
Experiences with the PEPA Performance Modelling Tools

Graham Clark Stephen Gilmore Jane Hillston Nigel Thomas

Abstract

The PEPA language [1] is supported by a suite of modelling tools which assist in the solution and
analysis of PEPA models. The design and development of these tools have been influenced by a variety
of factors, including the wishes of other users of the tools to use the language for purposes which were
not anticipated by the tool designers. In consequence, the suite of PEPA tools has adapted to attempt
to serve the needs of these users while continuing to support the language designers themselves. In this
paper we report on our use of the PEPA tools and give some advice gained from our experiences.

1 Introduction
PEPA (Performance Evaluation Process Algebra) extends classical process algebra with the capacity to
assign rates to the activities which are described in an abstract model of a system. Taken together, the
information about the rates of performance of activities and the definition of the outcome of performing
an activity specify a stochastic process and thus PEPA is said to be a stochastic process algebra. The
PEPA language has been applied as a modelling language for distributed computer and telecommunications
systems and for components of flexible manufacturing systems such as robotic workcells. Performance
modelling with process algebras is the topic of workshops such as PAPM [2, 3].

The PEPA language provides a small set of combinators. These allow language terms to be constructed
defining the behaviour of components, via the activities they undertake and the interactions between them.
The syntax may be formally introduced by means of the grammar shown in Figure 1. In the grammar S
denotes a sequential component and P denotes a model component which executes in parallel. C stands for
a constant which denotes either a sequential or a model component, as defined by a defining equation. C
when subscripted with an S stands for constants which denote sequential components. The component com-
binators, together with their names and interpretations, are presented informally below: further information
is in the appendix.

Prefix: The basic mechanism for describing the behaviour of a system is to give a component a designated
first action using the prefix combinator, denoted by a full stop. For example, the component r S
carries out activity r , which has action type and an exponentially distributed duration with
parameter r, and it subsequently behaves as S. Sequences of actions can be combined to build up a
life cycle for a component.

Choice: The life cycle of a sequential component may be more complex than any behaviour which can
be expressed using the prefix combinator alone. The choice combinator captures the possibility of
competition or selection between different possible activities. The component P Q represents a
system which may behave either as P or as Q. The activities of both P and Q are enabled. The first

Laboratory for Foundations of Computer Science, The University of Edinburgh, James Clerk Maxwell Building, Mayfield
Road, Edinburgh EH9 3JZ. Email: gcla, stg, jeh, nat @dcs.ed.ac.uk.



S :: (sequential components)
r S (prefix)

S S (choice)
CS (constant)

P :: (model components)
P

L
P (cooperation)

P L (hiding)
C (constant)

Figure 1: The syntax of PEPA

activity to complete distinguishes one of them: the other is discarded. The system will then behave as
the derivative resulting from the evolution of the chosen component.

Constant: It is convenient to be able to assign names to patterns of behaviour associated with components.
Constants provide a mechanism for doing this. They are components whose meaning is given by a
defining equation.

Hiding: The possibility to abstract away some aspects of a component’s behaviour is provided by the hiding
operator, denoted by the division sign in P L. Here, the set L of visible action types identifies those
activities which are to be considered internal or private to the component. These activities are not
visible to an external observer, nor are they accessible to other components for cooperation. Once an
activity is hidden it only appears as the unknown type ; the rate of the activity, however, remains
unaffected.

Cooperation: Most systems are comprised of several components which interact. In PEPA direct interac-
tion, or cooperation, between components is represented by the butterfly combinator. The set which is
used as the subscript to the cooperation symbol determines those activities on which the cooperands
are forced to synchronise. Thus the cooperation combinator is in fact an indexed family of combina-
tors, one for each possible cooperation set L. When cooperation is not imposed, namely for action
types not in L, the components proceed independently and concurrently with their enabled activities.
However if a component enables an activity whose action type is in the cooperation set it will not be
able to proceed with that activity until the other component also enables an activity of that type. The
two components then proceed together to complete the shared activity. The rate of the shared activity
may be altered to reflect the work carried out by both components to complete the activity.
In some cases, when an activity is known to be carried out in cooperation with another component, a
component may be passive with respect to that activity. This means that the rate of the activity is left
unspecified and is determined upon cooperation, by the rate of the activity in the other component.
All passive actions must be synchronised in the final model.
If the cooperation set is empty, the two components proceed independently, with no shared activities.
We use a compact notation—with the two cooperands separated by parallel lines—to represent this
case.



