
Modular Performance Modelling for Mobile Applications

Niaz Arijo, Reiko Heckel
Department of Comp. Sci.

University of Leicester
nha2|reiko@mcs.le.ac.uk

Mirco Tribastone
Institut für Informatik

LMU München
tribastone@pst.ifi.lmu.de

Stephen Gilmore
School of Informatics

University of Edinburgh
stg@staffmail.ed.ac.uk

ABSTRACT
We propose a model-based approach to analysing the performance
of mobile applications where physical mobility and state changes
are modelled by graph transformations from which a model in the
Performance Evaluation Process Algebra (PEPA) is derived. To
fight scalability problems with state space generation we adopt a
modular solution where the graph transformation system is decom-
posed into views, for which labelled transition systems (LTS) are
generated separately and later synchronised in PEPA. We demon-
strate that the result of this modular analysis is equivalent to that
of the monolithic approach and evaluate practicality and scalability
by means of a case study.

Categories and Subject Descriptors
D.2.2 [Software]: SOFTWARE ENGINEERING—Design Tools
and Techniques

General Terms
Design, Performance, Theory

Keywords
modularity, mobility, performance modelling, graph transforma-
tion, process algebra

1. INTRODUCTION
We present a methodology for the performance modelling of

mobile systems using stochastic graph transformations. Mobility
aspects such as location-aware behaviour and physical proximity
are captured by graphs, which enjoy a formal characterisation yet
preserve the look and feel of mainstream visual notations. Struc-
tural changes and computations are described by transformation
rules endowed with exponentially distributed delays. This leads
to transition systems labelled with rate information which admit a
continuous-time Markov chain (CTMC) interpretation, ultimately
used for the evaluation of the performance of the system.

Computationally, the major bottleneck of this analysis is the gen-
eration of the transition system via the graph transformation rules,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’11, March 14–16, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0519-8/11/03 ...$10.00.

since the typical pattern-matching operation that is carried out is
known to be NP-complete. In this paper, we discuss a novel ap-
proach to mitigating this problem which consists in disassembling
the overall system under study into views, i.e., subsystems address-
ing distinct concerns of the system. We propose a running example
of a traffic information system (TIS) where we consider one view
for physical mobility and a separate one for communication.

Each view will give rise to a separate labelled transition system
(LTS), which is usually much smaller than the overall model’s LTS.
We define a suitable synchronisation semantics between the views’
LTSs based on the stochastic process calculus PEPA [6], interpret-
ing a view as process-algebraic component. We prove that the re-
sulting synchronised LTS (hence the related CTMC) is isomorphic
to the model’s overall LTS. However, with this approach the (de-
manding) application of the graph transformation rules is confined
to smaller graphs. Furthermore, the synchronisation operation is
much faster because it does not require any form of pattern match-
ing. The computational advantages with respect to a monolithic
derivation of the overall LTS are practically shown via numerical
tests on the running example.

Related Work. Occasionally, formal languages are integrated
with standard modelling languages like the UML to provide a more
mainstream front-end notation for modelling [1]. In our case the vi-
sual language itself has a formal semantics, which allows us to ver-
ify the relation with the process calculus. Other timed modelling
languages which allow the representation of location and mobility
include the Gnosis modelling and simulation language [2], where
models are nondeterministic programs semantically based on a pro-
cess calculus. Rather than on a programming language, our ap-
proach is based on a high-level visual modelling notation with a
formal semantics.

We extend and apply earlier work on stochastic modelling and
modularity of graph transformation systems, especially [5].

2. PERFORMANCE MODELLING
In this section we introduce a first, monolithic version of our

approach consisting of modelling communication and mobility by
means of graph transformation rules, generating the labelled tran-
sition system for a given start graph in the graph transformation
tool GROOVE [9], and deriving a PEPA process for performance
analysis.

2.1 Mobility and Interaction
We use graphs to model the structure of the application, includ-

ing the topology of locations, the current locations of relevant de-
vices, but also existing links between application components as
well as their states. Our graphs come in two flavours, as type and

329

Figure 1: Type Graph of a Traffic Information System (TIS).

Figure 2: Start graph of the Traffic Information System (match
for moveCar(1) indicated in bold)

instance graphs. The type graph provides a structural model of the
admissible states of the system, similar to the way a class diagram
describes valid object structures.

