



End-to-End Integrated Security and Performance Analysis 287

fication of properties of system models through application of existing analysis
tools and techniques. However, these analysis tools will largely be hidden from
the developer, who only needs to relate to the analysis at the level of a model of
the system, which is already familiar. To this end, the Choreographer processes
UML models as its input, and writes modified versions of these as its output.
The many stages of model manipulation and transformation which take place
between input and output will be performed fully automatic and, consequently,
are of no concern for the developer.

The architecture of the Choreographer tool as illustrated in Figure 1 is to
consider the interface to a specification environment (SENV) and a processing
interface to a verification environment (VENV). Models which are input for
analysis are channelled from the SENV to the VENV via software connectors
known as extractors. The extracted formal content is passed to the VENV for
analysis. The results of the analysis are recombined with the input model and
channelled from the VENV back to the SENV via software connectors known as
reflectors. The extraction, the verification, and the reflection are all automated
and can therefore run without input from the user of Choreographer.

In this paper we discuss a specific configuration of the architecture in which
the SENV is the Poseidon UML platform from Gentleware [1] and both the
LySatool [2] and the PEPA Workbench [3, 4] are VENVs. The software tool
chain which is formed when these are connected is also depicted in Figure 1.

The qualititative analysis is deployed to investigate the security of the com-
munication protocols used in the application. The analysis guarantees there are
no successful attacks on the authentication of the communicated messages pro-
vided that there are no attacks on the underlying crypto-system used to protect
messages. In the case where authentication may be breached the analysis reports
where the breach may occur.

Fig. 1. Software architecture of the tool chain used by Choreographer

The quantitative analysis which is provided is a performance analysis of
the system model. This identifies components which are under-utilised or over-



288 M. Buchholtz et al.

utilised indicating poor deployment of computational resources. The identifica-
tion of these problems prompts the developer to revisit the design in order to
improve its score on the performance metrics of greatest importance.

In the development of the Choreographer platform we were concerned to
support not only the UML notation but the UML design process in order that
UML developers would be comfortable with working with the platform. That is,
we devoted considerable effort in the design of the extractors to ensuring that
the UML was being used as more than just a graphical syntax for the process
calculi beneath.

Structure of this paper: In the next section we discuss the methodology behind
the Choreographer platform, explaining how it has been used in practice. In
Section 3 we describe the security properties which Choreographer can verify,
and how this is achieved. In Section 4 we progress to a description of using
Choreographer for performance evaluation based on the generation and solution
of continuous-time Markov chains. Section 5 details the extraction and reflection
operations which connect the UML input and output to the analysis routines
beneath. Section 6 is a small example, making the foregoing descriptions con-
crete. Section 7 relates our experience of building the Choreographer platform.
Section 8 reports on the experiences of our industrial users. A description of
related work and conclusions follow.

2 Methodology

The methodology which we follow is to first attempt a security analysis and then,
if this is successful, progress to a performance analysis. The reasoning behind
this methodology is that the security analysis rests on static analysis procedures
which have a lower asymptotic complexity than the state-space generation and
iterative numerical procedures which are needed for the performance analysis.
Thus, ordering them in this way potentially gives a significant saving in the
overall computation time by avoiding the performance analysis of an erroneous
protocol.

To use the Choreographer platform a modeller first composes a UML model
in the Poseidon modelling tool. A UML model is represented by a collection of
diagrams describing parts of the system from different points of view; there are
seven main diagram types. For example, there will typically be a static structure
diagram (or class diagram) describing the classes and interfaces in the system
and their static relationships (inheritance, dependency, etc.). State diagrams, a
variant of Harel state charts, can be used to record dynamic behaviour. Interac-
tion diagrams, such as sequence diagrams, are used to illustrate the way objects
of different classes interact in a particular scenario.

Having described a security protocol using a UML sequence diagram we ap-
ply the For-LySa extractor to generate a LySa model which we analyse with
the LySatool. If the LySatool detects errors in the protocol, indicating that it is
insecure, the results are reflected back to the UML level, so that we can view the
results in the Poseidon tool. Having identified these flaws we can repair the pro-



End-to-End Integrated Security and Performance Analysis 289

tocol and continue with performance analysis. Here, we extract a PEPA process
algebra model from the UML input. We solve this for its equilibrium probability
distribution using successive over-relaxation (SOR), then reflect. The informa-
tion returned from the analysis quantifies the percentage of time that the prin-
cipals and the server spend in their local states, pointing to performance-related
problems such as under- or over-utilisation, starvation, bottlenecks, or hotspots
in the system. We can investigate the potential benefits to be obtained by im-
proving the implementation of the activities in the system, thereby identifying
the place or places where it will be most profitable to spend developer effort.

