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Abstract: The process of obtaining transient measures from a Markov chain as implemented in the software,
ipclib is described. The software accepts models written in PEPA, Bio-PEPA or as a Petri net. In the case of the
process algebras, a rich query specification language particularly well suited for the derivation of passage-time
quantiles is provided. Such measurements are obtained from the derived Markov chain through a process
known as uniformisation. The authors detail how the process algebra and query specification language allow
one to ensure that the passage-time calculation is valid and then the entire process through to the final
calculation of the cumulative distribution and probability density functions of the passage in question. The
authors also show a more generic transient measure for which the full probability distributions at specific
times are required.
1 Introduction
When analysing a performance model of a system a common
query is over the duration of a given passage within the
model. In a client–server style model, this is often the
response time, that is the time that a client must wait for
their request to be satisfied by the server. In other models
we are simply analysing the time taken between two events
or circumstances. Where the model in question is a
continuous time Markov chain (CTMC) or a representation
from which a CTMC may be derived, the average passage
duration may be computed from the steady-state probability
distribution obtained by solving the CTMC.

In general CTMCs are well suited to the analysis of
average behaviour, derivable from the steady-state
probability distribution. This paper is concerned with
transient analysis of models that compute measures that are
not time independent. Essentially we wish to analyse the
probability distribution of a model a given time after some
event or from the initial configuration. Here we describe
software support for the computation of passage-time
quantiles computed via a technique known as
uniformisation. A passage-time quantile is simply a point
taken along the cumulative distribution function (cdf) of
the passage in question. The cdf maps time (usually along
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the x-axis) against the probability of completing the
passage at or before that time. This allows the modeller to
answer such questions as: ‘What is the probability that a
request is responded to within 4 seconds?’ It is also possible
to plot the probability density function (pdf) where the cdf
is the integral of the pdf. The pdf maps time against the
probability density of completing the passage at exactly that
time.

This paper describes the calculation of passage-time
quantiles/densities from a model which may be translated into
a CTMC. The technique used is known as uniformisation –
though it is sometimes called randomisation. We show how
uniformisation has been integrated into a generic software tool
for analysing models written in higher-level formalisms.
Specifically we are chiefly interested in models written in the
stochastic process algebra PEPA [1] and its derivative
biological modelling language Bio-PEPA [2].

1.1 Related work

Hydra [3] is another software tool used for extracting
response-time profiles, in that case from Petri nets. The
focus in Hydra is on analysing very large models, for
response time this obviously depends on rate values
involved (see Section 5.4) but it has been used to solved
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models with state-space sizes of the order of 106 and even
107. One technique that is used is pre-compilation, the
model is input by the user and the Hydra software
generates a program in standard C to generate the state-
space and solve the generator matrix. This program is then
compiled and run. From the outset the ipc software has
been linked with the Hydra software; the ipc software can
generate a Hydra model description from a PEPA model
(and hence also from a Bio-PEPA model) or ipc can read
in Hydra model description files. Recently some of the
techniques described in this paper have been implemented
in the Hydra software, most notably the uniformiser now
produces both the cdf and pdf of a passage at the same
time and the absorbing state is used to terminate the
uniformisation computation (see Section 5.1).

The Möbius [4] project is aimed at delivering a multi-
paradigm modelling software tool. As such there is some
similarity with the ipc software, although we are mostly
concerned with process algebras and in particular PEPA
whereas the Möbius software is not limited to process
algebras. In addition, Möbius, has several analysis
techniques including discrete-event simulation. We have
discrete-event simulation and continuous simulation
methods available in the PEPA Eclipse Plug-in [5], but
not in the ipclib suite. The Möbius framework excels in the
specification of reward structures over the input model.
These allow the definition of instant-of-time or interval-of-
time rewards. Our framework here does not provide a
comparable reward specification language. Additionally
working with Sanders of the Möbius project, Diener
completed a masters thesis [6] comparing several
uniformisation techniques.

The MRMC (Markov Reward Model Checker) [7] project
has produced several results for transient analyses of Markov
chains. Here the problem is stated as time-bounded
reachability – and amounts to determining the probability
of reaching a set of target states within a given time bound.
In [8] the authors report on the efficient detection of
steady state during transient analysis. When performing a
transient analysis over a large time span – suppose the user
has asked for the time series analysis for a given time
bound – it may be that the model reaches steady state or
an equilibrium before the end of the time bound. When
this happens the software can stop calculating for further
time points since they will all have the same probability
distribution. However, for a passage-time analysis this is
inappropriate since we modify the Markov chain to have an
absorbing state such that we measure only the first passage
and not subsequent passages. Although we focus on
passage analysis our software can also be used for such
transient analysis (see Section 6) and there such
optimisation is certainly appropriate.

The Prism [9] model checker implements a uniformisation
algorithm in order to model check transient properties of
CTMCs. The software can be used to check properties
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written in Continuous Stochastic Logic (CSL) [10]. Our
ipc software is capable of translating process algebra models
into an input suitable for the Prism model checker, thus
allowing the user familiar with CSL the opportunity to
specify their queries in their known setting. By using ipc to
generate the Prism model the users benefit from the
advantages of compositional modelling and in particular
with respect to the constraints imposed on passages
discussed here in Sections 3 and 4.

