
Evaluating Quality of Service for Service Level
Agreements

Allan Clark and Stephen Gilmore

Laboratory for Foundations of Computer Science, The University of Edinburgh,
Edinburgh, Scotland

Abstract. Quantitative analysis of quality-of-service metrics is an im-
portant tool in early evaluation of service provision. This analysis de-
pends on being able to estimate the average duration of critical activities
used by the service but at the earliest stages of service planning it may
be impossible to obtain accurate estimates of the expected duration of
these activities. We analyse the time-dependent behaviour of an auto-
motive rescue service in the context of uncertainty about durations. We
deploy a distributed computing platform to allow the efficient derivation
of quantitative analysis results across the range of possible values for
assignments of durations to the symbolic rates of our high-level formal
model of the service expressed in a stochastic process algebra.

1 Introduction

Service-oriented computing is an important focus area for industrial computer
systems, highlighting the crucial interplay between service provider and service
consumer. Service-level agreements (SLAs) and service policies are key issues
in this domain. An SLA typically incorporates a time bound and a probability
bound on a particular path through the system. It will make clear the metric
against which the service is being judged, how the service provision will be
measured, and the penalty to be exacted if the service is not delivered with
the agreed level of quality of service (QoS). We are concerned here with the
quantitative core of an SLA and wish to answer formally questions of the form
“Will at least 90% of all requests receive a response within 3 seconds?” which
has as a probability bound “at least 90%”, as a time bound “within 3 seconds”,
and as the path through the system “from request to response”.

An SLA needs to be established in the early specification phase for a commis-
sioned service, and the service provider needs to ensure not later than that point
in time that the SLA is credible. High-level formal modelling is helpful here be-
cause it allows us to pose precise questions about a formal model of the service
to be provided and to answer them using efficient, proven analysis tools [1]. The
difficulty at the early specification phase is to know whether we can match the
quantitative constraints of customers’ requests against the efficiency or perfor-
mance of the implementation of our service. In the early specification phase in
model-driven software development we have no measurement data which we can
use to parameterise our high-level quantitative model (since the implementation

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 181–194, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

182 A. Clark and S. Gilmore

has not yet been built), leading to uncertainty about the values of the rate con-
stants to be used in the computation of the passage-time quantiles needed to
answer the questions about satisfaction of QoS constraints.

This uncertainty is manageable in practice because although we may not know
precisely the value of the rate constants to be used in the model we may know a
range of values within which they will lie. The problem then is simply to evaluate
our model against our SLA measure a (possibly large) number of times. This can
be done by performing a parameter sweep across the range of possible values for
the rates. If each of these computations leads to the conclusion that the SLA can
be met, then we can accept it even in the presence of uncertainty about the rate
values. However, if any of the computations leads to the conclusion that the SLA
cannot be met, then we must revise the SLA to loosen the time or probability
bounds which it mandates and see if this weaker SLA is still acceptable to the
service consumer. An alternative would be to try to improve some of the rates at
which key activities are performed, in order to fulfil the stricter SLA and avoid
the need to weaken the time or probability bounds. To help with identifying
the key rates in the model we need to investigate the sensitivity of the model
to changes in individual rates. To do this we evaluate our chosen measure for
each rate repeatedly while varying the rate throughout its range of allowable
values. This will allow us to identify those rates which have a major impact on
performance if varied and those rates which impact on performance little.

Specifically, we are addressing in the present paper analysis methods and tools
for the efficient computation of cumulative distribution functions (CDFs) which
decide whether an SLA will be met. Set against this means of evaluating SLAs
by parameter sweep is the cost of the many numerical computations needed to
calculate the many CDFs required. The approach which we follow here is to eval-
uate simultaneously many runs of the Markov chain analyser used. Parameter
sweep is an approach which falls into the class of problems commonly known as
“embarrassingly parallelizable”. That is, there are many independent copies of
the code being run in isolation with none of the complexities of management of
synchronisation points which are usually associated with parallel codes. In this
setting a simple approach based on a network of workstations architecture will
be effective in delivering the computational effort needed.

We used the Condor [2] high-throughput computing platform to distribute the
necessary SLA computation across many hosts. Condor is a widely-used long-
standing workload management system. A recent paper presenting the key ideas
is [3].