Fig. 1 shows the type graph of the TIS model, with an instance
graph in Fig. 2 representing a map of Roads and Junctions as well
as two Cars following predefined Paths. The model allows to rep-
resent Accidents that can be reported to the TIS, to share the infor-
mation with other Cars. To identify Cars, these nodes have been
given id attributes of type integer. In general we allow graph nodes
to be attributed by values of predefined data types, such as strings
or natural numbers. In this paper all attribute values will be positive
integers, but see [8] for a general treatment of attributed graphs and
their transformation.

Instance graphs are transformed by rules modelling operations,
distinguished into two (not strictly disjoint) categories: Mobility
operations access and change the location of devices while service
operations capture the state changes brought about by the sending
and receiving of messages between services and their client appli-
cations. Note that we do not model the communication itself, i.e.,
rules will not describe the sending and receiving of messages, but
only their effects on the states of components.

Formally, a graph transformation rule p(x̄) : [N] L → R
consists of a rule name p, a declaration of formal parameters
x̄ = x1 . . . xn with variables xi ranging over attribute values, a
left-hand side L representing the pattern of elements required for

Figure 3: Rule moveCar(car) models the mobility of a Car
following a Path.

the application of the rule, a right hand side R describing the situ-
ation this pattern is to be replaced with, and a negative application
condition N stating the absence of certain elements in the context
of this pattern. The intersection graph L ∩ R defines the elements
that are read by the rule, but are not consumed. Nodes in L, R, and
N are attributed by expressions over variables in X .

In GROOVE notation [9] the various components of a rule
(called readers, erasers, creators or embargoes) are combined
within a single rule graph, distinguishing them by different colours
and styles. Consider for example the rule in Fig. 3 modelling the
movement of a Car from one Road to another across a Junction.
Readers in L ∩ R, such as the nodes of type Car, Path, Road,
Junction, and the edges of type follow, has, to, from, are thin and
solid ordinary graph elements that are required, but preserved by
the transformation. Erasers in L \ R, such as the edge of type on
pointing to the left-most Road node, are shown as thin and dashed
elements, to be deleted. Creators in R \ L, such as the other edge
of type on, represented by slightly wider, solid outlines, are to be
created by the rule. Embargoes in N , such as the nodes of type Ac-
cident and the edges of type occurredAt, had and rejoin, are repre-
sented by wider and dashed outline. They prevent a rule from being
applied if the corresponding elements are present in the graph. In
a printed version of this paper, reader elements are shown in black,
while all other elements are in grey. The GROOVE tool (and the
pdf version of this paper viewed on-screen or printed in colour)
uses blue for erasers, green for creators and red for embargoes. At-
tribute values are depicted as circles pointed to by an edge from the
attributed node. For example, in the rule in Fig. 3 node Car has
attribute id whose value is depicted as parameter 1. It corresponds
to the 1st formal parameter in the rule’s signature moveCar(car).

Formally, a typed attributed graph transformation system with
rule signatures (GTS) is a tuple G = (TG, P, π) where

• TG is a type graph,

• P is a set of rule names,

• π : P −→ X∗ × Rules(TG, X) assigns to each rule name
a pair π(p) = (x̄) : [N] L → R of a parameter declaration
x̄ = x1 . . . xn and a rule [N] L → R. We call p(x̄) :
[N] L → R a parameterised rule and refer to p(x̄) as its
signature.

Given a graph G and a rule p(x̄) : [N] L → R, we can apply
the rule if there is a match m : L → G embedding L into G
such that none of the forbidden patterns in N are present. The

transformation is denoted by G
p(ā)
=⇒ H , where ā = a1 . . . an is the

list of actual parameters, i.e., attribute values occurring in G given
by ai = m(xi). Thus instantiated rule signatures serve as labels.

For example, an application of rule moveCar(car) to the Car
at the top of the instance graph in Fig. 2 will lead to a transition
labelled moveCar(1) that will transform the graph by replacing
the on edge of the Car by one pointing to the Road referred to be the
second has edge of the Path the Car is following. This is possible

330

Figure 4: Result graph of applying moveCar(1) to the graph in
Fig. 2

because the rule’s left hand side is matched to the graph as shown
by the highlighted nodes and edges in Fig. 2. In particular notice
that, given the match of the Car to the one with id = 1, the dashed
(blue) on edge in the rule enforces the matching of the left-hand
side Road node in the rule to the Road Car 1 is on, while the Path
the Car is following determines the other Road node. This is where
the new (solid, green) on edge will be pointing. The result of the
transformation is shown in Fig. 4.