Evidently, it is possible to discover at this stage that the required improve-
ments in the execution of the activities of the system might be infeasible to
achieve, especially in the setting of weak computing devices such as smartcards
or low-end PDAs or in a thin client context with intermittent or very narrow
bandwidth connections between devices. If this is the case, then a developer
working at the early modelling stage of the system development process would
need to revisit the initial protocol design and perhaps re-design this to involve
fewer message exchanges or reduce the amount of asymmetric cryptography used.
This will initiate another cycle of security analysis and performance analysis in
pursuit of the levels of security and performance demanded of the system.

3 Security Analysis

For our security analysis we rely on techniques from data and control flow analy-
sis. These are analysis techniques that automatically compute information about
the entire behaviour of a software system including its behaviour when the sys-
tems is under attack. A trademark of these techniques is that they are automatic
and complexity-wise efficient, which makes them well-suited as back-end analysis
tools for Choreographer.

In more detail, the analysis techniques work by finding conservative over-
approximations to system behaviour. That is, the analysis computes an over-
approximation of the behaviour of a system under attack from any arbitrary
attacker. With regards to security, this means that the analysis can guaran-
tee the absence of attacks because they provide information about the entire
behaviour of a system. However, because the analysis techniques are approxi-
mative they cannot guarantee the presence of attacks and may report warnings
about possible attacks that in fact do not exist. In the following, we discuss
a control flow analysis that guarantees authentication properties for encrypted
network communication.

3.1 Protocols and Authentication

The usual remedy to protect network protocols from intervention by malicious
attackers is to apply cryptography so that parts of the messages may be kept out-
side the control of the attacker. Cryptography may be applied to attain many dif-
ferent security properties such as confidentiality, authenticity, non-repudiation,
etc. Here, we focus on checking an authentication property, namely that “mes-
sages protected by encryption should only be decrypted at the right places”.



290 M. Buchholtz et al.

The verification technique we use builds on the modelling of protocols in
LySa, which is a process calculus in the π-calculus tradition. LySa is specifi-
cally tailored to model central aspects of security protocols [5] such as (perfect)
cryptography, nonces, network communication, etc. A protocol modelled in LySa
will be analysed in a scenario with several kinds of principals: an initiator of the
protocol, a responder, and a server, referred to as a trusted third party, a key
distribution centre, a certificate authority, etc. Additionally, there can be many
principals acting as initiators and as responders.

To specify the authentication property that encrypted messages end up at the
right places, the LySa process is annotated: each encryption and decryption point
is named `, `′, etc., and is furthermore annotated with its intended destinations
and origins.

Our verification relies on a control flow analysis [5] of LySa, which is im-
plemented in the LySatool [2]. The analysis tells whether the authentication
properties are satisfied for all executions of the LySa process executed in paral-
lel with an arbitrary attacker process. The analysis reports all possible breaches
of the authentication properties in an error component ψ: a pair (`, `′) in ψ
means that something encrypted at ` was decrypted at `′ breaking the specified
authentication property. The analysis computes over-approximations of ψ, i.e. it
may report an error that is not actually there. However, [5] illustrates that this
is not a big problem in practice.

3.2 Modelling Protocols in UML

To model security protocols in UML consistently, we have defined a specific
profile [6]. The profile introduces stereotypes for core concepts like principals,
keys, and messages, and for the concepts needed for the analysis.

To specify a protocol in UML so that the ForLySa extractor [6] can feed the
LySatool analyser [2], the designer exploits the stereotypes in a class diagram
to present the structure of the protocol. This involves first of all specifying
the intended communications and the involved messages. The structure of each
message type is specified in a distinct diagram that includes the decorations
needed to specify the authentication property. Then, the local information of
each principal must be introduced, like session keys or temporary storage, and
their operations to build and dissect messages.