We model our service in the PEPA process algebra [4]. Our models are com-
piled into stochastic Petri nets by the Imperial PEPA Compiler, ipc, and these
are analysed by the Hydra release of the DNAmaca Markov chain analyser [5], a
state-of-the-art stochastic Petri net tool which computes the passage-time quan-
tiles needed in the computation of a CDF used in the evaluation of an SLA.

PEPA models submitted to ipc must be Cyclic PEPA [6], formed by the
composition of co-operating sequential components. Each of the sequential com-
ponents at the leaves of the process tree is viewed as a finite state automaton

Evaluating Quality of Service for Service Level Agreements 183

with timed Markovian transitions and converted into a Petri net state machine.
ipc then recurses back up the process tree composing these nets until it has
produced a single net representing the complete PEPA model.

2 Related Work

Our use of Hydra on a distributed workload management system such as Condor
is different in nature from previous work on using Hydra on distributed-memory
parallel machines (examples include [7]) and distributed compute clusters (ex-
amples include [8]). One difference is that we initiate our Hydra execution from
a PEPA model, via ipc, and are therefore using Markovian modelling exclusively
([8] addresses semi-Markov models). In work such as [7], [8] and [9] the emphasis
is on grande modelling, where detailed models of systems are evaluated in the
setting of many component replications. Due to the multitude of possible inter-
leavings of the local states of each of these subcomponents it is not uncommon
for such grande modelling to give rise to statespaces of order 106 [8], 107 [7],
108 [9], or 109 [10]. Although such sizes might seem modest if compared to the
sizes of models analysed by non-quantitative procedures these dimensions place
these analysis problems on the edge of tractability for Markovian analysis.

In contrast to the above, the style of modelling which we are using here is
diminutive. Most nodes in our Condor cluster are typical desktop Pentium 4
PCs, with 1 CPU and with 1Gb of RAM. Each of these must be able to solve
our modelling problem independently. The difference is that the prior work cited
above is solving very large models a relatively small number of times whereas
we are solving relatively small models a very large number of times.

An alternative method of answering the same question about SLAs would be
first to encode the statement of the QoS measure as a formula in Continuous
Stochastic Logic (CSL) [11] and then to model-check the formula against the
PEPA model using the PRISM probabilistic symbolic model checker [12]. Com-
putationally, this solution procedure would be very similar to the method which
we employ, using uniformisation [13,14] to compute the transient analysis result
needed from the continuous-time Markov chain representation underlying the
PEPA model.

While this approach would have been successful for solving one run of the
numerical computing procedure required we believe that we would have found
difficulty in hosting multiple runs of PRISM on the Condor platform. As a batch
processing system Condor has a notion of execution context called a universe.
The ipc and Hydra modelling tools which we used run as native executables in
Condor’s vanilla universe. Java applications run on Condor’s java universe
(developed in [15]). However, PRISM combines both Java code and native C
code in its use of the CUDD binary decision diagram library [16] via the Java
Native Interface. The general approach to running Java code with JNI calls under
Condor would be to execute the JVM under the vanilla universe because the
java universe cannot guarantee to provide necessary libraries for the native code
part of PRISM. However, this would in general require first copying the JVM
binary onto the remote machine before execution of PRISM could begin. This

184 A. Clark and S. Gilmore

would impose a heavy penalty on run-time which would offset significantly the
advantages to be gained from Condor-based distribution.

3 Markovian Process Algebras

Markovian process algebras such as PEPA extend classical process algebras by
associating an exponentially-distributed random variable with each activity rep-
resenting the average rate at which this activity can be performed. The random
variable X is said to have an exponential distribution with parameter λ (λ > 0)
if it has the distribution function

F (x) =
{

1 − e−λx for x > 0
0 for x ≤ 0

The mean, or expected value, of this exponential distribution is

μ = E[X] =
∫ ∞

−∞
xλe−λxdx =

1
λ

An activity in a PEPA model takes the form (α, λ).P (“perform activity α at
exponentially-distributed rate λ and behave as process P”). The high-level ex-
pression of the model includes a symbolic rate variable λ. The model is evaluated
against a valuation which assigns numerical values to all of the symbolic rates
of the model.

All activities in a PEPA model are timed, and via the structured operational
semantics of the language, PEPA models give rise to continuous-time, finite-state
stochastic processes called Continuous-Time Markov Chains (CTMCs).