Structure: The paper is organised as follows in Section 2 we
first give a brief introduction to PEPA, the process algebra
in which our example models are written. We then give
two example models which we will use to illustrate the
techniques implemented in our software. In Section 3 we
detail the constraints imposed on the passage-time query in
question by the use of the uniformisation algorithm. The
constraints refer to the transitions within the Markov chain
in relation to the specified passage. Then in Section 4 we
explain how the passage is specified by the user where the
user is concerned with the model at the level of the process
algebra but the uniformisation routine expects a Markov
chain and source and target sets of states. We demonstrate
how the use of a compositional process algebra allows us to
ensure that the query the user specifies is always translated
into a valid passage-time query which does not violate any
of the imposed constraints. In addition we discuss some
optimisations that are made possible through the use of a
process algebra to derive the underlying Markov chain.
Section 5 provides a full description of the uniformisation
technique in order to obtain passage-time quantiles from a
Markov chain for a passage specified as a set of source and
a set of target states and provides results for our first
example. Our second example is then analysed in Section
6, which is concerned with the calculation of more general
transient measures in which probability distributions at
specified times are calculated. In particular, this allows
the production of a time series analysis. We finish by
detailing our implementation in Section 7 and concluding
in Section 8.

2 Example models
We illustrate the tools and techniques in this paper by
referring to two examples. We draw one example from the
area of computer service analysis and the other from
systems biology. We must first briefly introduce our
favoured process algebra, PEPA.

2.1 PEPA

We use the popular process algebra PEPA to compositionally
describe our models. A model described by a PEPA
description has an underlying Markov chain representation,
although the user is hidden from the details of the
underlying states. Each defined sequential component is a
description of a small stateful process and each such is
combined using the cooperation combinator with the
IET Softw., 2009, Vol. 3, Iss. 6, pp. 495–508
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restriction that the two must synchronise over the specified
action labels. This may mean that some states are
unreachable so composition does not always increase the
state space but in general the state-space size does increase
rapidly. The PEPA language has the following combinators

The process term (a, l):P describes a process that may
perform the action a at rate l to become the process P.
The rate may be a numerical rate or the special rate `,
which means that the operation is performed passively by
this process that must be subsequently synchronised with
over this activity. The other process involved in the
synchronisation determines the rate of the activity. The
process P1 þ P2 depicts competitive choice between the
processes P1 and P2. The operator is cooperation/
synchronisation between two components over the given set
of actions L. The special synchronisation specifies that
the two components synchronise over all activities that both
may perform.

A model is represented by a series of definitions that
describe the sequential behaviour of named components.
These named components are then combined together in a
main system equation, which represents the interaction
between the various components in a model. Full details of
the PEPA stochastic process algebra can be found in [1].

2.2 Layer-7 two-way architecture

Fig. 1 depicts a layer-7 two-way service architecture. A layer-
7 two-way architecture allows the service to provide a
common front to several different kinds of request. Each
request is sent to an administrator who analyses the request
and then dispatches it to be serviced by the appropriate
background server. Each background server awaits such
specific requests and returns them to the administrator who
forwards the response to the appropriate client who
invoked the original request. Fig. 2 shows the PEPA
model description of a particular layer-7 two-way
architecture configuration. By analysing such a system we
can analyse the response times of different kinds of requests

Figure 1 Structure of a layer-7 two-way architecture
T Softw., 2009, Vol. 3, Iss. 6, pp. 495–508
i: 10.1049/iet-sen.2009.0002
as well as in general. We could also modify the
configuration of the service to enable us to decide, which
will perform better under different conditions. For example,
we can vary the rates of requests or the capacity of each
kind of server, which in reality would result from server re-
deployments or upgrades. We will see the passage-time
analysis of this model in Section 5.2. In the next section
we discuss how this process algebra model allows us to
derive a Markov chain in a form suitable for the calculation
of passage-time quantiles measuring the time from the
client’s request to their received response.

2.3 Michaelis–Menten

We show here the PEPA model of a chemical reaction
between an enzyme E and a substrate S to produce an
intermediate compound E:S and finally a product P. The
reactions are modelled with Michaelis–Menten semantics.

The four chemical species react over three reaction
channels: r1 converting E and S to E:S, the backward
reaction r�1 taking E:S to E and S and the reaction r2

converting the compound E:S into product P and releasing
the enzyme E. The reaction rates are governed by kinetic
laws involving rate constants (k1, k�1 and k2) and the
molecular counts of the species involved.

The reaction is initiated with a quantity of enzyme and a
quantity of substrate and over the course of time the
reactions will convert the substrate into the product
(although many forward steps to the intermediate
compound via reaction r1 may be rapidly undone by the
reverse reaction r�1). However, reaction r2 is not reversible
in this model and so once product is produced by this
reaction it cannot be destroyed by any other reaction.

Crucially, the rates of the reactions are functions of the
model state, not constants. Thus in the initial state only
reaction r1 can fire (to form the compound). When some
compound (E:S) is present then reactions r�1 and r2 can
fire, otherwise not. This switching behaviour is controlled

Figure 2 PEPA model of a layer-7 two-way architecture
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by the kinetic laws, which use the number of molecules of
each species as a multiplier (giving a zero rate when the
species is not present, and thereby switching off certain
reactions). This model reaches a deadlock state in which
there is no free substrate and no free compound. In this
state reaction r1 cannot fire (because it requires the
presence of the substrate) and reactions r�1 and r2 cannot
fire (because they require the presence of the compound).

The Bio-PEPA species definitions indicate which
chemical species participate in each reaction and whether
they are reactants consumed by the reaction or products
produced by the reaction. The symbol # is used for the
former (because the molecular count of that chemical
species goes down) whereas the symbol " is used for the
latter (because the molecule count of that chemical species
goes up). The model equation of a Bio-PEPA model
specifies which species participate in which reactions and
whether they are initially present (denoted by a 1 in the
model equation) or initially absent (denoted by a 0 in the
model equation). The Bio-PEPA model of this system is
shown in Fig. 3.