PEPA serves as a high-level notation for Markov modelling because it is possible to generate directly from
a PEPA model a continuous-time Markov process which faithfully encodes the behavioural and temporal
aspects of the PEPA model. Through the analysis and solution of this Markov process the modeller can
undertake an experimental investigation of the system which the model represents.

However, the PEPA notation is more than simply a concrete syntax for describing Markov processes.
Central to the design of the language is the identification and representation of compositional structure
within a model. This structure proves to be valuable both in gaining confidence that a given model correctly
represents the intended system under investigation and also when seeking a solution for the corresponding
Markov process.

One reason to fix on a formal notation for a task such as performance modelling is to avoid misunder-
standing and misinterpretation of a model. Of course, even when a notation is carefully defined, as PEPA
is, there may still be errors of misrepresentation of parts of the system within the model but all of the users
of the model can at least agree on the correct interpretation of a given model through recourse to the formal
definition of the language. Another reason to fix on a formal notation for performance modelling is to be
able to automate some parts of the manipulation and checking of models, and that is our topic here.

We have implemented a suite of integrated tools which perform the well-formedness checking of PEPA
models and allow a modeller to investigate their model through generation and solution of the correspond-
ing Markov process or through simulation. We have made these tools freely available to others and have
modified and extended them in response to their suggestions and observations. We hope that our description
of this process here will be useful to others who are undertaking similar work in constructing performance
modelling tools, whether based on process algebra or not.

2 Structure of this paper
In the following section we describe the PEPA modelling tools in sufficient detail to allow the reader to
understand their capabilities. In Section 4 we describe in outline the aims and interests of those who have
been working on the development of the PEPA language itself. These are the primary users of the PEPA
modelling tools. In Section 5 we describe the community of users outside this group who have adopted the
tools and applied them to their problems of interest. After introducing these two groups of PEPA users we
explain in Section 6 how their contrasting interests make demands on the nature of the PEPA tools.

3 The PEPA modelling tools
There are six tools in the PEPA suite:

1. the workbench;
2. the state finder;
3. the reward assessor;
4. the analyser;
5. the discrete event simulator; and
6. the PEPA-to-Ada translator.

3.1 The PEPA Workbench

The PEPAWorkbench is used to check the well-formedness of PEPAmodels and to generate from them their
Markov process representation. It detects faults such as deadlocks and cooperations which do not involve
active participants. It is described in full in an earlier paper [4].



In essence, the translation process which occurs within the PEPAWorkbench accepts a PEPA model as
input and produces a matrix containing the Markov process encoding of the model given. This relationship
is depicted in Figure 2. In the example shown there, the PEPA model has two components which execute

P1
def start r1 P2

P2
def run r2 P3

P3
def stop r3 P1

P1 P1

2r1 r1 r1 0 0 0 0 0 0
0 r1 r2 0 r2 r1 0 0 0 0
0 0 r1 r2 0 r1 r2 0 0 0
r3 0 0 r1 r3 0 0 0 r1 0
0 0 0 0 2r2 0 r2 r2 0
r3 0 0 0 0 r1 r3 r1 0 0
0 r3 0 0 0 0 r2 r3 0 r2
0 0 r3 0 0 0 0 r2 r3 r2
0 0 0 r3 0 r3 0 0 2r3

Figure 2: The PEPAWorkbench schema

in parallel, both initiated in state P1. The components are independent (they do not cooperate) and each has
three states and so the generator matrix for the corresponding Markov process has dimension nine. Even with
an example as small as this one, it is apparent that constructing a Markov process matrix by hand directly is
an error-prone activity. The matrix is an unstructured representation of the system: subcomponents, states
and activities are not named. Only rates of activities are entered into the matrix. The useful descriptive
function provided by the PEPA notation is to allow matrices such as these to be described by more compact
and expressive process algebra models.