The relationship between the process algebra model and the CTMC represen-
tation is the following. The process terms (Pi) reachable from the initial state of
the PEPA model by applying the operational semantics of the language form the
states of the CTMC (Xi). For every set of labelled transitions between states Pi

and Pj of the model {(α1, r1), . . . , (αn, rn)} add a transition with rate r between
Xi and Xj where r is the sum of r1, . . . , rn. The activity labels (αi) are necessary
at the process algebra level in order to enforce synchronisation points, but are
no longer needed at the Markov chain level.

A CTMC can be represented by a set of states X and a transition rate matrix
R. The matrix entry in position rij is λ if it is possible for the CTMC to transition
from state i to state j at rate λ. An infinitesimal generator matrix Q is formed
from the transition rate matrix by normalising the diagonal elements to ensure
that each row sums to zero. The generator matrix is usually sparse.

3.1 Transient Analysis and Uniformisation

Investigation of SLAs requires the transient analysis of a CTMC. That is, we
are concerned with finding the transient state probability row vector π(t) =
[π0(t), . . . , πn−1(t)] where πi(t) denotes the probability that the CTMC is in

Evaluating Quality of Service for Service Level Agreements 185

state i at time t. Transient and passage-time analysis of CTMCs proceeds by
uniformisation [13,14]. The generator matrix, Q, is “uniformized” with:

P = Q/q + I

where q > maxi |Qii|. This process transforms a CTMC into one in which all
states have the same mean holding time 1/q.

Passage-time computation is concerned with knowing the probability of reach-
ing a designated target state from a designated source state. It rests on two key
sub-computations. First, the time to complete n hops (n = 1, 2, 3, . . .), which is
an Erlang distribution with parameters n and q. Second, the probability that
the transition between source and target states occurs in exactly n hops.

3.2 Model Checking

A widely-used logic for model checking properties against continuous-time
Markov chains is Continuous Stochastic Logic (CSL) [11]. The well-formed for-
mulae of CSL are made up of state formulae φ and path formulae ψ. The syntax
of CSL is below.

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ | P��p[ψ] | S��p[φ]
ψ ::= Xφ | φ UI φ | φ U φ

where a is an atomic proposition, �� ∈ { <, ≤, >, ≥ } is a relational parameter,
p ∈ [0, 1] is a probability, and I is an interval of R. Derived logical operators
such as implication (⇒) can be encoded in the usual way.

Paths of interest through the states of the model are characterised by the path
formulae specified by P . Path formulae either refer to the next state (using the
X operator), or record that one proposition is always satisfied until another is
achieved (the until-formulae use the U-operator).

Performance information is encoded into the CSL formulae via the time-
bounded until operator (UI) and the steady-state operator, S. The evaluation
of time-bounded until formulae against a CTMC in a CSL-based model checker
such as PRISM [12] or MRMC [17] proceeds by transient analysis using uni-
formisation and a numerical procedure such as the Fox-Glynn algorithm [18].

3.3 Sensitivity Analysis

Due to the roles which activities play in creating the dynamics of our stochastic
process algebra model it may be that increasing the rate of one activity increases
the score obtained by the model on our chosen performance measure of interest.
Conversely, increasing the rate of another activity may decrease the score which
we get. Changing one rate a little may vary the score a lot. Changing another
rate a lot might only vary the score a little. The study of how changes in perfor-
mance depend on changes in parameter values in this way is known as sensitivity
analysis.

Our main aim here is to determine that our SLA is met across all of the
possible combinations of average values of rates across all their allowable ranges.

186 A. Clark and S. Gilmore

However, by collecting the results where one rate is varied we can examine the
sensitivity of our measure with respect to that rate, at no added computational
cost.

The practical relevance of sensitivity analysis is that we may find that the
model is relatively insensitive to changes in one of the rates. In this case we need
not spend as much effort in trying to determine precisely the exact average value
of this rate. This effort would be better directed to determining the values of
rates for which the model has been shown to be sensitive. Further, sensitivity
analysis will identify the most critical areas to improve if failing to meet an SLA.

4 Case Study: Automotive Crash Scenario

Our case study concerns the assessment of an SLA offered by an automotive col-
lision support service. The scenario with which these systems are concerned is
road traffic accidents and dispatch of medical assistance to crash victims. Drivers
wishing to use the service must have in-car GPS location tracking devices with
communication capabilities and have pre-registered their mobile phone informa-
tion with the service.

