
Modelling Role-Playing Games

Using PEPA Nets

Stephen Gilmore1, Leila Kloul1?, and Davide Piazza2

1 LFCS, The University of Edinburgh, Edinburgh EH9 3JZ, Scotland
{stg,leila}@inf.ed.ac.uk

2 OMNYS Wireless Technology, via Frassini, 35, 36100 Vicenza, Italy
davide.piazza@omnys.it

Abstract. We present a performance modelling case study of a dis-
tributed multi-player game expressed in the PEPA nets modelling lan-
guage. The case study provides a modern complex distributed applica-
tion programming problem which has many inherent communication and
synchronisation complexities which are subtle to model accurately. We
put forward the position that a high-level performance modelling lan-
guage is well-suited to such a task. The structure of the model and the
performance index which is most significant for the problem match well
a solution method which has previously been applied in Petri net mod-
elling. We apply this method to a PEPA net model for the first time in
this paper.

1 Introduction

Performance models of computer and telecommunication systems are used to
gain insights into the behaviour of the system under expected workload on the
available hardware. The state-of-the-art in the design of computer systems grows
ever more sophisticated as programming languages become more complex; appli-
cation programs increasingly use additional layers of middleware and infrastruc-
ture; and software developers deploy complex patterns and idioms to structure
their application code. Similarly, the computing platform on which these appli-
cations execute becomes more complex. A wide range of computing devices may
be deployed, from high-end servers to battery-powered handheld devices. Other
layers of interpretation may also be used: virtual machines such as the JVM or
hardware emulators as in the Transmeta Crusoe processor. Each such layer adds
complexity and degrades performance.

Complex software necessitates the use of a sophisticated modelling language
which provides direct support for high-level configuration and re-configuration in
addition to offering a behavioural specification language to be used to capture the
application logic. The PEPA nets modelling language [5] is one such language,
a high-level coloured stochastic Petri net formalism where the tokens of the net

? On leave from PRiSM, Université de Versailles, 45, Av. des Etats-Unis 78000 Ver-
sailles, France.

C. Aykanat et al. (Eds.): ISCIS 2004, LNCS 3280, pp. 523–532, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

524 Stephen Gilmore et al.

are themselves programmable stochastically-timed components. The modelling
language which is used for the tokens of a PEPA net is Jane Hillston’s Markovian
process algebra PEPA (Performance Evaluation Process Algebra) [6]. The PEPA
nets formalism is a recent research development and we are currently exploring
its possibilities in tandem with developing its underlying theory [5]. To this end
we have undertaken a number of case studies including the Jini discovery service
and a mobile telephony scenario [5]; and the Mobile IP protocol [3]. The PEPA
nets formalism is not described in this paper, all details of the PEPA nets and
PEPA languages are found in [5] and [6].

In this paper we apply the PEPA nets language to the problem of modelling
a complex distributed application, a multi-player online role-playing game. The
game is one of the case studies from one of our industrial partners on the EC-
funded DEGAS project (Design Environments for Global ApplicationS). The
game is a characteristic “global computing” example, encompassing distribution,
mobility and performance aspects. The representational challenges in modelling
the game accurately include capturing location-dependent collaboration, multi-
way synchronisation, and place-bounded locations holding up to a fixed number
of tokens only. All of these are directly represented in the PEPA nets formalism.

In Section 2 we provide a high-level description of our modelling study, a
role-playing game. In Section 3 we present the PEPA net model of the system.
In Section 4 we make an analysis of the model, discuss solution methods for
PEPA net models, and present results from our study. Conclusions follow at the
end of the paper.

2 A High-Level Description of the Game

The Massive Multi-Player Online Role-playing Game (MMPORG) consists of a
succession of game levels of increasing complexity. Each level is composed of a
starting point and a certain number of rooms among which is a secret room.

In the game, a player is seen as an active entity who may interact with objects,
locations (rooms), playing and non-playing characters of the virtual environment.
Objects (weapons, medicine, food, . . .) are one of the basic elements of the game
environment that a player can collect and reuse later. The player has to explore
the rooms to collect as many experience points as possible to improve character
features such as strength, skill, luck, etc. Each obstacle or test successfully passed
increases the number of experience points. Conversely, each failure decreases the
number of points. If this number reaches zero, the player vanishes from the
current room and is transferred back to the starting point of the current level.
To progress to the next level, a player must find the secret room and pass the
tests of this room. If they fail, they are once again transferred to the starting
point of the level. The secret room can hold one player only, that is, at most
one player can be inside at a time. A player may be in competition with one or
several other players in the same room to acquire objects. The winner of a fight
between two players earns experience points from the defeated player.