In practice, both the mathematical syntax used within a PEPA description and the mathematical syntax
used to express a matrix must be replaced by rather more prosaic concrete syntax in order that the input can
be conveniently composed with a simple text editor and in order that the resulting matrix representation can
be conveniently processed by other tools. In addition, the PEPAWorkbench must also produce a state table
which explains which states of the PEPA model have been assigned which numerical indices for the matrix.

The investigation into properties of interest to the performance modeller working with PEPA proceeds by
determining the steady-state probability distribution for the system. The purpose of the analysis performed
by the Workbench has been to reject PEPA models which are not well-formed. A model which was not
well-formed would not correspond to an irreducible Markov process over a finite state space. These are
necessary conditions to guarantee that all of the states of the Markov process are positive-recurrent, and thus
reaches an equilibrium state.

The steady-state distribution may be found by applying any one of a number of linear algebra solution
methods to the generator matrix, although as we note in Section 6, some of these methods are of limited
use for PEPA models of even modest size. For this reason we have recently extended the PEPAWorkbench
with the capability to reduce models to a canonical form internally, thereby automatically aggregating the
model [5]. The effect of aggregation on a model is shown in Figure 3, generated by the PEPA Workbench
itself. Where a new expression for a rate is formed in the aggregated model it appears as a black dot in the
picture.

3.2 The PEPA State Finder

The PEPA State Finder allows a PEPA modeller to investigate the state space which has been generated
by the PEPA Workbench. The state finder provides a simple pattern language which the modeller can use
to describe states of interest. Continuing the example from the previous section, a modeller interested in
testing how often either component in the tiny example was the first derivative of P would prepare the input



Figure 3: Aggregation of models by the PEPAWorkbench

shown in the left-hand box in Figure 4. The PEPA State Finder would generate the function which is shown
in the right-hand box.

% We are checking
% for component P1
% in either case
test: P1
test: P1

test := proc ( ) (
[1] # from state P1 P1

+ [3] # from state P1 P2
+ [6] # from state P1 P3
+ [2] # from state P2 P1
+ [4] # from state P3 P1

)
end:

Figure 4: A function generated by the PEPA State Finder

Notice that here the function correctly avoids counting twice the state with two copies of the first deriva-
tive of P. This would be a mistake which could easily be made if building up the function from a number
of smaller functions, defined separately. Typically, the PEPA State Finder is used when investigating the
results obtained after solving the Markov process produced by the Workbench although this is not the only
possible use. Another use is to pose questions about the reachability of certain states within the model. The
analysis which can be performed in this way is a weak form of liveness analysis, allowing the modeller to
determine in some cases that certain parts of the model are redundant. This is typically caused because the
conditions are never met to allow some cooperations between model components to take place.

A significant disadvantage of the pattern language is that it is too syntactic, distinguishing between states
which are (logically) equivalent. The PEPA Reward Assessor provides a more expressive logical notation
for characterising states.



3.3 The PEPA Reward Assessor

Classical process algebras are complemented by modal logics, which formally express properties of a model
in terms of its behaviour. Verifying that a system possesses a particular logical property is called model
checking. A technique is described in [6] which utilises a simple formalism, based on Hennessy-Milner
logic. It was developed with the explicit intention of supporting behavioural reasoning about the quantitative
behaviour of PEPAmodels. At the level of the underlying Markov process, rewards are still used to calculate
performance measures; however whether or not a reward is assigned to a component of the model is decided
in terms of the behaviour of the component, in keeping with the process algebra approach.

Formulae are built from Boolean connectives and modal operators thus:

(formula) :: 1 2 1 2 K K

where K ranges over action types. This logic has a simple semantics; for example a PEPA model satisfies
the formula a if it may perform an activity of type a such that its derivative satisfies (which every
model does, trivially). Therefore this formula specifies that a process may perform an a activity. Similarly,
a process satisfies 1 2 if it satisfies both 1 and 2.

The PEPA Reward Assessor is an experimental extension to the PEPAWorkbench which allows rewards
to be associated with model states which satisfy a given logical formula. It implements a significant subset
of the ideas described in [6]. This technique provides an expressive way in which to discriminate between
uninteresting states, and states which are relevant to a particular performance measure. Using the PEPA
Reward Assessor, it is possible to isolate states which regular expressions alone could not capture. Further-
more, use of this technique confers the added advantage that reward specifications need not be modified to
correctly compute performance measures for models which have been reduced, for example by using the
aggregation method described in [5]. However this extra expressibility requires care and the effective use of
this tool may require a little more experience than that needed to use the PEPA State Finder.