The scenario under study considers the following sequence of events.

– A road traffic accident occurs. The car airbag deploys.
– Deployment of the air bag causes the on-board safety system to report the

car’s current location (obtained by GPS) to a pre-established accident report
endpoint.

– The service at the reporting endpoint attempts to call the registered driver’s
mobile phone.

– If there is no answer to the call then medical assistance is dispatched to the
reported location of the car (presuming that the driver has been incapaci-
tated by injuries sustained in the accident).

There may be many possible reasons why the driver does not answer the phone.
The phone may be turned off; its battery may be flat; the phone may be out of
network range; the driver may have switched to a new telephone provider, and
not informed the collision support service; the phone may not be in the car; it
may have been smashed on impact; or many other possibilities.

The accident reporting service cannot know the exact reason why the driver
does not answer the phone. They only know that an accident has happened which
was serious enough to cause the airbag to be deployed, and that the driver has
not confirmed that they do not need medical assistance. In this setting they will
dispatch medical help (even if sometimes this will mean that help is sent when
it is not absolutely necessary).

The SLA related to this scenario concerns the response time of the passage
from the deployment of the airbag to the dispatch of medical assistance. The
parameters of our modelling study are:

– the rate at which information on the location of the car—and any other
pertinent information such as speed on impact, engine status, and other

Evaluating Quality of Service for Service Level Agreements 187

diagnostic information obtained from the on-board diagnostic systems and
controllers—can be reported to the accident reporting service;

– the time taken to confirm that the driver is not answering their mobile
telephone; and

– the time taken to contact the emergency services to dispatch medical assis-
tance.

None of these parameters are known exactly, but their average values are known
to lie within a range of acceptable operation. We are, of course, interested in
worst case bounds on passage-time quantiles and also in best case analysis but
also in the variety of possible responses in between.

4.1 PEPA Model

In this section we consider the sequence of events which begins with the deploy-
ment of the airbag after the crash and finishes with the dispatch of the medical
response team. The first phase of the sequence is concerned with relaying the
information to the remote service, reporting the accident. When the diagnostic
report from the car is received the service processes the report and matches it
to the driver information stored on their database.

Car 1
def= (airbag , r1).Car 2

Car 2
def= (reportToService , r2).Car 3

Car 3
def= (processReport , r3).Car 4

The second phase of this passage through the system focuses on the attempted
dialogue between the service and the registered driver of the car. We consider
the case where the driver does not answer the incoming call because this is the
case which leads to the medical response team being sent.

Car4
def= (callDriversPhone , r4).Car 5

Car5
def= (timeoutDriversPhone, r5).Car 6

The service makes a final check on the execution of the procedure before the
decision is taken to send medical help. At this stage the driver is awaiting rescue.

Car 6
def= (rescue, r6).Car 7

Car 7
def= (awaitRescue, r7).Car 1

This takes us to the end of the passage of interest through the system behaviour.

4.2 Rates Constants and Ranges

All timings are expressed in minutes, because that is an appropriate granularity
for the events which are being modelled. Thus a rate of 1.0 means that something
happens once a minute (on average). A rate of 6.0 means that the associated
activity happens six times a minute on average, or that its mean or expected
duration is ten seconds, which is an equivalent statement. A table of the ranges
of average rate values used appears in Table 1.

188 A. Clark and S. Gilmore

4.3 Sensitivity Analysis for the Automotive Crash Scenario

We consider how the cumulative distribution function for the passage from airbag
deployment to dispatch of medical assistance is affected as the values of the rates
r2 to r6 are varied as specified in Table 1. The results are presented in Figure 1.

Table 1. Minimum and maximum values of the rates from the model

Value
Rate min max Meaning
r1 600.0 600.0 an airbag deploys in 1/10 of a second
r2 2.0 10.0 the car can transmit location data in 6 to 30 seconds
r3 0.5 1.5 it takes about one minute to register the incoming data
r4 1.5 2.5 it takes about thirty seconds to call the driver’s phone
r5 1.0 60.0 give the driver from a second to one minute to answer
r6 0.25 3.0 vary about one minute to decide to dispatch medical help
r7 1.0 1.0 arbitrary value — the driver is now awaiting rescue

What we see from these results is that variations in upstream rates (near the
start of the passage of interest) such as r2, r3 and r4 have less impact overall
than variations in downstream rates (near the end of the passage of interest)
such as r5 and r6. This is true even when the scale over which the upstream
rates are varied is much more than the scale over which the downstream rates
are varied (for example, contrast variation in r2 against variation in r6).