The PEPA model shown in Fig. 4 is derived from the
Bio-PEPA input. It is presented in reagent-centric style
[11], meaning that it indicates the direction of the reaction
as a change from higher to lower quantities of the
compound. If the reaction increases the quantity of the
chemical species X (" in Bio-PEPA) then the derived
PEPA model will have a change from X low to Xhigh,
meaning that the molecular count of X is higher after the
reaction. If the reaction decreases the quantity of the
chemical species X (# in Bio-PEPA) then the derived
PEPA model will have a change from Xhigh to X low,
meaning that the molecular count of X is lower after the
reaction. With only the direction of change known (from
high to low, or vice-versa), it is possible to derive exactly
the system of ordinary differential equations that specifies
the continuous limit of this reaction behaviour [12]. Our
software converts the derived PEPA model into a CTMC,
which can then be solved for the steady-state distribution
and related measures. However, in this case this is
inappropriate since eventually all of the substrate is
consumed and only enzyme and product remain, at this
point the model is in a deadlocked state. We instead use

Figure 3 Bio-PEPA model for Michaelis–Menten reactions
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transient analysis of the computed Markov chain to enable
a time-series plot allowing us to compute the time taken
for all (or a portion of) the substrate to be consumed. We
perform this in Section 6.

3 Passage time constraints
In this section we detail the constraints imposed on the form
of the passage within the Markov chain by the uniformisation
method of obtaining passage-time quantiles. In order to
perform uniformisation on a (derived) CTMC we must
specify two sets of states: the set of source states S and the
set of target states T. The passage set is the set of all states
that lie on some path between the source and target sets
including the source set but not including the target set.
The intuition is that a source state is reached by an event
which begins the passage, hence the sojourn time of a
source state is included in the time taken to complete the
passage. A target state is reached by an event which ends
the passage, therefore the passage is completed when a
target state is entered and its sojourn time should not be
included in the time to complete the passage.

In order for our uniformisation calculation to be valid, it
must be the case that no state within the passage set may
transition to a state within the source set. The reason that
this is invalid is that we must obtain the probability
distribution of the source states at the beginning of the
passage. If there is no transition from the passage set to
one of the source states then this can be computed using
the steady-state probability distribution of the embedded
Markov chain to calculate the frequency with which each
source state is entered relative to the frequency that the
source set in general is entered. Where such a transition
does exist then this calculation will not provide the
probability distribution we require since it is possible to
enter particular source states without beginning the passage
of interest.

Although this would appear to restrict the set of models for
which passage times may be calculated any model that
violates this may be turned into an equivalent model that

Figure 4 Translated PEPA model for Michaelis – Menten
reactions
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does not by duplicating the source states that may be returned
to from within the passage set. The cost of this
transformation is to increase the state-space size; however,
the increase is linear. In fact, we must increase the state
space by at most the size of the source set.

Note also that we cannot transition from a state within the
passage set to a state outside both the passage set and the
target set. Such a state either has a path back to the passage
set and hence to the target set and is hence within the
passage set (and as such may not transition into the source
set). Alternatively the state is (or has a path to) a
deadlocked state. Such deadlocked states are not allowed if
there are multiple source states, since then the steady-state
of the embedded Markov chain cannot be computed. If
there is only one source state this is not required, however,
we view such a deadlocked state as within the passage set.
This also means that there is a non-zero probability that
the passage of interest is never completed at all. More
strictly then the passage set is defined as all those states
that are reachable from the source set without passing
through the target set.

4 Compositional models
The technique of uniformisation is defined over the
underlying CTMC and not in terms of the higher-level
formalism used to define the CTMC. However, for
passage-time quantiles we must specify to the
uniformisation routines the source and target states and this
must be done in the higher-level formalism since the user
should not be required to understand the derived state
space of the model. In this section we concentrate on the
process algebra PEPA and how our software with its query
specification language allow a valid passage-time analysis to
be presented to the uniformisation routine without user
intervention.

When designing a query specification language which will
be used for passage-time queries, one must consider two
factors. Firstly can the compositional nature of both the
model and the query be used to ensure that the constraints
as specified in Section 3 are not violated? Secondly can the
compositional nature be used to optimise the calculation of
the results?

Two techniques are commonly used to describe the states
along the passage of interest. Firstly state-based techniques
require the user to specify the states of interest using the
local states of the separate processes or tokens as a filter on
the entire state space. Alternatively action or event
sequences that result in the source or target states are
described. Measurement specification is still an active area
of research and a recent paper by the current authors
describes a specification language which blends the use of
activity observations with state-based filters [13].
Softw., 2009, Vol. 3, Iss. 6, pp. 495–508
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4.1 Stochastic probes

To describe passages we insert probe components that
observe activities performed by the rest of the model, via
passive synchronisation, and change their local state
accordingly. We then use the states of the probe
components as a filter on the full state space of the model.
Probe components can be manually composed and added
to the model or specified in our (regular-expression-like)
language, which is then automatically converted into PEPA
components and inserted into the model.

The major rule that we must respect is that no state along
the passage may have a transition outside of the passage or a
transition which targets a source state.

For the purposes of this paper we will assume that the
model performs a ‘start’ activity when and only when the
model enters a source state. Similarly the model performs a
‘stop’ activity when and only when the model enters a
target state. Elsewhere [14] we describe how such start and
stop signals can be generated automatically when stochastic
probes are added to the model in such a way that the
behaviour of the model is not affected. We can therefore
add a simple passage probe, which is running whenever the
model is within the passage set.