Figure 5 shows a throughput analysis of a simple model using the PEPA Workbench. Dev attempts
to transmit a packet consisting of a connection header and some data. However it may fail to connect, in
which case it immediately retries. We would only wish to consider the throughput of legitimate data, and
not failed connection attempts; therefore the logical expression selects only those states in which Dev has
made a connection, and is about to transmit data. These states are assigned the data transmission rate as a
reward. The six-state model has a reward assigned to states 4 and 6 only.

3.4 The PEPA Analyser

One appealing aspect of the use of a formal notation for the high-level description of Markov processes
is the potential to automate the recognition of certain classes of processes which have desirable solution
properties. The definition of the method of recognising these classes solely from their description in the
high-level notation is termed finding a syntactic characterisation. The strength of these characterisations is
that they do not require the generation and examination of the Markov process encoding of the model and
thus they are applicable to models whose state space is too large to allow them to be examined by numerical
solution. The PEPA Analyser detects properties such as quasi-separability in models [7]. Models which
are quasi-separable can be simplified significantly through a decomposition which can still allow the exact
computation of many performance measures of interest. An extension is planned to address quasi-reversible
and reversible models also.



%We only measure throughput of successful transmissions
throughput: trans trans trans rate trans

Dev def check r1 Try
Try def trans fail Try trans succeed Con
Con def trans data Dev
Bus def check reset r2 Bus

Dev
check

Bus

R[1] := R[1]+0.0: % Dev Bus
R[2] := R[2]+0.0: % Try (reset , r2).Bus
R[3] := R[3]+0.0: % Dev (reset , r2).Bus
R[4] := R[4]+data: % Con (reset , r2).Bus
R[5] := R[5]+0.0: % Try Bus
R[6] := R[6]+data: % Con Bus

Figure 5: The PEPA Reward Assessor schema

3.5 The PEPAroni discrete-event simulator

A theme of recent stochastic process algebra research has been the introduction of generally distributed
activities. The hope is that such an addition will lead to a modelling language which retains the structural
benefits of a process algebra, while allowing greater expressibility when modelling systems. The addition
of such general probability distributions renders false the convenient Markovian assumption, and obtaining
solutions for such models is difficult in general. There are two approaches to this problem. The first is
to resort to stochastic simulation, deriving performance measures from particular simulation runs of the
model. If done with care, this can yield a useful degree of confidence in the model’s behaviour. The
second approach is to make use of the theory of stochastic insensitivity, the application of which guarantees
that in some circumstances, exponential distributions may be used to replace general distributions, without
affecting the model’s steady state solution. Conventional solution methods for Markovian models may then
be used.

The development of PEPAroni was motivated by both of the approaches described above. However,
rather than focusing on developing the PEPA modelling framework to support general distributions, the
intention was to investigate situations in which general distributions may safely replace exponential distri-
butions in PEPA models.

Rather than developing a simulation application from scratch, it made sense to investigate simulation
frameworks upon which a process algebra interface could be built. One such framework is simjava [8].
Implemented in Java, it provides a framework for discrete event simulation, and, if the developer feels
particularly creative, supports the deployment of animations as applets.



Arguably, the fact that all simulations would be based upon Java might have disadvantages, but in
practice, this has not turned out to be the case. Speed is an issue when long simulation runs are desirable for
statistical accuracy. In the past, Java applications have tended to run considerably more slowly than native
compiled code. However this problem is alleviated by the recent appearance of just-in-time compilers
for Java. Secondly, our language choice marked a departure from the traditional use of the Standard ML
programming language, and its attendant aids to the programmer. Fortunately this has not been a serious
issue either, since the PEPA interface is being developed in Pizza [9], a superset of Java. (The name for
our application was simply too good an opportunity to miss.) Pizza extends Java with several features, of
which the most useful was class cases, allowing objects to be built and processed in a very similar fashion
to those created with datatypes in Standard ML. Process algebra models are built compositionally, and the
operational semantics of PEPA define process behaviour compositionally. This elegance gave us a degree
of confidence in the correctness of our implementation. The Pizza compiler translates programs directly to
Java bytecode, and so no portability is lost.