Then, the designer presents the dynamics of the protocol in a sequence di-
agram, which formally specifies a canonical run of the protocol (see 3 for an
example). Each message exchange in the protocol is divided into three steps: 1.
the sender packages the message, 2. the message is communicated, and 3. the
recipient processes the incoming message. Each step is described by one or more
UML stimuli in the sequence diagram, each associated to an operation of their
target. Each operation is specified by pre- and post-conditions, for instance to
specify how to decrypt part of a message, what to check in an incoming mes-
sage, or what to store for later usage in the principal. The language [6] used
in these conditions is presented to the designer with a semantics in term of the
UML modelling concepts. This semantics reflects the precise one given by the
translation in LySa.



End-to-End Integrated Security and Performance Analysis 291

analysis reports an error being the pair (`, `′) in ψ, the note introducing ` will
be modified by the reflector to list `′, thereby signalling the error reported by
the analysis.

4 Performance Evaluation

Well-engineered, safe systems need to deliver reliable services in a timely fashion
with good availability. For this reason, we view quantitative analysis techniques
as being as important as qualitative ones. The quantitative analysis of computer
systems through construction and solution of descriptive models is a hugely prof-
itable activity: brief analysis of a model can provide as much insight as hours of
simulation and measurement [7]. Jane Hillston’s Performance Evaluation Process
Algebra (PEPA) [8] is an expressive formal language for modelling distributed
systems. PEPA models are constructed by the composition of components which
perform individual activities or cooperate on shared ones. To each activity is at-
tached an estimate of the rate at which it may be performed.

Using such a model, a system designer can determine whether a candidate
design meets both the behavioural and the temporal requirements demanded of
it. That is: the protocol may be secure, but can it be executed quickly enough
to complete the message exchange within a specified time bound, with a given
probability of success?

Rather than composing process calculus models directly—although Chore-
ographer also supports this mode of operation—we extract these from UML
class, state and collaboration diagrams. For the purposes of performance anal-
ysis we extract a process calculus model in PEPA. The extractor for PEPA is
documented in [9].

4.1 Analysis Process

We automatically generate a Continuous-Time Markov Chain (CTMC) from
the PEPA model and solve it for its equilibrium probability distribution using
procedures of numerical linear algebra such as the pre-conditioned biconjugate
gradient method or successive over-relaxation implemented in the PEPA Work-
bench. The relationship between the process algebra model and the CTMC rep-
resentation is the following. The process terms (Pi) reachable from the initial
state of the PEPA model by applying the operational semantics of the language
form the states of the CTMC (Xi). For every set of labelled transitions between
states Pi and Pj of the model {(α1, r1), . . . , (αn, rn)} add a transition with rate r
between Xi and Xj where r is the sum of r1, . . . , rn. The activity labels (αi) are
necessary at the process algebra in order to enforce synchronisation points, but
are no longer needed at the Markov chain level.

Finally, the places mentioned by the authentication properties are specified as
notes associated with the stimuli in steps 1 and 3 above, to provide the necessary
hooks for the feedback from the LySatool. These notes are placeholders which
will support the notification of eventual errors resulting from the analysis. If the



292 M. Buchholtz et al.

Under conditions on the form of the model where every state is positive-
recurrent, every such CTMC has a stationary probability distribution over the
states of the chain. Knowing the rates associated with the activities of the sys-
tem this stationary probability distribution can be obtained using procedures of
numerical linear algebra such as Gaussian elimination, conjugate gradient meth-
ods, or over-relaxation methods such as Jacobian over-relaxation or successive
over-relaxation.

Such a stationary probability distribution is rarely the desired end result of
the performance analysis process but meaningful performance measures such as
throughput and utilisation can be directly calculated from the stationary dis-
tribution. State-space generation and numerical solution is the computationally
expensive part of performance analysis. The size of the state-space of the system
is bounded by the product of the sizes of the sequential components in the model
and thus modelling with continuous-time Markov chains is subject to the famil-
iar state-space explosion problem, requiring the modeller to abstract in order to
reduce model complexity.

4.2 Representing Model Components in UML

Markov chain modelling is based on finite-state representations of systems. The
requirement to generate a finite state-space for the CTMC leads PEPA mod-
els to be structured as a concurrent composition of finite-state sequential pro-
cesses. This led to a natural representation of the sequential process part of
these models within the UML via the use of state diagrams, a variant of Harel’s
statecharts [10], together with a class diagram for each category of component.
To represent a concurrent composition of those we used a collaboration diagram
to specify an operational configuration of the system with some numbers of in-
stances of each class of component synchronising over the activity names which
they had in common. This diagram type provided the concurrent composition
of the sequential components.