In general, the transformation follows the algebraic single-
pushout approach [7], where the new graph H is constructed from
the given G by removing m(L \ R) and then embedding into the
resulting structure a copy of R\L, suitably renamed to avoid name
clashes. If m(L \ R) contains a node that is connected to an edge
in G outside m(L \R), this edge is removed as well. Given a rule
and match, the result of the transformation is only determined up to
isomorphism of graphs. This principle of invariance under isomor-
phisms is relevant for the scalability of the state space generation
because it allows to choose as “the” state any representative of an
isomorphism class if graphs—a very effective way of symmetry
reduction.

We assume that the actual parameters carry enough information
to make transformations deterministic, that is, for transformation

steps G
p(ā)
=⇒ H and G

p(ā′)
=⇒ H ′, if a = a′ then the resulting graphs

H and H ′ are isomorphic.
The complete model of the Traffic Information System consists

of the type graph in Fig. 1 and eight rules with the following rule
signatures. Parameter declarations refer to the numbered id at-
tributes, with the nth formal parameter referring to the attribute
value labelled $n. Rule moveCar(car) moves Car from one Road
to the next on allocated Path, see Fig. 3; in accident(car) the Car
suffers an Accident, see Fig. 5(a); in removeAccident(car) the Ac-
cident is removed, see Fig. 5(b); in getAccidentInfo(car) the TIS
receives information about an Accident, see Fig. 6(a); in sendAcci-
dentInfo(car) the TIS informs the Car about an Accident that hap-
pened to another one, see Fig. 6(b); in detour(car) the Car, after
receiving Accident information, takes a detour leaving current Path
and follows another Path, see Fig. 7; in rejoin(car) the Car rejoins
its previous Path, leaving the detour Path after passing the Acci-

(a) accident(car)

(b) removeAccident(car)

Figure 5: Rules modelling the occurrence and removal of Acci-
dents.

dent, see Fig. 8; in arriveAtDest(car) the Car arrives at its destina-
tion, i.e., the end of its path, see Fig. 9;

Of course, in a simulation of the model the choice of rules (e.g.,
whether to move or suffer an Accident) and matches (e.g., which
Car to move) is taken nondeterministically. We will therefore guide
the nondeterministic choice of rules by rates to describe the relative
speed of these actions.

2.2 Performance Modelling
Stochastic graph transformation systems add to each rule a rate,

i.e., a positive Real number representing the parameter of the ex-
ponential distribution associated with the frequency of execution of
the rule (or, equivalently, the reciprocal of the average delay once
the rule is enabled for a given match).

Formally, a stochastic GTS is given by a GTS G = (TG, P, π)
together with a mapping ρ : P → R+ assigning each rule
name its rate. The behaviour of the underlying GTS G with a
given start graph G0 is expressed by a labelled transition system
LTS(G, G0) = (S, L, =⇒, s0) where the set of states S is given
by all graphs reachable from the start graph by application of rules,
avoiding isomorphic copies (formally, one representative for each
isomorphism class of reachable graphs); the set of labels L is given
by all instantiated rule signatures p(ā); the transition relation for

all G, H ∈ S is given by transformations G
p(ā)
=⇒ H; the initial

state s0 is the start graph G0. In case the state space is small or can
be suitably restricted, such a labelled transition system can be gen-
erated by GROOVE. With the assignment ρ : P → R+ of rates to
rule names given, we analyse performance properties by deriving a
sequential PEPA process from the transition system.

2.3 Performance Analysis
Following is an extract of the PEPA model generated from

the GTS and the start graph presented above, which will be used
to describe the syntax and semantics of PEPA informally. The
reader is referred to [6] for a formal presentation of the language.
Process variables such as N563261 correspond to states in the
transition system LTS(G, G0). An equation like N563261 =
(”removeAccident(1)”, removeAccident).N563269 means
that there exists a transition with rate removeAccident = 8
from N563261 to N563269, labelled removeAccident(1).

331

(a) getAccidentInfo(car)

(b) sendAccidentInfo(car)

Figure 6: Rules for the TIS to receive Accident information and
pass it to other Cars

Figure 7: Rule detour(car) shows how a Car takes a detour to
avoid an Accident.