Modelling Role-Playing Games Using PEPA Nets 525

The MMPORG also features non-playing characters. Like the players, non-
playing characters are active entities that may move from one room to another
but they are confined to a single level and cannot access the secret room. These
characters are generated by the rooms themselves. Non-playing characters like
monsters are obstacles which a player will have to pass. Fighting is a direct
interaction between characters within a room. These interactions are based on
system of “cards” which can cause or neutralise some damage. The effect depends
on the card features and on the features of the characters involved. Defeating a
non-playing character allows the player to increase their current features. The
player may acquire new cards and therefore increase their offensive or defensive
skills.

All the computations resulting from the different interactions are performed
by the rooms. Moreover, when a player selects the next room to visit, this room
clones itself and sends its image to the player.

3 The PEPA Net Model

Assuming that L is the number of levels in the game and Nj is the number of
rooms at level j, the PEPA net model consists mainly of three types of places:
ROOMji , SECRET Rj and INIT Rj where j = 1 . . . L and i = 1 . . .N . Respec-
tively, these model room i, the secret room and the starting point at level j (see
Figure 1). We use place OUT to stand for the environment outside the game.

Moreover we consider components Player , NPlayer and Room to model the
behaviour of respectively the playing character, the non-playing character and
the room.

3.1 The Components

– Component Player. Once connected (firing action connect), the player
starts by choosing one of the rooms of the current level. This is modelled
using firing action selecti with rate pi × r0, i being the room number at the
current level and pi the probability to select this room number.
Once the player receives an image of the room, they may do different things:
observe, walk, talk to another character (playing or non-playing). They may
also try to use one of the objects they have with action type useobj or to take
a new one (takeobj) from the room. In this last case, the system, through
the room character, may accept or refuse to let the player take the object
using action type acceptobj or refuseobj . Here the rate of these actions is not
specified by the player because the decision is made by the room.
When the player is in the room, they may be attacked by another player
(fightP) or a non-playing character (fightNP). The result of the fight may be
either a defeat of the player (PlossP or PlossNP) or its victory (PwinP or
PwinNP). In the former case, it loses points (lesspts) if the fight is against
another player. If it has no more points (zeropts), it is transferred to the start-
ing point of the current level. This is modelled using firing action failure.

526 Stephen Gilmore et al.

ROOM 12

1SECRET_R

ROOM L2

INIT_R L

INIT_R 1

INIT_R 2

L−1SECRET_R

SECRET_R L

moveP 1

moveNP 1

moveP 2

moveNP 2

moveNP 2

moveP 2

moveP 3

moveNP 3

moveNP 1

moveP 3

moveP 1

select 1
select 2 select 3

moveNP 3

moveP 3

moveNP 2

moveP 2

moveNP 2

moveP 2

moveP 1

moveNP 1

moveP 1

moveNP 1

moveNP 3

moveP 3

select 1 select 2 select 3

ROOM 13

ROOM 11

ROOM L3ROOM L1

Level 1

reachS

success

Level L

reachS

success

reachS

failure

success

failure

failure

reachS

failure

failure

failurefailure

reachS

reachS

failure

stop stop

stop

OUT

stop

connect

moveNP 3

Fig. 1. PEPA net model for Nj = 3, j = 1 . . . L

Modelling Role-Playing Games Using PEPA Nets 527

In the latter case, the player gets cards (newcrd) if it defeated a non-playing
character.

The player may decide to move to another room i with action type movePi

and probability qi, or reachS if it finds the secret room. The player may
also decide to stop the game at any moment as long as it is in the stating
point INIT Rj of a level. This is modelled using activity (stop, s).

Player
def
= (connect, r).Player

0

Player
0

def
=

PNj

i=1
(selecti, pi × r0).(RImage,>).Player

1
+ (stop, s).Player

Player
1

def
= (observe, α1).Player

1
+ (walk, α2).Player

1
+ (talk, α3).Player

1

+(fightNP , β1).Player
21

+ (fightP , β2).Player
31

+(useobj , δ1).Player
4

+ (takeobj, δ2).Player
5

+
PNj−1

i=1
(movePi, qi × r1).Player

1
+ (reachS, r2).Player

70

Player
21

def
= (PlossNP ,>).Player

22
+ (PwinNP ,>).Player

23

Player
22

def
= (lesspts, γ1).Player

1
+ (zeropts, γ2).Player

6

Player
23

def
= (newcrd, γ3).Player

1

Player
31

def
= (PlossP ,>).Player

32
+ (PwinP ,>).Player

33

Player
32

def
= (lesspts, γ1).Player

1
+ (zeropts, γ2).Player

6

Player
33

def
= (getpts, γ4).Player

1

Player
4

def
= (lesspts, γ1).Player

1
+ (getpts, γ4).Player

1
+ (zeropts, γ2).Player

6

Player
5

def
= (acceptobj,>).Player

1
+ (refuseobj ,>).Player

1

Player
6

def
= (failure, f).Player

0

Player
70

def
= (RImage,>).(test, β3).Player

7

Player
7

def
= (win,>).Player

8
+ (lose,>).Player

6

Player
8

def
= (getpts, γ4).(success, c).Player

0

– Component NPlayer. Once a non-playing character has been created by
a room (generateNP), it may walk, use its own objects and meet a playing
character. A fight may then follow and as explained before, if the non-playing
character is defeated (PwinNP), it vanishes from the system (the room), via
action type destroyNP . If it wins, it just continues its progression in the
rooms of the current game level.