PEPAroni is currently under active development. An alternative to providing concrete simulation models
is to translate a PEPA process directly into the syntax of another programming language, thus allowing it to
be used as a template for software development. This is the approach taken by the PEPA-to-Ada translator,
described next.

3.6 The PEPA-to-Ada translator

One area where stochastic process algebras can be most fruitfully applied is in the investigation of the poten-
tial performance of a yet-to-be-constructed software system. One example of such a software system which
would benefit from an initial performance-based exploration of its design and construction might be the
control system for a hybrid manufacturing process. In these application areas embedded systems languages
such as Ada [10] have proven themselves to be reliable and useful. We considered the problem of develop-
ing an Ada software system from a PEPA performance model previously [12, 13] and we have implemented
a translator from PEPA to Ada which faithfully represents both the behavioural and performance aspects
of the PEPA model in the generated Ada program. The Ada program which is produced can then be used
directly as a simulator for the PEPA model or it can be used as the basis of further software development
work which will eventually form the system implementation.

The idea that a performance model of a software system could be expressed in the implementation
language of the system itself might give the idea that a special-purpose modelling language is not necessary.
To show that it is still a convenient part of the process consider the PEPA model shown in Figure 6.

Buffer def Put r Get r Buffer
Producer def Put Producer
Consumer def Get Consumer

Producer
Put

Buffer
Get
Consumer Buffer

Get
Consumer

Figure 6: An example input for the PEPA-to-Ada translator

This model describes a producer which puts goods into one of two buffers. These goods are extracted
from each of the buffers by the consumer which is associated with that buffer. Thus the producer and the
buffers cooperate on the Put action and the consumers cooperate with their buffer on the Get action. The



implicit choice of buffer made by the producer and the coupling of buffers and consumers is achieved through
the specification of co-operation sets for these model components. In contrast these must be represented
explicitly in the programming language, making it a more cumbersome and less expressive notation for
analysis and reasoning: the generated Ada code for this example is 80 lines long.

4 The language developers
The PEPA modelling tools have been developed in order to deepen our understanding of the language and
to allow us to thoroughly check examples of modest size which we wish to use as illuminating examples
in papers and articles. Sometimes these examples are sufficiently simple that it would be conceivable to
examine them by hand but our motivation for using the tools is the reduced potential for clerical errors
which they afford.

Of course, the classification of examples as being either little illustrations or realistic case studies is not
a precise one. To a theoretician a little illustration might have only tens of states and a realistic case study
a hundred. For a practising performance engineer, such models are more likely to have thousands of states
and millions of states respectively. The existence of a suite of modelling tools such as ours helps us to move
from the theoretician’s world closer to the world of the practising performance engineer.

The existence of the tools has also helped us to ensure the accuracy of translations and operations on
PEPAmodels. Syntactic manipulations are delicate constructions and without the existence of a tool to apply
the manipulation it is all too easy to convince oneself of the validity of a seriously flawed construction.
Perhaps not unexpectedly, this was particularly the case with the translation into the Ada programming
language where we found that several of the subtle complexities of the Ada programming language had
escaped us before we implemented and tested our translation tool.

5 The user community
The user perspective on our tools is quite different from ours. It has been our experience that the community
of users who have adopted our tools have come from a background where they have been accustomed to
modelling systems with formal notations such as CCS or CSP [14, 15]. In these settings only the behaviour
of the system is modelled and thus there is no notion of model solution to discover a measure such as
throughput or component utilisation. Given this background, the model solution part of the performance
modelling process came as an unexpected complication.

In another way the user perspective on the PEPA tools differs from ours. We have undertaken case
studies [16] because we have felt that it would be an unwise practice to develop a theoretical framework for
efficient investigation of distributed systems without simultaneously assessing its practical utility. However,
when others have used our modelling tools we have found that it is frequently because they have a particular
application which they wish to investigate and they have adopted the PEPA formalism for the description
and analysis of the application of interest.

In this setting it is then typical for the users of our modelling tools to observe that they would wish
to have an extended modelling language which included, for example, operators such as the LOTOS dis-
abling operator or sequential composition at the level of model components [17] or parametric definition of
components [18]. These facilities would make the modelling language more comfortable to use but until
complementary solution techniques have been devised they would in fact only serve to allow the description
of models with larger state spaces, thereby giving additional problems for the model solution utilities.