The rates listed at the beginning are to be read with a unit of
times per day. Operations such as detour, rejoin, arriveAtDest
represent local computations, e.g., of a navigation system deciding
to follow or change to a specific route. On the opposite end of the
scale are physical actions such as moveCar = 288, representing
a delay of 5 minutes for moving a Car to a new stretch of road,
or removeAccident = 8 representing a delay of 3 hours for
clearing an Accident. Actions involving communication with the
TIS have rates in between, such as sendAccidentInfo = 1440
with a delay of 1 min. The rate for sendAccidentInfo = 72 (a
20 minute delay) reflects the fact that in this version of the model
traffic information is received from the local radio station, which
only broadcasts traffic news at fixed intervals and requires the
receiver in the Car to be tuned to the right station.

// Rates
accident = 1; arriveAtDest = 17280;
detour = 17280; getAccidentInfo = 1440;
moveCar = 288; rejoin = 17280;
removeAccident = 8; sendAccidentInfo = 72;

//Processes
N563261 =

Figure 8: Rule, rejoin(car) shows how a Car rejoins its previ-
ous Path.

Figure 9: Rule arriveAtDest(car) shows a Car finishing its
journey.

("removeAccident(1)", removeAccident).N563269+
("removeAccident(2)", removeAccident).N563396+
("getAccidentInfo(1)", getAccidentInfo).N563357;

N563262 =
("removeAccident(1)", removeAccident).N563416+
("removeAccident(2)", removeAccident).N563424;

...

Based on the PEPA process we can extract performance mea-
sures such as the steady-state solution providing long-term prob-
abilities for all states, the transition throughput giving the actual
long-term frequencies at which transitions are executed, or the
passage-time between occurrences of specific transitions. An in-
teresting property to be analysed in our model is the throughput
of the rule arriveAtDest(car), showing the long-term frequency at
which Cars finish their journey. They are replaced by Cars at the
start of their trip in order to yield a non-reducible (i.e., strongly
connected) CTMC. The throughput is therefore a measure of the
long-term average time between these arrival transitions.

We analyse two different versions of the model, using different
rates for rule sendAccidentInfo(car) by which the TIS informs Cars
about Accidents. This is to evaluate the reduction in journey time
possible by subscribing to a more up-to-date traffic information
system than the traffic news on the local radio. We assume that a
subscription service will provide updates on Accidents on our Path
within a minute of being notified, setting the rate from sendAcci-
dentInfo = 72 to sendAccidentInfo = 1440.

The results reported in the table below show that there is indeed
an improvement of about 10% in the number of cars completing
their journeys per day.

Throughput Local Radio Subscription
arriveAtDest 122.7900462 130.9963369

3. VIEW-BASED ANALYSIS
Most approaches to verification based on state space exploration

face scalability problems. In the second part of the paper, such
problems will be mitigated by separating the model into different
views to independently generate their state spaces and derive their

332

(a) TGCar

(b) TGService

Figure 10: Type graphs of Car and Service views

PEPA processes. The resulting sequential processes will then be
synchronised using PEPA’s cooperation operator.

3.1 Decomposition of Graphical Models
We distinguish two perspectives, that of the Car and its location

and mobility and that of the TIS broadcasting news about Acci-
dents. Given a global model of the system, intuitively a view is
defined by identifying in the global type graph the node and edge
types that should be abstracted from, such as the TIS in the Car
view and Roads and Junctions in the Service view. Start graph
and rules are then reduced to the remaining types, removing all in-
stances of types that are no longer present in the smaller type graph.

This notion of view of graph transformation system has been in-
troduced in [4]. More formally, from the global type graph TG we
define two subgraphs TG1, TG2 ⊆ TG such that TG1 ∪ TG2 =
TG, in our case TGCar and a TGService. Given a subgraph
TG′ ⊆ TG, a TG-typed instance graph G can be projected to
an instance G′ = G|TG′ of TG′ by removing all elements of G
whose types are in TG, but not in TG′. The projection extends
to rules and transformations [4]. From the start graph in Fig. 2 the
project to TGCar just removes the TIS node. Edges of type knows
would be removed, too, but do not occur in the graph. The projec-
tion to TGService removes all but one TIS and two Car nodes.

Start graphs and rules for the two views are obtained from those
of the global model by this projection. Formally, given GTS
G = (TG, P, π) with start graph G0 and TG′ ⊆ TG, we define
G|TG′ = (TG′, P, π′) and G′0 where

• G′0 = G0|TG′ is the projected start graph;

• If π(p) = (x̄) : [N] L → R, then π′(p) = (x̄) :
[N |TG′] L|TG′ → R|TG′ is obtained by applying the pro-
jection to all graphs of the rule.

With a graph transformation system given as a GROOVE model,
we can generate the projection automatically by a transformation
on GROOVE’s XML representation of rules and graphs.