Because the passage-probe may only be stopped by the
model entering a state within the target set, it is not
possible to transition out of the passage set. In the case
that this was possible for the original model, such a state
(outside of the passage set) is duplicated as the same state
description but with the passage-probe component either
running or not. This ensures that the first property is
maintained. The passage probe can be defined and
composed with the main system by

PassageStopped ¼ (start, `):PassageRunning
þ (stop, `):PassageStopped

PassageStopped ¼ (start, `):PassageRunning
þ (stop, `):PassageStopped

PassageStopped System
where L ¼ {start, stop}

We can, in a similar fashion, add a second probe called a
source probe, which is in the running state only when
the model is in a state directly following the start of the
passage. Any source states that may be revisited during the
passage are duplicated in a similar manner to the above,
and hence the duplicated source state is not considered to
be within the source set for the purposes of the passage-
time calculations. The definition of the source probe
depends upon the alphabet of activities performed by the
entire model; for one in which the alphabet is just
{start, stop, a, b} the source-probe is defined and composed
499
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with the main system by

SourceStopped ¼ (start, `):SourceRunning
þ (stop, `):SourceStopped
þ (a, `):SourceStopped
þ (b, `):SourceStopped

SourceRunning ¼ (start, `):SourceStopped
þ (stop, `):SourceStopped
þ (a, `):SourceStopped
þ (b, `):SourceStopped

SourceStopped System
where L ¼ {start, stop, a, b}

Astute readers should note that the first line of the
SourceRunning definition is not required since the ‘start’
activity should not be performed once already in a source
state but it is included for completeness. By adding simple
probe components, which may be specified with an even
simpler probe language, we can ensure that any necessary
state duplications are made automatically during state-space
generation. We also do not duplicate states where this is
not necessary to stay within the constraints of the
measurement.

Finally one might ask: What happens if the initial state is
along the passage? In this case some states along the passage
are duplicated during state-space generation, which may
impact on how long it takes to solve the model. However,
the results will not be affected. More specifically the states
that lie on a path from the initial state to the target set will
be duplicated and become transient states (states which are
not visited in the long run). Since a passage-time
measurement is not dependent on the initial state of the
system, the user can always re-write the system equation to
avoid this, but we stress that it will make no difference to
the results obtained only how quickly they may be obtained.

4.2 Optimisation

As will be described in Section 5 in order to make sure that
only the probability of completing the first passage and not
subsequent passages are computed, the Markov chain is
modified so that all target states have only one outward
transition whose destination is an added absorbing
(deadlocked) state. This means that there are some states in
the modified Markov chain which are unreachable from the
source set. These are the states that are not contained in
the passage set or the target set, we will call this set U.

In addition, we will never query the probability mass of any
state within the unreachable set and the states in this set
cannot affect the probability of other states and hence the
passage-time quantiles we are computing. We must still
derive this set as it will be used to calculate the seeding of
the source states, that is the probability distribution at the
beginning of the passage when all the probability mass is
within the source set. However, once this is done these
The Institution of Engineering and Technology 2009
states may be removed for the rest of the computation.
This would be done at the same time that the Markov
chain is modified to have an absorbing state to which all
target states must transition. As we will see the rest of the
computation involves (possibly many) matrix
multiplications in which the modified Markov chain is
multiplied by a probability distribution. Therfore if the
modified Markov chain can be made smaller by removing
the states in the unreachable set U, then it is a potentially
large saving in both the space and time required for the
computation.

Using the process algebra and probe setting described
above, this set is easy to calculate; it is the set of all states
in which the passage probe is in the ‘stopped’ state minus
the target set. The target set itself may be computed using
a probe that is similar to the source probe. The target
probe can be defined and added to the main system by

TargetStopped ¼ (stop, `):TargetRunning
þ (start, `):TargetStopped
þ (a, `):TargetStopped
þ (b, `):TargetStopped

TargetRunning ¼ (stop, `):TargetStopped
þ (start, `):TargetStopped
þ (a, `):TargetStopped
þ (b, `):TargetStopped

TargetStopped System
where L ¼ {start, stop, a, b}

Note that it is the same as the source probe with the roles of
the ‘start’ and ‘stop’ activities reversed. This method, though,
has the disadvantage that the target states may be
unnecessarily duplicated since there was initially no
restriction on a state looping back to a target state. That is,
there is no reason why a state outside the passage set
(including one within the target set itself) may not
transition into a state within the target set, but this probe
will distinguish such occurrences of the target states. This
will only impact the calculation of the seeding of the source
states since the duplicated target set states will be within
the unreachable set. This is therefore entirely harmless
if the source set has only one member since the seeding of
the source states can be avoided when there is only one
source state (it is the trivial seeding in which all of the
probability mass is held by the single source state).

Regardless of how the target set and the unreachable set
are identified, with a compositional approach to building
the model it is straight-forward to see what kind of saving
we can make by removing the unreachable set. This of
course depends on the measurement but commonly we are
measuring the response time as observed by a single
component. Suppose there are two clients and one server.
Each client may ‘request’ something from the server which
will subsequently ‘respond’ to the client. The server will
passively wait for all incoming requests and make a
IET Softw., 2009, Vol. 3, Iss. 6, pp. 495–508
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response after an exponentially distributed delay. In this case
our measurement is begun with the first client, making a
request and stopped when it receives its response. Since the
state of the second client is independent of the state of the
first client, there are as many states outside the passage-set
and target-set as there are within. If we increase the
number of clients this still means that the state space is
split approximately equally by those states within the
passage and target sets. So the unreachable set is roughly
half the size of the model. It gets larger if we add states in
which the clients can sojourn when they are not waiting on
the server. In fact, the state space of the whole model can
be divided into N equally sized sets where each set
corresponds to a particular local state of the first client. A
number of these sets, say t , N , are within the passage
and target sets and some do not depend on the state of the
first client. So in this example the unreachable set is
(N � t)=N times the size of the entire state space. This
clearly may be well over half the size of the state space.
Such a simple model can be complicated by competition
for a scarce resource such as a server which only accepts a
limited number of concurrent requests. This complicates
the calculation somewhat, but in general we find that half
is a good estimation as to how much of the state space is in
the unreachable set and can therefore be removed from the
modified Markov chain before any matrix multiplications
take place.