Nonetheless, users’ opinions of our modelling tools have been favourable. In [18] the authors describe
their experience with the PEPA Workbench as “positive, in the sense that we did not encounter any flaws



and the results obtained were consistent with—while at the same time more accurate than—those obtained
by the traffic analysis methods”. We have often hoped that stochastic process algebras would complement
existing longer-established methods of performance modelling so it comes as a welcome discovery to find
that they can also improve on the results obtained by existing methods!

6 Solution methods and tools
The benefits to be gained from using a stochastic process algebra to model a computer system come from
the insights into the dynamic behaviour of the system which can be obtained by investigation of the alter-
ation of the steady-state probability distribution of the system under changes in the rates of performance
of activities. From a controlled series of experiments such as these the modeller can determine a variety
of performance measures such as the identification of bottlenecks, the throughput of items in the system,
component utilisation or mean waiting times.

Before we gained experience in the use of our performance modelling tools we had pessimistically
assumed that limits on the effectiveness of our tools would be set by their own inability to generate Markov
process representations of PEPA models. In contrast to our expectations, we have discovered that the limits
on the applicability of our tools come from the inability of other packages to solve the Markov process
representations which we generate. We have also discovered that different solution tools suit different groups
of PEPA users. We discuss these findings here.

6.1 Maple

For small examples such as the ones which we include in expository papers and articles we have found
that the Maple computer algebra package provides an excellent working environment for analysis of model
solutions. Maple has a profound advantage over many of its competitors: it can provide symbolic solutions
in terms of the activity rates from the model. However, solutions which can be computed are typically
symbolic in only one of the rates. The advantage of offering symbolic solutions is further qualified by the
fact that it limits the size of models whose solutions may be computed. Maple uses Gaussian elimination
with partial pivoting, which we found to be suitable for models of only a few thousand states.

6.2 Matlab, Mathematica and others

Larger models, such as those investigated by some of our users, outstrip the capabilities of the Maple com-
puter algebra system but do fall within the scope of numerical computing platforms such as Matlab and
Mathematica. Both [17] and [18] used Matlab to solve their models and analyse the results. Here the size of
the models which could be solved increased ten-fold from those which could be solved by Maple.

6.3 Bespoke solvers

Mathematical modelling environments such as Maple, Matlab and others provide a comfortable working
environment for less experienced modellers because they provide convenient and effective representations of
the matrices and vectors which are needed to store the Markov process encoding of the user’s model and the
steady-state probability distribution. In addition, they provide flexible Algol-like programming languages
for the definition of functions over these matrices and vectors, as illustrated in Figure 4. However, if one
is willing to forgo some of these comforts it is possible to analyse larger models or to process them more
efficiently.

One of the most effective solution methods which we have used is the preconditioned biconjugate gradi-
ent method. We obtained a finely tuned implementation of this from the Numerical Recipes collection [19].



For a model of nearly 20,000 states we reduced the solution time by a factor of fifteen when compared with
the Matlab solution time for the steady-state distribution of the same model.

However, in view of the complications which we have already noted that users can encounter we have
decided to distribute the PEPA modelling tools only in those forms which work with high-level computing
environments such as Maple, Matlab and Mathematica. In this way, we hope to reduce the potential for
error when working with unstructured numerical values as one does when running a C routine outside such
an environment.

7 Implementation notes
With only a few exceptions, the PEPA modelling tools are implemented in the functional programming
language Standard ML [20]. This language has served us well in allowing us to produce reliable tools
quickly and to have them be flexible enough to permit revision and modification to adapt to the different
needs of different user groups. Standard ML also supports the dissemination and delivery of our tools
because it is available for a wide number of platforms in a variety of implementations, some of which have
very modest system requirements. We have found that the language’s strong type system is a significant
aid in eliminating a number of errors which would have manifested themselves at run-time if working in an
untyped language.