NPlayer
def
= (generateNP ,>).NPlayer

1

NPlayer
1

def
= (walk, δ1).NPlayer

1
+ (talk,>).NPlayer

1
+ (fightNP , δ2).NPlayer

2

+
PN−1

i=1
(moveNPi, qi × v1).NPlayer

1

NPlayer
2

def
= (PlossNP ,>).NPlayer

1
+ (PwinNP ,>).NPlayer

3

NPlayer
3

def
= (destroyNP ,>).NPlayer

528 Stephen Gilmore et al.

– Component Room. The room creates and makes vanish the non-playing
characters using respectively generateNP and destroyNP . When it is chosen
by a player, the room clones itself and sends an image to them (RImage). The
room makes also the acceptance (acceptobj) or the rejection (refuseobj) of any
attempt of a player to take an object from the location. Moreover it makes
all computations related to the fights and sends the results to the characters
using action types PlossP or PwinP and also PlossNP and PwinNP .

Room
def
= (generateNP , σ1).Room + (RImage, σ).Room + (fightP ,>).Room2

+(fightNP ,>).Room3 + (takeobj,>).Room1 + (useobj ,>).Room

Room1

def
= (acceptobj, ρ1).Room + (refuseobj , ρ2).Room

Room2

def
= (PlossP , φ1).(PwinP , φ2).Room

Room3

def
= (PlossNP , φ3).Room + (PwinNP , φ4).Room4

Room4

def
= (destroyNP , σ2).Room

– Component SRoom models the secret room. It is similar to the other
rooms except that at most one player can be inside and non-playing charac-
ters are not allowed to get in. Once inside, the player has to pass a different
test to get to the higher level.

SRoom
def
= (RImage, σ).(test,>).SRoom1

SRoom1

def
= (lose, φ3).SRoom + (win, φ4).SRoom

3.2 The Places

The places of the PEPA net are defined as follows:

ROOMji [, . . . ,]
def

=

(

Room ��
K1

(Player [] ��
K2

. . . ��
K2

Player [])
)

��
K3

(

NPlayer [] ‖ . . . ‖ NPlayer []

)

SECRET Rj [, . . . ,]
def

= SRoom ��
K4

Player []

INIT Rj [, . . . ,]
def
= Player [] ‖ . . . ‖ Player []

OUT [, . . . ,]
def

= Player [Player] ‖ . . . ‖ Player [Player]

where i = 1 . . .N is the room number and j = 1 . . . L is the game level number.
The synchronising sets are defined as follows

K1 = {takeobj , useobj , acceptobj , refuseobj ,RImage,fightP ,PlossP ,PwinP ,

fightNP ,PlossNP ,PwinNP}
K2 = {fightP}
K3 = {generateNP ,fightNP ,PlossNP ,PwinNP , destroyNP , talk}
K4 = {RImage, test, lose, win}

Modelling Role-Playing Games Using PEPA Nets 529

4 The Model Analysis

One of the stated aims of the PEPA nets modelling language is to allow analy-
sis techniques and solution methods developed for Petri nets to be used either
directly or in adaptation for PEPA nets. The structure of the present model
allows us to do exactly this by deploying flow-equivalent replacement to bring
about a dramatic reduction in the state-space of the model to be solved. The
method works in the following fashion for this example. The purpose of the
application logic encoded in the PEPA nets model of the MMPORG is to spec-
ify in detail the necessary steps to take in order to succeed at each level of the
game (and thereby progress to the next level). Once this model has been solved
to find the rate at which players progress from one level to the next then the
application logic has served its purpose and the sub-model can be replaced by
a suitably exponentially-distributed delay, eliding all of the (now) unnecessary
detail.

We consider the abstraction of the PEPA net model of Figure 2 where each
level j has one input and two output parameters. The input parameter denoted
by λj represents the arrival rate of the players to the level. The first output
parameter denoted by λj+1 is nothing other than the input to the next level
j +1. This represents the rate of successful players of level j. The second output
parameter, noted µj , represents the rate of the players leaving the game.