Class diagrams are used for other purposes in the model. A class with the
reserved name Rates is used to store the values of the rate variables used in the
model to quantify the time cost of performing any activity in the model. All
activities are timed, and quantified by a rate variable which governs a negative
exponential distribution, as used throughout Markovian modelling.

5 Extraction and Reflection

Process calculus content is automatically extracted from input UML models and
analysis results are automatically re-integrated into UML models. The categories
of software tools which perform these operations are extractors and reflectors,
which we describe briefly here.

The transport format for UML content is XML in the XML Metadata Inter-
change format (XMI) used for exchanging UML models between UML tools. Our
extractors and reflectors are implemented in the Java programming language us-
ing its native API for XML parsing. Before the XMI format of the model can be



End-to-End Integrated Security and Performance Analysis 293

processed, it must first be retrieved from the archive format of the UML tools
which we support (primarily the Poseidon [1] tool from Gentleware). We have
written data loaders for the NetBeans platform which open these archive files to
find the XMI content inside, and correspondingly close such archives.

The extractors traverse the object instance graph of the XML document
following the UML metamodel structure to retrieve the diagram content of rel-
evant type. This graph traversal involves following cross-references within the
XMI content to find class diagrams referenced by a collaboration diagram, or
state diagrams associated with a class, or the local states within a state diagram.

The tree traversal performed by the extractors inspects the tree only, without
modifying it. In contrast, the tree traversal performed by the reflectors modifies
the tree to update states with additional analysis results, adding or modifying
child elements of the model as necessary. Finally, this passes the modified XML
tree to the output routines of Choreographer for serialisation and archival.

6 Example: Checking a Simple Authentication Protocol

As a simple example, we apply Choreographer to analyse variations on the Wide-
Mouthed-Frog protocol, originally presented in [11].

Fig. 2. Invoking the LySatool on a security model in Choreographer



294 M. Buchholtz et al.

The protocol describes key exchange between two principals A and B through
a trusted server. The principals A and B have no prior communication history
with each other but both have previously contacted the server and have retained
keys KAS and KBS respectively. The protocol has three steps.

1. Principal A sends a message to the server including the name of B and the
new session key KAB , encrypted under KAS .

2. The server decrypts this and sends the name of A and the new key KAB

to B, encrypted under KBS .
3. Principal A sends a message to B encrypted under KAB .

Fig. 3. Viewing the sequence diagram describing the protocol in Poseidon with the

result from the LySatool reflected into the UML model (changes circled)

The first step in checking such a protocol with Choreographer is to formalise
the protocol in a UML model, using primarily a sequence diagram to express
the protocol as shown in Figure 3. The UML model includes annotations of the



End-to-End Integrated Security and Performance Analysis 295

diagram, reporting the errors, as circled on Figure 3. For example, the decryption
at Bcp3 may decrypt messages coming from the attacker (denoted CPDY) instead
of coming only from Acp2 as intended. Based on these errors the modeller may
pin-point the problem, modify the protocol description in UML, and re-run the
analysis until the analyser guarantees that there are no errors in the protocol.

authentication properties that the protocol is intended to have. These annota-
tions take the form of notes attached at points of encryption and decryption
along with information on where encryptions and decryptions are intended to
take place. For example, the content of the third message will be encrypted at a
point called Acp2 and is intended to be decrypted at Bcp3.

We open this UML model in Choreographer and extract a LySa process
calculus representation of the protocol, and apply the LySatool to check the
authentication properties as shown in Figure 2. The LySatool finds that the
properties may be violated and, consequently, the reflector modifies the sequence

Fig. 4. Reflecting the results of performance analysis back to UML using Choreogra-

pher

At this point the user is able to continue with a performance analysis of the
model. Again, the process calculus representation is extracted by Choreographer
from the UML model and processed by the analysis tool — in this case, the
PEPA Workbench. The Workbench derives the reachability graph underlying



296 M. Buchholtz et al.

is reflected back into the UML model as circled on Figure 5. Each state now is
tagged with a record of the probability of being in this state in the long run.

computes the stationary probability distribution for this chain. The commentary
from the Workbench on this calculation can be seen in the tabbed pane at the
bottom of the screenshot in Figure 4. These results can again be reflected back
to the UML level.