5 Uniformisation
This section details the steps used to derive the cdf (and/or
pdf) of a passage within a model represented as a CTMC
in which we have specified a source and target-set and are
comforming to the constraints laid out in Section 3. We
first detail the prerequisites:

1. The CTMC may be represented by the generator matrix
Q. The generator matrix is an n� n matrix where n is the
number of states in the Markov chain. Each row
corresponds to one state and the value in one cell of a row
corresponds to the rate at which the Markov chain may
transition from the state given by the row number to the
state given by the column number. The diagonal values are
given by subtracting from zero the sum of the other values
in the row. Hence if we write r (i, j) to mean the rate at
which the Markov chain may transition from state i to j
then the generator matrix Q is written as:

Qi, j ¼
r(i, j), i = j
0� (

Pn
k¼1 r(i, k)), otherwise

�

This requires that for any state i, the rate r (i, i) is zero – this
condition is usually stated by insisting that the model
contains no self-loops.

2. The generator matrix may be solved to obtain the steady-
state probability distribution p where pi is the long-term
Softw., 2009, Vol. 3, Iss. 6, pp. 495–508
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probability of being in state i. This requires that the model
be deadlock free.

3. The set of source states S and the set of target states
T. The probability at time t that we compute is the
probability of moving from any of the states in S to any of
the states in T within time t.

The steps in the computation of the pdf and the cdf of a
particular passage within a CTMC are summarised as
follows:

1. Uniformise the generator matrix to obtain the new matrix
P by

P ¼ Q=q þ I

where Q is the generator matrix, I is the identity matrix and q
is a rate value which is chosen to be greater than the
magnitude of all of the rates within the generator matrix
including the values along the diagonal. Therefore we have
q . maxij jQij j which can be reduced to q . maxi jQiij

since the magnitude of the diagonal values in each row are
the sums of the other values in the row which cannot
be negative. Since q is of greater magnitude than any of the
(negative) diagonal values dividing by q returns a negative
number x : �1 , x , 0. This means that adding the
identity matrix ensures that all rate values are positive.

The bottom graphs of Fig. 5 depict the probabilities of
performing a n hops within time t for a fixed rate q. Note
that these graphs do not depend on the passage being
analysed only on the value of q.

2. Add to this uniformised matrix P an absorbing state. This
state has no out-going edges to any state other than itself,
which it loops to with probability 1.

3. Modify all target states (states in T ) to transition with
probability one to the absorbing state. Call this new matrix
P0. The reason for our absorbing state is to ensure that we
compute the probability of the first passage and not
subsequent completions of the passage. That is, if we are in
state i [ T at time t then we know we are completing the
passage at time t and it is not the case that we completed
the passage at some earlier time and remained in or
returned to state i.

4. Compute the probability distribution at the start of the
passage, p(0). That is the probability, in the original
Markov chain, of being in each particular source state given
that we must be in one of the source states. This is done
using the embedded Markov chain from the original
Markov chain Q. We obtain p(0) by

p(0)
k ¼

0, k � S
pk=pS , k [ S

�
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Figure 5 Top graph shows the probability of completing after n hops, graph on the bottom left shows the probability of
completing n hops within a given time t, whereas the graph on the bottom right shows the probability of performing a
given number hops against t
2

where pk is the steady-state probability in the embedded
Markov chain of being in state k and pS is the steady-state
probability in the embedded Markov chain of being in any
one of the source states, that is

P
k[S pk. Where there is

exactly one source state then the steady-state probability
distribution need not be calculated and p(0) is given by

p(0)
k ¼

0, k � S
1, k [ S

�

since for the one source state j, pj ¼ pS .

5. Compute the probability distribution after n hops of the
uniformised Markov chain; given by p(n) where p(nþ1)

¼

p(n)P 0. The top graph in Fig. 5 is an example passage
calculation showing the probabilities of being in certain
states after a given number of hops. In particular, the
probability of being in a target state is the probability that
the passage is completed in exactly n hops while the
probability of being in the absorbing state is the probability
that the passage is complete in less than n hops. The
addition of these two probabilities gives the probability of
completing within n hops.

6. To compute the cdf at each time t we finally adjust each
hop value by the probability that n hops are performed
The Institution of Engineering and Technology 2009
within time t. Recall that each hop has the same average
duration of 1/q so the probability that we may perform n
hops in time t is an erlang distribution. An erlang
distribution for a particular value of q is shown in the
bottom two graphs of Fig. 5. So then our cdf at time t is:Pn¼1

n¼0 Er(n)
t p(n)

T
where Er(n)

t is the probability that the nth
hop will be performed at or before time t and p

(n)
T

is the
probability of being in any of the target states after exactly
n hops of the uniformised matrix, P0.

In the final step above we have computed the cdf of the
passage by multiplying the probability of being in a target
state after exactly n hops by the probability of performing n
within the time t. This probability is given by
(1� e�qt Pn¼1

k¼0 (qt)k=k!). For the pdf we substitute this for
the probability of performing n hops at exactly time t. This
is given by: qntn�1e�qt=(n� 1)!.

For completeness we provide the full formulae for
computing the cdf and pdf of the passage, respectively
given by

F~ij
(t) ¼

X1
n¼1

1� e�qt
Xn�1

k¼0

(qt)k

k!

 !X
k[~j

p(n)
k

0
@

1
A
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and

f~ij(t) ¼
X1
n¼1

qntn�1e�qt

(n� 1)!