Let us consider what happens when we apply this definition to
the global TIS model, using (sub) type graph TGCar in Fig. 10(a)

(a) accident(car)

(b) removeAccident(car)

(c) arriveAtDest(car)

Figure 11: Service view projections of accident(car),
removeAccident(car), arriveAtDest(car)

for the projection. Rules moveCar(car), accident(car), removeAc-
cident(car), rejoin(car), and arriveAtDest(car) only contain ele-
ments of types occurring in TGCar , so they are kept unchanged
as part of the Car view, as shown in Fig. 3, 5, 8, and 9.

Rules getAccidentInfo(car) and sendAccidentInfo(car) lose all
their nodes of type TIS and their edges of type knows. The remain-
der rules do not have any effect on the graph and are not needed for
synchronisation with rules in the Service view. Rule detour(car) in
Fig. 7 is retained as is, except for the single knows edge, which is
not part of the Car view.

For the Service view, type graph TGService in Fig. 10(b) yields
a projection where only rules getAccidentInfo(car) and sendAc-
cidentInfo(car) are kept unchanged. Rules moveCar(car), de-
tour(car), rejoin(car) are reduced to identities without visible ef-
fect, while rules accident(car), removeAccident(car), and arriveAt-
Dest(car) survive in reduced form, as seen in Fig. 11.

We assume (as happens in our example) that node types equipped
with id attributes that are used as parameters (just Car in our case)
are preserved in the projection. This ensures that the actual pa-
rameters in labels are preserved and are used consistently in both
local views, so that synchronisation over shared labels leads to the
correctly composed model in PEPA.

3.2 Synchronisation of Views
After generating sequential PEPA processes from both the Car

and the Service view, the resulting processes Car and Service
are synchronised using the PEPA cooperation operator, i.e., as Car
¤¢ Service. That means, transitions carrying labels that are

333

shared between the two processes must be executed simultaneously,
while transitions whose labels occur only in one of the two pro-
cesses are independent.

In terms of transition systems, given LTS1 = (S1, L1, =⇒1,s
0
1)

and LTS2 = (S2, L2, =⇒2, s
0
2), their product LTS1 ⊗ LTS2 =

(S, L, =⇒, s0) has as states S all pairs of states (s1, s2) with si ∈
Si. The set of labels is defined by L = L1 ∪ L2 and the transition
relation is the smallest one satisfying

• if l ∈ L1 \ L2 and s1
l

=⇒1 s′1 then (s1, s2)
l

=⇒ (s′1, s2);

• if l ∈ L2 \ L1 and s2
l

=⇒2 ls′2 then (s1, s2)
l

=⇒ (s1, s
′
2);

• if l ∈ L1∩L2, s1
l

=⇒1 s′1 and s2
l

=⇒2 s′2 then (s1, s2)
l

=⇒
(s′1, s

′
2).

The initial state s0 is (s0
1, s

0
2), the pair of initial states of the two

systems.
If we assume PEPA processes P1, P2 and let LTS(P) be the

labelled transition system generated by a PEPA process (ignoring
rates for the time being), the product of transition systems is the
semantic equivalent of PEPA’s cooperation operator, i.e., the reach-
able portions of LTS(P1 ¤¢ P2) and LTS(P1) ⊗ LTS(P2)
are isomorphic. As a consequence, the two systems are bisimilar.
Moreover, a shared label will have the same rate in both sequential
processes and the global process, and synchronisation of transitions
in PEPA retains that rate. Therefore, the relationship between com-
position and product carries over to transition systems with rates
(or CTMC).

Based on this terminology, we have the following property in
support of our methodology.

Proposition (Compositionality) Assume a graph transformation
system G with type graph TG decomposed as TG = TG1 ∪
TG2. Then, the two transition systems LTS(G, G0) and
LTS(G|TG1 , G0|TG1)⊗ LTS(G|TG2 , G0|TG2) are bisimilar.

Proof (Sketch). Given a decomposition of type graphs TG =

TG1 ∪ TG2, we can project global steps G
p(ā)
=⇒ H over TG

to local views TGi ⊆ TG, resulting in steps Gi = G|TGi

p(ā)
=⇒

H|TGi = Hi using the corresponding projections of rule p [4].
We write (G1, G2) ∼ G iff there exist G′i isomorphic to Gi

such that G′i = G|TGi and G′1 ∪ G′2 = G. We show by in-
duction that ∼ is a one-to-one correspondence between reach-
able states in LTS(G, G0|TG1) and LTS(G|TG1 , G0|TG1) ⊗
LTS(G|TG2 , G0|TG2), extending to transitions.