Viewed in the Poseidon modelling tool, the performance model is described
by a UML state diagram as the one shown in Figure 5 where rate(rAB) and
rate(rBA) describes transition rates of moving between the states. Furthermore,
a UML collaboration diagram (not shown) describes the parallel composition of
a number of instances of these sequential components. The results of the analysis
tell the user the probability of being in each of the local states. This information

the process algebra model, interprets this as a continuous-time Markov chain and

Fig. 5. Viewing the modified performance model in Poseidon (with the changes circled)

At this point the modeller is able to consider the consequences of these rela-
tive probabilities and to decide whether or not they indicate acceptable levels of
performance with respect to these rates of performance of the activities of the
model.



End-to-End Integrated Security and Performance Analysis 297

these because it reads from and writes into this import/export format. This
data portability requirement was the more difficult problem, and one which
we have not been able to solve perfectly. There are many versions of the XMI
standard for UML, and different UML tools implement their chosen version to
a more or less satisfactory extent. Some releases of the UML tools which we
tried wrote non-well-formed XMI output, even according to their own criteria.
Such inconsistency makes interoperation essentially a matter of writing a custom
reader/writer pair for every version of every UML tool with which one wants to
interoperate, which is the trap which standards such as XMI were intended to
prevent developers falling into.

A configuration which we considered for Choreographer was XDE and Eclipse
together. The XDE UML tool is provided as an Eclipse plug-in, so this is a natu-
ral coupling. We rejected this combination because the XDE tool is not available
in a Linux release. We chose not to interoperate with MagicDraw because it is
not freely available. We could not work with Argo/UML because it did not rep-
resent some aspects of the UML diagrams in the XMI format, thus crippling its
use as an import/export model exchange format.

A potential source of non-portability might have been the formal analysis
tools which we used. These had been implemented in Java or the functional
programming language Standard ML. However, we discovered that the Stan-

and the LySa security analysis tool (the LySatool [2]). In addition, it needs to
interoperate with a fully-featured UML tool.

Our non-functional requirements on the platform were that we wanted to de-
velop a professional quality tool in a constrained time, with a modest budget for
developer effort. We also had the requirement that the tool should be available
across platforms (in our case, Windows and Linux). We evaluated the generic
IDEs of Eclipse and NetBeans and the Argo/UML, XDE, MagicDraw and Posei-
don UML tools. We took the decision to build the Choreographer platform on top
of NetBeans on the Java platform and have it interoperate with Poseidon. This
decision was a complex engineering compromise between a number of conflict-
ing tensions. Our choice went a considerable way towards addressing portability
concerns but the portability issue was impacted also by the availability of the
analysers and UML drawing tools we wanted to integrate with.

We wanted Choreographer to have two dimensions of portability. The first
is the most obvious one, that it should run successfully on both Windows and
Linux. This requirement for code portability has been successfully addressed.
The second dimension of portability was that we wanted the Choreographer
platform to interoperate with many UML tools via the standard XML Inter-
change format (XMI) for UML diagrams. Choreographer needs to deal with

7 Engineering Issues

Our functional requirements for the Choreographer design platform were that
it should provide access to the analysis procedures of the PEPA performance
analysis tool (the PEPA Workbench in both its ML and Java editions [3, 4])



298 M. Buchholtz et al.

dard ML of New Jersey compiler which we used had very closely conforming
versions for Linux and Windows, making the portability of these formal analysis
tools essentially only a matter of working around small differences in the ver-
sions of the standard library for the two platforms. This level of minor tuning
is also required for application development in the Java language, which has
given more effort to ensuring cross-platform portability than perhaps any other
programming language.

8 Experiences of the Industrial Users

The Choreographer design platform has been used by the industrial partners
in our project on two separate developments. In the first, the partner was a
large multi-national company designing a web-based micro-business portal. In
the second, the partner was a small developer targeting telecommunications ser-
vices designing a multi-player on-line role-playing game for mobile applications.
Both used the Choreographer platform independently, consulting us when they
had problems but otherwise operating without an expert on formal specification
or verification on-hand.