The conclusion to be drawn from such an observation is that, if failing to meet
a desired QoS specified in an SLA then it is better to expend effort in making
a faster decision to dispatch medical help (governed by rate r6) than to expend
effort in trying to transmit location data faster (governed by rate r2), over the
range of variability in the rates considered in the present study.

Another use of this sensitivity data would be to find an optimum time to hold
while waiting for the driver to answer the phone. The optimisation problem to
be solved here is to decide how long to wait before terminating the call in case of
non-answer. If the service providers wait too long then they risk failing to meet
their SLA. If they wait too little then they risk dispatching medical assistance
when it is not actually necessary. In this case the sensitivity graph of rate r5
shows a portion where changes in rate value have little impact and so targeting
the lowest rate here gives the driver more time to answer the phone.

A further kind of graph which can be drawn is depicted in Figure 2. To
produce this graph we have held constant the time and varied two of the rates
involved, r5 and r6. From this kind of graph one can analyse how the probability
of completion by a chosen time bound can depend on the relationship between
two of the rates. In this graph we can see that when the rate r5 is low, as in
the front line of the graph, then varying the rate r6 has little effect. However
the back line of the graph shows that when rate r5 is high, varying rate r6 has
a greater effect.

Evaluating Quality of Service for Service Level Agreements 189

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
 0

 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r2

r2

Time

Pr

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 0
 1 2 3 4 5 6 7 8 9 10

 0
 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r3

r3

Time

Pr

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.4 1.6 1.8 2 2.2 2.4 2.6 0
 1 2 3 4 5 6 7 8 9 10

 0
 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r4

r4

Time

Pr

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 0 1 2 3 4 5 6 7 8 9 10
 0

 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r5

r5

Time

Pr

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 0 1 2 3 4 5 6 7 8 9 10
 0

 0.2
 0.4
 0.6
 0.8

 1

Pr

Sensitivity of cumulative distribution function to r6

r6

Time

Pr

Fig. 1. Graphs of cumulative distribution function sensitivity to changes in rates for
the passage from airbag deployment to dispatch of medical assistance

The reverse relationship between rates r5 and r6 is also true. The model
we used was a linear model, which means that there were few paths through
the model. In particular the action rescue governed by the rate r6 cannot be
performed until the action timeoutDriversPhone , regulated by rate r5, has oc-
curred. Also once the timeoutDriversPhone action has occurred there is nowhere
for the model to go but to a rescue action. This means that if either of the two
rates associated with these two actions is very low, then that action will be
the bottleneck for that part of the model. Varying the other rate will have less
effect.

190 A. Clark and S. Gilmore

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 0
 0.5

 1
 1.5

 2
 2.5

 3
 0

 0.2
 0.4
 0.6
 0.8

 1

Pr

Dependency of probability on the values of r5 and r6

r6

r5

Pr

Fig. 2. Graph of probability of completion against variation in the rates r5 and r6, for
a fixed time value

5 Relation to Model Checking

In this section we consider how the results expressed above relate to model
checking a CSL formula against our model of the system. Expressed as a CSL
formula an example of the kind of question which we are asking is the following.

airbag ⇒ P>0.9[true U[0,10] rescue]

In words, this says “If the airbag in the car deploys, is it true with probability
at least 0.9 that the rescue service will be sent within 10 minutes?”

We consider a more general form of the question which is the following

airbag ⇒ P��p[true U[0,10] rescue]

We consider this for all relations �� ∈ { <, ≤, >, ≥ } and for all values of the
probability bound 0 ≤ p ≤ 1. Further, we answer these general formulae not
for only a single assignment of values to symbolic rate variables (as would be
the case for conventional model checking) but across the range of assignments
presented in Figure 1.

In order to determine upper and lower bounds on the probability with which
the rescue service is dispatched within 10 minutes we can simply plot the proba-
bility computed via transient analysis against experiment number. Each mapping
of rate values onto symbolic rate names is an experiment.