Standard ML has provided a clean implementation platform for us, which we have rarely needed to leave.
Two exceptions to this have been the C implementation of the biconjugate gradient method solver and the
use of a UNIX tool (grep) called from the PEPA State Finder. This latter excursion from Standard ML
proved to be a foolish one since we discovered that it gave rise to problems for users whose version of grep
differed from ours. We re-wrote the PEPA State Finder to eliminate the need to use regular expressions
to generate the model functions, and thereby repaired the portability problem which we had introduced.
Furthermore, on the final occasion we did not develop in Standard ML, the ML-like features provided by
the Pizza programming language were familiar, and provided some confidence in the correctness of our
implementation.

7.1 Availability of the modelling tools

The PEPA modelling tools, together with user documentation and papers and example PEPA models are
available from the PEPAWeb page at the address http://www.dcs.ed.ac.uk/pepa.

8 Further work
Development of the existing PEPA modelling tools is ongoing and other directions will also be explored,
including debugging. The performance measures which are calculated by the solution of the generated
Markov process, or by simulation, are only as good as the model from which they were derived. If there
is a logical flaw in the model of the system then the results could be entirely worthless, irrespective of
whether they were derived by solution or simulation. Thus the suite of PEPA modelling tools seeks to
give the modeller a number of methods of uncovering errors in their models. These include state-space
construction, reachability analysis, satisfaction of a logical description, examination of simulation runs and
will also include interactive debugging. The PEPA debugger is not yet complete but will eventually allow
modellers to set breakpoints on both states and activities, run their models until a breakpoint is encountered
and then fire selected transitions and continue. The degree of coverage of the state space of the model will
be estimated.



9 Conclusions
We believe that others who are developing tools for a performance modelling notation which extends a be-
havioural modelling notation—as our stochastic process algebras extend classical process algebras—might
find that the users who adopt their tools have similar backgrounds and expectations to ours. We were sur-
prised by the diversity and range of the tools which were required to support a small modelling language.
Many of these have been created and others are planned. Our aim has been to provide modellers who are
working with the PEPA modelling language with high-level tools to support all aspects of the performance
modelling process and give them a variety of ways of investigating, exploring and analysing the models
which they create.

Acknowledgements

Robert Holton wrote the Ada statistics gathering packages which is used by the Ada code which is generated
by the PEPA-to-Ada translator. Graham Clark is supported by EPSRC studentship 95306547. Stephen
Gilmore is supported by the ‘Distributed Commit Protocols’ grant from the EPSRC and by Esprit Working
group FIREworks. Jane Hillston and Nigel Thomas are supported by the ESPRC ‘COMPA’ grant.

References
[1] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.

[2] S. Gilmore and J. Hillston, editors. Proceedings of the Third International Workshop on Process
Algebras and Performance Modelling. Special Issue of The Computer Journal, 38(7), December 1995.

[3] M. Ribaudo, editor. Proceedings of the Fourth Annual Workshop on Process Algebra and Performance
Modelling. Dipartimento di Informatica, Universitá di Torino, CLUT, July 1996.

[4] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process Algebra-based Ap-
proach to Performance Modelling. In Proceedings of the Seventh International Conference on Mod-
elling Techniques and Tools for Computer Performance Evaluation, number 794 in Lecture Notes in
Computer Science, pages 353–368, Vienna, May 1994. Springer-Verlag.

[5] S. Gilmore, J. Hillston, and M. Ribaudo. An efficient algorithm for aggregating PEPA models. Sub-
mitted for publication, 1997.

[6] G. Clark. Formalising the specification of rewards with PEPA. In Ribaudo [3], pages 139–160.

[7] N. Thomas and S. Gilmore. Applying quasi-separability to Markovian process algebra. In C. Priami,
editor, Proceedings of the Sixth International Workshop on Process Algebra for Performance Mod-
elling, Nice, France, September 1998.

[8] F. Howell and R. McNab. simjava: a discrete event simulation package for Java with applications in
computer systems modelling. First International Conference on Web-based Modelling and Simulation,
San Diego CA, 1998.

[9] M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. Proc. 24th ACM Sympo-
sium on Principles of Programming Languages, January 1997.

[10] J. Barnes. Programming in Ada 95. Addison-Wesley, 1996.



[11] R. Pooley and J. Hillston, editors. Proceedings of the Twelfth UK Performance Engineering Workshop,
Department of Computer Science, The University of Edinburgh, September 1996.