The industrial partners had no previous experience of using the LySatool and
the PEPA Workbench and their use of them was solely via the Choreographer
extraction/reflection discipline. The most significant potential sources of error
along the tool chain are i) in the UML constructs used in the input model;
ii) communication of the UML model from the UML tool to the extractor; iii)
model exchange between the extractor and the process calculus analyser; iv) in
the use of the analyser; and v) from the analyser to the reflector. Almost all of
the problems reported by our industrial users were of type i), ii) or iii).

Errors of the first kind included choosing the wrong type of connections
between class instances in the collaboration diagrams, or omitting to include
collaborations between instances of classes which needed to collaborate. Errors
of the second kind included the UML tools writing non-well-formed archive files
with missing or corrupt XMI content. Errors of the third kind are found because
the process calculus analysis tools check the well-formedness of the model before
continuing with the analysis. This is to ensure that as many problems as possible
with the model are caught before a potentially expensive analysis process begins.

8.1 Reflections on the Experience

Our anticipation of the difficulties for the industrial users was quite far removed
from the actual difficulties encountered. The fact that many of the errors were
related to UML processing surprised us. We had assumed that the asymptotic
complexity of the analysis procedures used in performance analysis would be
a problem for models of industrial scale. The PEPA Workbench uses sparse
matrices to store CTMCs internally but other representations such as multi-
terminal binary decision diagrams (MTBDDs) allow the representation of much
larger state spaces. Thinking that this would be a problem, we had previously
developed a compiler from PEPA into the input language of the MTBDD-based



End-to-End Integrated Security and Performance Analysis 299

model-checker Prism [12]. We developed a custom reflector for this tool which
we tested with the PEPA extractors and reflectors to analyse our own UML
models [13].

In fact, the state-space explosion proved not to be a problem for the use of
Choreographer by our industrial partners. The models which they built were
much smaller than we had anticipated. So much so, that using sparse matrices
is perhaps not even necessary and dense matrices and direct solution methods
might even have been applicable.

9 Related Work

Tool support for the automated analysis of security requirements in the UMLsec
framework [14] is described and accessible at [15]. The relevant elements of the
UML specification are translated in the input language of the model-checker
SPIN and the dynamic property to be verified is translated in Linear Temporal
Logic. The UML models are stored in a MDR library, and accessed via the
generated JMI interface.

Work which is similar in spirit to our own approach is that of Petriu and
Shen [16] where a layered queueing network model is automatically extracted
from an input UML model with performance annotations in the format specified
by a special-purpose UML profile [17]. We do not follow the same UML profile
because it is not supported by our modelling tool. Additionally, the performance
evaluation technology which we deploy (process algebras and CTMC-based so-
lution) is quite different from layered queueing networks.

Another performance engineering method which is similar to ours is that
of López-Grao, Merseguer and Campos [18] where UML diagrams are mapped
into GSPNs which can be solved by GreatSPN. We use different UML diagram
types from these authors and, again, a different performance evaluation tech-
nology. Stochastic Petri nets and stochastic process algebras have different, but
complementary, modelling strengths [19].

One feature of our work which is distinctive from both of the above is the role
of a reflector in the system to present the results of the performance evaluation
back to the UML modeller in terms of their input model. We consider this to be
a strength of our approach. We do not only compile a UML model into a model
amenable for analysis, we also present the results back to the modeller in the
UML idiom.

10 Conclusions

Strong and justified belief in the networked software applications is engendered
via formal analysis using well-founded calculi and tools. Such apparatus for for-
mal reasoning is often daunting to those who most need to make use of, and
benefit from, formal analysis techniques, namely systems designers and software
developers working on state-of-the-art systems. To this community, and their
colleagues in project management and product development, a graphical nota-



300 M. Buchholtz et al.

tion such as the UML has much greater appeal than the blunt, cold formality of
process calculi. By establishing a two-way connection between the UML and cal-
culi such as LySa and PEPA, the Design Environments for Global ApplicationS
(DEGAS) project has elevated the analysis process to the UML level, thereby
bringing the benefits of the analysis without exposing the unfamiliar languages
used.

It is not the case that an inexperienced modeller can use the Choreographer
platform to verify any security property of interest or to compute any perfor-
mance measure that they wish without needing any understanding of the ab-
straction, modelling and mathematical analysis beneath. However, we hope that
we have gone some way to providing automated support for useful security and
performance properties and to circumventing an unnecessary notational hurdle
if this was acting as an impediment to the understanding and uptake of modern
static and dynamic analysis technology.