The graph of computed probability against experiment number for the first
fifty experiments is shown in Figure 3. Experiments are grouped whereby a group
contains about five evaluations of the CDF corresponding to the SLA for five
assignments of concrete rate values to one of the symbolic rates r2 to r6. This
shows slightly more than the first eight groups of experiments.

Evaluating Quality of Service for Service Level Agreements 191

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

P
r

Experiment number

Probability of completion by time 10.0 for first 50 experiments

Fig. 3. Graph of probability of completing the passage from airbag deployment to
medical assistance dispatch within ten minutes plotted against experiment number
over the first fifty experiments

The graph of computed probability against experiment number for all the 3750
experiments is shown in Figure 4. At this level of granularity it is not easy to
pick out groups of runs but one can see that all experiments achieve at least
a minimum QoS that at least 83% of calls to the service will lead to medical
assistance being dispatched within 10 minutes.

One use of these graphs is to identify all of the combinations of average rate
values which allow the service to satisfy an SLA which requires their quality
of service to be above a specific threshold. For example, say that the service
providers wish to, or need to, meet the SLA that the rescue service is dispatched
within 10 minutes in 92% of cases of airbag deployment. The graph in Figure 4
identifies all of the combinations of parameter values which achieve this bound,
or do better. Some of these might be much easier to realise than others so the
service could meet its QoS requirement by striving for those combinations of
average rates for individual actions of the system such as taking the decision to
dispatch medical help (at rate r6).

6 Further Work

Our future programme of work on using ipc and Hydra on the Condor distributed
computing platform is directed towards making better use of the support which
Condor provides for distributed computing. This will include the use of the
standard universe which will allow checkpointing within a run, and allow a
long-running Hydra computation to be migrated in-run from a machine claimed
by a user onto a presently-idle machine.

192 A. Clark and S. Gilmore

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

P
r

Experiment number

Probability of completion by time 10.0 against experiment number

Fig. 4. Graph of probability of completing the passage from airbag deployment to
medical assistance dispatch within ten minutes plotted against experiment number
over all 3750 experiments

In this work we have made the conceptually convenient simplification of think-
ing of Hydra as a single, indivisible application which accepts a stochastic Petri
net as input and returns as its output a CDF showing passage-time quantiles.
While this is an accurate conceptual description Hydra is in fact structured as a
collection of independent components (a parser, a state-space generator, a func-
tional analyser, a solver and a uniformiser). The application which we think of as
Hydra is a high-level driver executing these components in the order described
above.

The opportunity which this gives us for the future is to structure Hydra as
a directed acyclic graph (DAG) of component tasks. To run Hydra on Condor
in this way we would specify the inputs and outputs from each sub-component
(state-space generator, functional analyser and others) and connect these to-
gether replacing Hydra’s top-level driver with the appropriate use of Condor’s
DAG manager (DAGman). This would offer a greater range of possibilities for
component deployment on our Condor pool.

7 Conclusions

The automotive rescue case study used in this paper gives rise to a relatively
small continuous-time Markov chain, the unit solution cost of which is not exces-
sive. However, when repeatedly re-running this solution procedure for different
parameter values these small costs quickly start to add up. The Condor dis-
tributed computing system allowed us to execute these many copies of the job
simultaneously.

Evaluating Quality of Service for Service Level Agreements 193

The parallel structure of the joint computation was very simple; running a
sequential application multiple times. No dynamic process creation was required
within an individual run, and no inter-process communication was needed. A
full-blown parallel computing infrastructure such as PVM or MPI would have
been excessive but Condor suited our problem very well.

The style of analysis which we pursue here is embarrassingly parallelizable,
meaning that the throughput of jobs increases linearly with the number of ma-
chines available. This means that if given access to a larger Condor pool, or the
ability to connect Condor pools together, then the rate at which jobs can be
processed continues to grow and is not capped by an inherent bound on prob-
lem scalability. Thus the combination of ipc, Hydra and Condor as a modelling
and experimentation framework provides a strong platform on which to conduct
larger and more complex experiments.