For the start graph, G0 ∼ (G0|TG1 , G0|TG2) because G0 =
G0|TG1 ∪ G0|TG2 . Assume graphs (G1, G2) ∼ G. Then

G
p(ā)
=⇒ H in the global LTS yields projections G1

p(ā)
=⇒ H1 and

G2
p(ā)
=⇒ H2 such that (H1, H2) ∼ H . Vice versa, local steps

G1
p(ā)
=⇒ H1 and G2

p(ā)
=⇒ H2 compose to the global step since they

agree in their actions on the shared part. Formally, this is an ap-
plication of the Distribution Theorem for graph transformation [3].
The key ingredient is the fact that labels determine matches and
transformations up to isomorphism. Therefore, two steps in differ-
ent views with the same label starting from compatible graphs are
consistent as distributed steps and can therefore be amalgamated.

Not surprisingly, therefore, the results of analysing the model ob-
tained by synchronising the two projections coincide with those of
analysing the global model. What is more interesting is the reduc-
tion in the state spaces produced. To witness, the table below shows
the size of the global and local views as generated by GROOVE for
two and three Cars, respectively.

Global model Car view Service view
2 Cars 756 states 84 states 36 states
3 Cars out of memory 936 states 1000 states

It turns out that we are unable to generate the LTS from the global
system directly, but the synchronisation in PEPA of the LTS gen-
erated from the two local views produces a CTMC with 117098
states.

4. CONCLUSIONS
The methodology and case study presented in this paper demon-

strate the principle of using graph transformation for modular
stochastic analysis. We showed that state space explosion can be
mitigated by decomposing the system into views, generating sep-
arately their labelled transition systems and synchronising these in
the stochastic process algebra PEPA, which also serves as the ba-
sis for stochastic analysis. But modularity is not only motivated by
scalability concerns. The two views chosen, of physical mobility
and services, represent two distinct but related concerns of the sys-
tem model. Other concerns such as wireless network connectivity
or the allocation of emergency services could be added in much the
same way. With increasing complexity this will require more dedi-
cated language and tool support to manage a number of views and
derive their corresponding projections automatically.

5. REFERENCES
[1] BALSAMO, S., MARCO, A. D., INVERARDI, P., AND

SIMEONI, M. Model-based performance prediction in
software development: A survey. IEEE Trans. Software Eng.
30, 5 (2004), 295–310.

[2] COLLINSON, M., AND PYM, D. Algebra and logic for
resource-based systems modelling. Mathematical Structures
in Computer Science 19 (2009), 959–1027.

[3] EHRIG, H., HECKEL, R., KORFF, M., LÖWE, M., RIBEIRO,
L., WAGNER, A., AND CORRADINI, A. Algebraic
approaches to graph transformation, Part II: Single pushout
approach and comparison with double pushout approach. In
Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations, G. Rozenberg, Ed.
World Scientific, 1997, pp. 247–312.

[4] HECKEL, R., ENGELS, G., EHRIG, H., AND TAENTZER, G.
A view-based approach to system modelling based on open
graph transformation systems. In Handbook of Graph
Grammars and Computing by Graph Transformation, Volume
2: Applications, Languages, and Tools, G. Engels, H.-J.
Kreowski, and G. Rozenberg, Eds. World Scientific, 1999.

[5] HECKEL, R., LAJIOS, G., AND MENGE, S. Stochastic graph
transformation systems. Fundamenta Informaticae 74 (2006).

[6] HILLSTON, J. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[7] LÖWE, M. Algebraic approach to single-pushout graph
transformation. Theoret. Comput. Sci. 109 (1993), 181–224.

[8] LÖWE, M., KORFF, M., AND WAGNER, A. An algebraic
framework for the transformation of attributed graphs. In Term
Graph Rewriting: Theory and Practice, M. R. Sleep, M. J.
Plasmeijer, and M. van Eekelen, Eds. John Wiley & Sons Ltd,
1993, ch. 14, pp. 185–199.

[9] RENSINK, A. The GROOVE simulator: A tool for state space
generation. In Applications of Graph Transformations with
Industrial Relevance (AGTIVE) (Berlin, 2004), J. Pfaltz,
M. Nagl, and B. Böhlen, Eds., vol. 3062 of Lecture Notes in
Computer Science, Springer Verlag, pp. 479–485.

334