[12] S. Gilmore, J. Hillston, and D.R.W. Holton. From SPA models to programs. In Ribaudo [3], pages
179–198.

[13] S. Gilmore and J. Hillston. Refining internal choice in PEPA models. In Pooley and Hillston [11],
pages 49–64.

[14] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[15] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[16] S. Gilmore, J. Hillston, D.R.W. Holton, and M. Rettelbach. Specifications in Stochastic Process Al-
gebra for a Robot Control Problem. International Journal of Production Research, 34(4):1065–1080,
1996.

[17] D.R.W. Holton. A PEPA specification of an industrial production cell. In Gilmore and Hillston [2],
pages 542–551.

[18] A. El-Rayes, M. Kwiatkowska, and S. Minton. Analysing performance of lift systems in PEPA. In
Pooley and Hillston [11], pages 83–100.

[19] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.F. Flannery. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press, second edition, 1992.

[20] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML: Revised 1997. The
MIT Press, 1997.

A Operational Semantics and the Underlying CTMC
Model components capture the structure of the system in terms of its static components. The dynamic
behaviour of the system is represented by the evolution of these components, either individually or in coop-
eration. The form of this evolution is governed by a set of formal rules which give an operational semantics
of PEPA terms. The semantic rules, in the structured operational style of Plotkin, are presented in Figure 7
without further comment; the interested reader is referred to [1] for more details. The rules are read as
follows: if the transition(s) above the inference line can be inferred, then we can infer the transition below
the line.

Thus, as in classical process algebra, the semantics of each term in PEPA is given via a labelled multi-
transition system—the multiplicities of arcs are significant. In the transition system a state corresponds
to each syntactic term of the language, or derivative, and an arc represents the activity which causes one
derivative to evolve into another. The complete set of reachable states is termed the derivative set of a model
and these form the nodes of the derivation graph formed by applying the semantic rules exhaustively.

The timing aspects of components’ behaviour are not represented in the states of the derivation graph,
but on each arc as the parameter of the negative exponential distribution governing the duration of the
corresponding activity. The interpretation is as follows: when enabled an activity a r will delay for a
period sampled from the negative exponential distribution with parameter r. If several activities are enabled
concurrently, either in competition or independently, we assume that a race condition exists between them.
Thus the activity whose delay before completion is the least will be the one to succeed. The evolution of
the model will determine whether the other activities have been aborted or simply interrupted by the state



Prefix

r E
r
E

Cooperation

E
r
E

E
L
F

r
E

L
F

L
F

r
F

E
L
F

r
E

L
F

L

E
r1

E F
r2

F

E
L
F

R
E

L
F

L where R
r1

r E
r2

r F
min r E r F

r E is the apparent rate of in E

Choice

E
r
E

E F
r
E

F
r
F

E F
r
F

Hiding

E
r
E

E L
r
E L

L
E

r
E

E L
r

E L
L

Constant
E r E

A r E
A def E

Figure 7: The operational semantics of PEPA



change. In either case the memoryless property of the negative exponential distribution eliminates the need
to record the previous execution time.

When two components carry out an activity in cooperation the rate of the shared activity will reflect the
working capacity of the slower component. We assume that each component has a capacity for performing
an activity type , which cannot be enhanced by working in cooperation (it still must carry out its own
work), unless the component is passive with respect to that activity type. For a component P and an action
type , this capacity is termed the apparent rate of in P. It is the sum of the rates of the type activities
enabled in P. The apparent rate of in a cooperation between P and Q over will be the minimum of the
apparent rate of in P and the apparent rate of in Q.

The derivation graph is the basis of the underlying Continuous Time Markov Chain (CTMC) which is
used to derive performance measures from a PEPA model. The graph is systematically reduced to a form
where it can be treated as the state transition diagram of the underlying CTMC. Each derivative is then a
state in the CTMC. The transition rate between two derivatives P and Q in the derivation graph is the rate
at which the system changes from behaving as component P to behaving as Q. It is denoted by q P Q
and is the sum of the activity rates labelling arcs connecting node P to node Q. In order for the CTMC to
be ergodic its derivation graph must be strongly connected. Some necessary conditions for ergodicity, at
the syntactic level of a PEPA model, have been defined [1]. These syntactic conditions are imposed by the
grammar introduced earlier.