X
k[~j

p(n)
k

0
@

1
A

A summary of the mathematical relationships involved in this
algorithm is given in Table 1.

5.1 Producing passage-time quantiles

The above description of an algorithm for computing
passage-time quantiles is an ideal implementation with one
important flaw; the final step calls for a summation to
infinity. It is worth re-stating exactly the meaning of this
summation. By the final step we have the means to
compute an infinite number of ‘hops’ where each hop is a
probability distribution from which can be extracted the
probability of completing the passage in exactly n hops
(p(n)
T

). In addition, we know the probability of performing
n hops in a given amount of time t since each hop has the
same average duration which is exponentially distributed,
giving an erlang distribution for completing n hops within
t time (Er(n)

t ). For any given n multiplying these two values
together gives the probability of completing the passage in
the given time t using exactly n hops. Since we do not care
how many hops it takes if we add together these
probabilities for all values of n then we have the probability
that the passage is completed within time t.

Clearly, summing all of these probability values from zero
to infinity is impossible for a computer to do. However, there
will be some value X for which all values nX . X , the
probability of completing the passage within the given time
in exactly nX hops is negligible. Hence at this point we
may stop computing probability values. Here we show two
conditions that suffice to find the value X.

Previously one method was to compute the probabilities
for successive values of n and whenever the probability
((Pn((n))) was sufficiently low we assume that subsequent

Table 1 Relationships between the probability values

Probability of Value Name

completing the
passage in exactly n
hops

P
k[S p

(n)
k p(n)

T

performing n hops
within time t

(1� e�qt Pn�1
k¼0 (qt)k=k!) Er(n)

t

completing the
passage in n hops by
time t

p(n)
T

Er(n)
t Pn(t)

completing the
passage by time t

Pn¼1
n¼0 Pn(t) cdf
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values will also be sufficiently low. This method has
problems when the passage we must complete has separate
paths that vary greatly in their length of hops. In this
instance, it is possible for the probability to drop below the
threshold value but later climb above it. In this case the
given method would stop calculating the probability values
before they have a chance to rise above the threshold once
again.

Our method is to monitor the probability of being in the
absorbing state after n hops – we designate this value
Abs(n). When this value climbs to within a suitable
threshold of 1 then there is no probability left to flow
through the target states. Hence the probability of being in
a target state for all values of n greater than the current
value must be below the threshold value, since this
probability is multiplied by the probabilty of performing n
hops within time t we know that all subsequent
probabilities will be below the threshold.

This method performs well; however, for small values of t
we find that we compute more hop values than are required.
This is because for small values of t it is unlikely that we are
able to perform a large number of hops. However, if the
passage is long then it may be that the probability of being
in the absorbing state does not climb to within the
threshold of one until n is large – where by ‘large’ we mean
‘larger than the number of hops we could hope to perform
within the time t ’. Therefore we also monitor the value of
Pn(t) – the probability of performing n hops within time
t – whenever this value falls below the threshold, we know
that any subsequent values of n will yield negligible
probability at time t [since Pn(t) is involved in the product]
and hence we have determined a suitable value of X.

Our algorithm may be summed up by a recursive function
as

cdf (n, t)¼

0, Abs(n)
. (1� threshold)

0, Er(n)
t , threshold

(p(n)
T
�Er(n)

t )
þ(cdf (nþ 1, t))

, otherwise

8>>><
>>>:

and similarly for the pdf function

pdf (n, t)¼

0, Abs(n)
. (1� threshold)

0, Er(n)
t , threshold

(p(n)
T
�Erp(n)

t )
þ(pdf (nþ 1, t))

, otherwise

8>>><
>>>:

where Erp(n)
t is the probability of performing the nth hop at

exactly time t and is given by: qntn�1e�qt=(n� 1)!. Since
there is a lot of shared computation our implementation
computes both the cdf and the pdf of the passage together.
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5.2 Analysis results

The passage time results applied to our layer-7 example
model are shown in Fig. 6. In the model there were three
kinds of requests, so we have analysed the response time of
each kind of request separately as well as the response-time
in general. These four analyses were specified with the
stochastic probe definitions:

request1:start, response:stop

request2:start, response:stop

request3:start, response:stop

(request1jrequest2jrequest3):start, response:stop

These definitions were then translated automatically by our
software into PEPA components and attached to the
model. The software then derives the state space which is
guaranteed to adhere to the constraints of the passage-time
calculation and the software already knows the source and
target sets of states.

5.3 Technical points

We have shown how to compute passage-time quantiles from
continuous time Markov chains. However, we have left the
actual numerical computation as given, although this is
non-trivial. For the cdf, we must compute

F~ij
(t) ¼

X1
n¼1

(1� e�qt
Xn�1

k¼0

(qt)k

k!
)

 !X
k[~j

p(n)
k )

Notice in particular that we must compute k! for what may be
large values of k. In addition, we must compute qtk, also for
potentially large values of k. The large values here are in the
order of the number of hops, this value may be quite high – a
value in the order of thousands is not uncommon (in [15] this
number is said to be of the order of qt). Hence we can expect
to encounter a problem with overflow. Even if some arbitrary
precision library is used (at a performance cost) computing
4
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the cdf in this way is inefficient. Our first observation is that

(qt)k

k!
is equal to:

Yi¼k

i¼1

qt

i

which allows us to avoid the computation of the large power
and factorial values.

Now for each value of n we must compute
PN

k¼0
(qt)k

k!
. We

need not compute each term separately. We can instead
compute the infinite list of values by the recursive function

sumvalues(n, current) ¼ current : rest

where rest ¼ sumvalues nþ 1, currentþ
XN

k¼0

(qt)k

k!

 !