Acknowledgements. The authors are supported by the DEGAS (Design En-
vironments for Global ApplicationS) project IST-2001-32072 funded by the FET
Proactive Initiative on Global Computing. We thank Matthew Prowse for help-
ful discussions on his extraction algorithm for PEPA. The work reported here
builds on a number of prior works by the members of the DEGAS project. It is
a pleasure to thank the other members of the project for their contributions and
comments on the work reported here.

References

1. Gentleware AG systems. Poseidon for UML web site, November 2004.
http://www.gentleware.com/.

2. Mikael Buchholtz. LySa — a process calculus. Web site hosted by Informatics
and Mathematical Modelling at the Technical University of Denmark, April 2004.
http://www.imm.dtu.dk/cs LySa/.

3. S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling. In Proceedings of the Seventh
International Conference on Modelling Techniques and Tools for Computer Per-
formance Evaluation, number 794 in Lecture Notes in Computer Science, pages
353–368, Vienna, May 1994. Springer-Verlag.

4. N.V. Haenel. User Guide for the Java Edition of the PEPA Workbench—Tabasco
release. LFCS, Edinburgh, October 2003.

5. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H.R. Nielson. Automatic val-
idation of protocol narration. In Proc. of the 16th Computer Security Foundations
Workshop (CSFW 2003), pages 126–140. IEEE Computer Security Press, 2003.

6. M. Buchholtz, C. Montangero, L. Perrone, and S. Semprini. For-LySa: UML for
authentication analysis. In C. Priami and P. Quaglia, editors, Proceedings of the
second workshop on Global Computing, volume 3267 of Lecture Notes in Computer
Science, pages 92–105. Springer Verlag, 2004.

7. Isi Mitrani. Probabilistic Modelling. Cambridge University Press, 1998.
8. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge

University Press, 1996.



End-to-End Integrated Security and Performance Analysis 301

9. C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and P. Stevens. Performance
modelling with UML and stochastic process algebras. IEE Proceedings: Computers
and Digital Techniques, 150(2):107–120, March 2003.

10. D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.
Programming, 8:231–274, 1987.

11. M. Burrows, M. Abadi, and R.M. Needham. A logic of authentication. ACM
Transactions on Computing Systems, 8(1):18–36, February 1990.

12. D. Parker. PRISM 1.3 User’s Guide. University of Birmingham, February 2003.
http://www.cs.bham.ac.uk/∼dxp/prism.

13. S. Gilmore and L. Kloul. A unified tool for performance modelling and prediction.
In B. Littlewood S. Anderson and M. Felici, editors, Proceedings of the 22nd Inter-
national Conference on Computer Safety, Reliability and Security (SAFECOMP
2003), volume 2788 of LNCS, pages 179–192. Springer-Verlag, 2003.

14. Jan Jürjens. Secure Systems Development with UML. Springer, 2004.
15. Jan Jürjens. Umlsec webpage. Accessible at http://www.umlsec.org, 2002–04.
16. D.C. Petriu and H. Shen. Applying the UML performance profile: Graph grammar-

based derivation of LQN models from UML specifications. In A.J. Field and P.G.
Harrison, editors, Proceedings of the 12th International Conference on Modelling
Tools and Techniques for Computer and Communication System Performance
Evaluation, number 2324 in Lecture Notes in Computer Science, pages 159–177,
London, UK, April 2002. Springer-Verlag.

17. B. Selic, A. Moore, M. Woodside, B. Watson, M. Bjorkander, M. Gerhardt, and
D. Petriu. Response to the OMG RFP for Schedulability, Performance, and Time,
revised, June 2001. OMG document number: ad/2001-06-14.

18. J.P. López-Grao, J. Merseguer, and J. Campos. From UML activity diagrams to
stochastic Petri nets: Application to software performance analysis. In Proceed-
ings of the Seventeenth International Symposium on Computer and Information
Sciences, pages 405–409, Orlando, Florida, October 2002. CRC Press.

19. S. Donatelli, J. Hillston, and M. Ribaudo. A comparison of Performance Evaluation
Process Algebra and Generalized Stochastic Petri Nets. In Proc. 6th International
Workshop on Petri Nets and Performance Models, Durham, North Carolina, 1995.