Acknowledgements

The authors are supported by the SENSORIA project (EU FET-IST Global
Computing 2 project 016004). We are grateful to Angelika Zobel and Nora Koch
of F.A.S.T. München for the specification of the automotive case study. We
modified the open-source software tool ipc developed and made freely available
by Jeremy Bradley. We ran our models on the Condor cluster provided in the
School of Informatics at Edinburgh and benefited from advice from Chris Cooke
on using this effectively.

References

1. William J Knottenbelt. Generalised Markovian analysis of timed transition sys-
tems. MSc thesis, University of Cape Town, South Africa, July 1996.

2. Condor project homepage. Website with documentation and software, University
of Wisconsin-Madison, April 2006. http://www.cs.wisc.edu/condor/.

3. Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in
practice: the Condor experience. Concurrency - Practice and Experience, 17(2-
4):323–356, 2005.

4. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

5. J.T. Bradley and W.J. Knottenbelt. The ipc/HYDRA tool chain for the analysis
of PEPA models. In Proc. 1st International Conference on the Quantitative Evalu-
ation of Systems (QEST 2004), pages 334–335, Enschede, Netherlands, September
2004.

6. J. Hillston and M. Ribaudo. Stochastic process algebras: a new approach to per-
formance modeling. In K. Bagchi and G. Zobrist, editors, Modeling and Simulation
of Advanced Computer Systems. Gordon Breach, 1998.

7. Nicholas J Dingle, Peter G Harrison, and William J Knottenbelt. Uniformization
and hypergraph partitioning for the distributed computation of response time den-
sities in very large Markov models. Journal of Parallel and Distributed Computing,
64:908–920, 2004.

http://www.cs.wisc.edu/condor/

194 A. Clark and S. Gilmore

8. Jeremy T Bradley, Nicholas J Dingle, Peter G Harrison, and William J Knot-
tenbelt. Distributed computation of passage time quantiles and transient state
distributions in large semi-Markov models. In Performance Modelling, Evalua-
tion and Optimization of Parallel and Distributed Systems, Nice, April 2003. IEEE
Computer Society Press.

9. W J Knottenbelt, P G Harrison, M S Mestern, and P S Kritzinger. A probabilis-
tic dynamic technique for the distributed generation of very large state spaces.
Performance Evaluation, 39(1–4):127–148, February 2000.

10. R. Mehmood and Jon Crowcroft. Parallel iterative solution method for large sparse
linear equation systems. Technical Report UCAM-CL-TR-650, Computer Labora-
tory, University of Cambridge, UK, October 2005.

11. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov
chains. In Computer-Aided Verification, volume 1102 of LNCS, pages 169–276.
Springer-Verlag, 1996.

12. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. In A.J. Field and P.G. Harrison, editors, Proceedings of the 12th Interna-
tional Conference on Modelling Tools and Techniques for Computer and Communi-
cation System Performance Evaluation, number 2324 in Lecture Notes in Computer
Science, pages 200–204, London, UK, April 2002. Springer-Verlag.

13. W. Grassmann. Transient solutions in Markovian queueing systems. Computers
and Operations Research, 4:47–53, 1977.

14. D. Gross and D.R. Miller. The randomization technique as a modelling tool and
solution procedure for transient Markov processes. Operations Research, 32:343–
361, 1984.

15. Al Globus, Eric Langhirt, Miron Livny, Ravishankar Ramamurthy, Marvin
Solomon, and Steve Traugott. JavaGenes and Condor: Cycle-scavenging genetic
algorithms. In Proceedings of the ACM Conference on Java Grande, pages 134–139,
San Francisco, CA, 2000.

16. F. Somenzi. CUDD: CU Decision Diagram Package. Department of Electrical and
Computer Engineering, University of Colorado at Boulder, February 2001.

17. J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model checker.
In Proceedings of the Second International conference Quantitative Evaluation of
Systems (QEST), pages 243–244. IEEE CS Press, 2005.

18. Bennett L. Fox and Peter W. Glynn. Computing Poisson probabilities. Commu-
nications of the ACM, 31:440–445, 1988.

	Introduction
	Related Work
	Markovian Process Algebras
	Transient Analysis and Uniformisation
	Model Checking
	Sensitivity Analysis

	Case Study: Automotive Crash Scenario
	PEPA Model
	Rates Constants and Ranges
	Sensitivity Analysis for the Automotive Crash Scenario

	Relation to Model Checking
	Further Work
	Conclusions