Because our implementation is in the lazy programming
language Haskell we need not worry about the computation
of an infinite list since we will only ever examine a finite
number of elements from it. For a strict language this
laziness can be easily simulated. We now observe that even
this computation does a large amount of re-computation.
Namely the successive values of

PN
k¼0

(qt)k

k!
recompute all

previous values. However, we can use the same trick:

prodvalues(k, current) ¼ current : rest

where rest ¼ prodvalues kþ 1, current�
qt

k

� �

This means that we can now update our sumvalues
function to take advantage of this. It now becomes a list
transformation function which takes in the list of product
values computed by the above prodvalues function.

sumvalues(current, (n, p) : rest)¼ (n, current) : restsum

where restsum¼ sumvalues(currentþ p, rest)

We can also factor out the code to calculate the probability of
being in the absorbing state and/or a target state after exactly
n hops. Since otherwise we will recompute these values for
each time value we desire. Once we have factored out all
the common computation we have a set of infinite lists that
Figure 6 Results of analysing passages within the layer-7 model
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map n from n ¼ 0 to n ¼ 1 to values used in the
computation of the cdf and pdf. We need only operate on
these lists for the values of t.

5.4 High rates

In this section we detail why the use of very high rates within
the model can render the uniformisation technique unusable.
Consider the very simple Markov chain shown in Table 2.

This model can be solved for the steady-state solution very
quickly because the number of states is very small. Using the
steady-state solution we can calculate the average time it takes
to complete some passage, for example from the source state
zero to the target state three. This gives an average passage
time of just over 20 time units. However, if we wish to
calculate passage-time quantiles for the same passage we
must uniformise the chain. Unfortunately, this involves
dividing through by the magnitude of the largest rate,
which is slightly larger than 50 000. We already know that
the passage takes on average 20 time units, so the number
of hops we will have to compute is at least: 50 000� 20,
rather a lot for such a simple passage.

The same problem occurs whenever we have large rates
that are involved in the passage, but the passage takes
much longer than the reciprocal of the largest rates. This
may occur because some small rates are involved in the
passage and/or because of looping within this model. The
authors have encountered this problem in the modelling of
biochemical reactions, in particular those with a Michaelis–
Menten semantics which involves the enzyme and substrate
in very fast equilibrium with their complex.

6 Transient measures
This paper is mostly concerned with passage-time
measurements. Other transient measures can also be
calculated via uniformisation. Most generally we can
calculate a probability distribution at a given time from a
given set of source states. Commonly the set of source
states may be the singleton set containing only the initial
state of the model. Calculating a series of probability
distributions at given time intervals allows the generation of
a time-series plot, which plots the population of a given
component type (or state) against time. Our example model

Table 2 Simple Markov chain exhibiting high rates within a
measured passage

0 1 2 3

0 0.1

1 50 000

2 50 000 0.1

3 0.1
Softw., 2009, Vol. 3, Iss. 6, pp. 495–508
: 10.1049/iet-sen.2009.0002
of a chemical reaction given in Section 2.3 is analysed
using this more general style of transient analysis. Recall
that the model eventually becomes deadlocked, thus
meaning many other kinds of analysis over the derived
Markov chain are inappropriate. The resulting time-series
plot is shown in the graph of Fig. 7. This shows that
initially the populations of the enzyme (E) and the
substrate (S) drop rapidly, but after a brief time the
population of the enzyme recovers together with an
increasing product (P) population. The opposite happens
to the complex (E:S), which initially becomes high in
concentration but decreases as more product is produced.

To compute such a probability distribution we use much of
the same steps as in passage-time calculations. However, we
need not modify the uniformised chain to contain an
absorbing state since in this case we do wish to calculate
the probability of returning to the source states. However
we must now calculate, for each time point we desire t, for
each hop n the probability that we have performed exactly
n hops at time t.

Because we cannot add an absorbing state, we lose our
novel method of terminating the hop calculations and must
rely on the probability of completing an ever increasing
number of hops within the time t.

In Section 5 we concluded with the full formulae for
calculating the cdf and pdf of the passage in question. In
the same spirit of completeness, we provide here the full
formula for calculating the probability distribution of a
given Markov chain at time t from the initial state:

p(t) ¼
X1
n¼0

(qt)n exp�qt

n!
p(n)

� �

Here once again p(n) is the probability distribution as given

Figure 7 Example time-series plot, plotting the
concentration of four species as a function of time from
the start of the experiment
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by the nth hop value and (qt)n exp�qt =n! is the probability
that at time t there have been exactly n hops performed.
Note that the sum is from n ¼ 0 since at a given time
there is a possibility that no hops have been performed. For
passage-time calculations this is not necessary since the
probability of completing the passage within zero hops is
zero.

To conclude this section we clear up some terminology
which we use. A passage-time calculation involves
computing the probability that the model transitions into a
target state a given time after first entering a source state.
Sometimes the set of source states is the singleton set
containing the initial state of the model. This is commonly
used in ‘time-to-failure’ queries such as: ‘What is the
probability that the server has failed within one week of
operation?’ When we say transient analysis we usually refer
to the more general set of transient analyses, which call for
the computation of a probability distribution (even if only
one state’s probability is examined) a given time after a set
of source states have been entered. Such analyses are used
commonly for biochemical modelling but are also used to
answer such queries as: ‘What is the probabilty that the
system is operational x minutes after a server crash?’ In this
query we wish to include the possibility that within the x
minutes the server was repaired but crashed again. It is
therefore not a passage-time calculation but a more general
transient analysis.

7 Implementation
The techniques described in this paper have been fully
implemented in the International PEPA Compiler (ipc)
based on the ipclib [16]. This is a compiler for the PEPA
[1], is open source software and may be downloaded from:
http://www.dcs.ed.ac.uk/pepa/tools/ipc/.

The input language may be a PEPA model, a Bio-PEPA
model which may then be converted into a PEPA model or a
Petri net specified via the Hydra [3] model file syntax or the
XML format used by the PIPE [17] software.

The diagram in Fig. 8 shows the input and outputs of the
ipc software tool built on top of, and released together with
the ipclib library. The user may start at any level, with all
subsequent levels in the downward direction automatically
derived from the level above. So the user may start with a
Bio-PEPA model, which is translated into a PEPA model
or write the PEPA model by hand. In either case they then
provide a probe specification that is automatically converted
into a PEPA component and added to the model to give a
second PEPA model and a set of conditions on local
component states that define the source and target sets. Or
the user could manually input these source and target
conditions. Alternatively, the user could input a Petri net
but in this case they must specify the source and target
conditions manually since probes are not appropriate for
6
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Petri nets. Whether we now have a PEPA model or a Petri
net, this is compiled into a Markov chain and the
conditions are evaluated for all states of the Markov chain
to give the source and target sets of states. From this point
all that is left is to derive the performance measure that the
user desires, whether it be a steady-state distribution or a
transient measure such as the calculation of passage-time
quantiles. Of course, where the users’s query does not
involve a passage then the target set need not be specified.
For a transient measure the source set must still be
specified, although this is commonly the initial state. For
steady-state distributions and queries that can be derived
from it (such as throughput and average response-time),
there is no need to even specify the set of source states.

7.1 Comparison with existing techniques

The naïve approach that we briefly illustrated in Section 5.1 is
to compute for successive values of n until such values drop
below a threshold. This method may be summed up by

cdf (n, t)¼

0, (p(n)
T
�Er(n)

t ) , threshold

(p(n)
T
�Er(n)

t )
þ(cdf (nþ 1, t)),

otherwise

8><
>:

As we mentioned above this algorithm suffers from a
problem if the input passage has multiple paths to
completion of varying lengths. In this case the value at
some n may drop below the threshold but may later rise
above the threshold again. The simple solution would stop
after the first time it drops below the threshold.

As an improvement on this technique the Markovian
response-time analyser Hydra [3, 18–20] monitors the
value of the erlang distribution with a q rate parameter and
n hop parameter. The Hydra solution can therefore be

Figure 8 Inputs and outputs of the International PEPA
Compiler
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summarised by

cdf (n, t) ¼

0, Er(n)
t , threshold

(p(n)
T
� Er(n)

t )
þ(cdf (nþ 1, t)),

otherwise

8><
>:

Therefore this solution will compute the same values as our
solution in all cases because our solution contains the same
condition. However, our solution is a further refinement
that allows us to avoid needless computation for some
values of n. In particular, where the t-range – that is the
times for which we should compute the passage-time
quantiles – specified is too large. Suppose the user has
specified a t-range of 1 – 1000 but the passage has a
probability very close to one of completing by time 500.
Because there is a large probability of completing the
passage by time 500 this means that there is a large
probability of completing the passage within a number of
hops X and that X hops are very likely to be performed
within 500 time units. This means that for time values over
500 there will be a possibility to perform more than X hops
and the Hydra solution will continue to compute
probabilities for these hop values. However, our solution
would recognise that such values cannot add anything to
the cdf because you are very like to have completed the
passage before X hops. In the case of the cdf this could be
mitigated by incorporating the naïve solution but this is not
as effective as for computing the pdf.

Our solution has a further, related, advantage; the user
need not specify the upper bound on the t-range at all. The
user need only give the start of the t-range and the steps in
which we wish to increase the value of t. This is because
using our technique we can calculate the value X at which
performing more than X number of hops will not
significantly add to the probability of completing the
passage (because there is a probabilty within the threshold
of being in the absorbing state by X hops). We can then
use this to work out the upper bound on the t-range by
calculating the value of t such that performing X hops
within time t is significantly likely. In order that the user
need not specify a t-range at all we default to a starting
time of zero and a time step of the calculated stop-time
divided by one hundred. The user may then override any of
the start time, the stop time, the time increments and the
number to divide the t-range by in order to obtain the time
increments.

8 Conclusions
In this paper we have detailed a software library ipclib and
associated tool ipc for the derivation of performance
measures from process algebra models that may be
translated into continous time Markov chains. Once the
Markov chain has been derived the common steady-state
probability distribution and associated performance
measures such as throughput and average passage duration
Softw., 2009, Vol. 3, Iss. 6, pp. 495–508
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may be computed. In this paper, though, we have focused
on the transient measure facilities provided by ipc. In
particular, the calculation of passage-time quantiles is
provided for via the compositional approach to model and
query specification. In particular, the stochastic probes
specification language allows the compiler to automatically
prepare the Markov chain in a suitable way to avoid an
invalid passage-time computation. It is very encouraging
that the constraints on a valid passage-time calculation are
not only checked but where there is a violation automatic
state duplication occurs in order to amend the passage into
a suitable form. Moreover, states not required within the
uniformised Markov chain may be readily determined and
thus removed in order to optimise the query.

We have also given a detailed account of the calculation of
passage-time quantiles and densities from continuous-time
Markov chains. We have shown the process from non-
uniformised Markov chain through the uniformisation,
modification with an absorbing state, the calculation of the
hop probability distributions and the calculations involved
in producing the final cdf and pdf. Two important
properties that allow the otherwise infinite calculation to
terminate were identified which have the desired
conservative feature – meaning that we never terminate too
early producing an erroneous answer. However, the
combination of the two provides early detection to avoid
some needless calculations. Finally, we feel that our paper
provides a good introduction to the topic of uniformisation
in general.
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