λ j+1λ jλ j−1λ2λ1

µ 1

µ j

µ j−1

µ j+1

OUT Level 1 Level j−1 Level j Level j+1

Fig. 2. Abstraction of the PEPA net model

This technique is very well suited to this application because it allows us to
evaluate one of the key performance indices of a game application: difficulty of

completion. If it is possible to progress too quickly from commencing playing to
completing the final level of the game then the application may be considered
unchallenging. Conversely, if it is very arduous to make progress in the game then
the developers risk losing their target audience and finding their game consigned
to being suited to hardcore game enthusiasts only.

4.1 Model Solution

We compiled the PEPA net model to an equivalent PEPA model [4]. When
processed, this PEPA model will generate the same CTMC as the given PEPA
net.

530 Stephen Gilmore et al.

Solution procedures are accessed via the Imperial PEPA Compiler (IPC) [2].
IPC is a functional program written in the Haskell lazy functional programming
language [8]. Its function is to compile a PEPA model into the input language
of Knottenbelt’s DNAmaca analyser [7].

The use of a chain of tools in this way might give the reader concern that
this process is laborious or time-consuming and delays progress towards the
computation of the performance results which are the real content of the analysis
process. This is not the case as the entire end-to-end time of the analysis is itself
small (60.41 sec for the MMPORG model), making the method suitable for
productive interactive performance model development. All measurements were
made on a 1.60GHz Intel Pentium IV processor machine with 256 KB of memory,
running Red Hat Linux 9.0.

4.2 Model Results

The average activity times associated with the activities of the MMPORG model
are shown in Table 1. The rate of each activity is the reciprocal of the average
time. A scaling factor, k, initially 0.2, is used to vary the number of repetitions
of some of the activities. These distinguished activities double in difficulty in
moving from one level to the level above it.

Figure 3 shows the results generated for a game with four levels (L = 4).
Each graph depicts the cumulative passage-time distribution function for a level
of the game. This function is the probability of playing a level, from its starting
state to the point where the player succeeds the test of the secret room and
reaches the next level, in a certain interval of time.

We used the method of stochastic probes [1] to mark the start and end times
of the path through the system which we wished to observe. From the graph we
can read off high-level performance results such as “50% of the players of the
first level will be able to reach the next level in six (6) minutes” and “nearly
all players will be able to reach the next level in twenty (20) minutes”. Figure 3
shows that things start to become more complicated for the players when they
reach the upper levels. It shows that it may take more than ten (10) minutes for
50% of the players of the second level to reach the third one, and less than 35%
will be able to finish the last level in less than twenty (20) minutes.

Table 1. Average activity times in the four levels of the MMPORG model

Activity Level 1 Level 2 Level 3 Level 4

αi k × 5 mins. 2k × 5 mins. 4k × 5 mins. 8k × 5 mins.

bi 6 secs. 6 secs. 6 secs. 6 secs.

βi k × 2 mins. 2k × 2 mins. 4k × 2 mins. 8k × 2 mins.

c 1 min. 1 min. 1 min. 1 min.

δ1 k × 2 mins. 2k × 2 mins. 4k × 2 mins. 8k × 2 mins.

δ2 k × 6 secs. 2k × 6 secs. 4k × 6 secs. 8k × 6 secs.

f 1 min. 1 min. 1 min. 1 min.

γi 6 secs. 6 secs. 6 secs. 6 secs.

h k mins. 2k mins. 4k mins. 8k min.

pi × r 3 secs. 3 secs. 3 secs. 3 secs.

qi × r1 k × 4 secs. 2k × 4 secs. 4k × 4 secs. 8k × 4 secs.

r0 1 min. 1 min. 1 min. 1 min.

ρi 6 secs. 6 secs. 6 secs. 6 secs.

σ 30 secs. 30 secs. 30 secs. 30 secs.

s 1 min. 1 min. 1 min. 1 min.

ϕi 2 mins. 2 mins. 2 mins. 2 mins.

Modelling Role-Playing Games Using PEPA Nets 531

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

Pr
ob

ab
ili

ty

Time in minutes

"Level 1"
"Level 2"
"Level 3"
"Level 4"

Fig. 3. Cumulative passage-time distribution function for completing each level

Figure 4 depicts the cumulative passage-time distribution function for the
complete game, from the first level to the last one. It shows that, considering
the parameters values used, less than 14% of the players will be able to go
through the game tests in less than 1 hour and 20 minutes.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60 70 80

Pr
ob

ab
ili

ty

Time in minutes

"Complete Game"

Fig. 4. Cumulative passage-time distribution function for the complete game

The degree of difficulty of completing tasks within the game (fighting other
players, collecting objects, and similar tasks) may be changed using different
parameters values. Moreover, other graphs of passage-time percentiles for differ-
ent start and end points in the computation can be obtained by probing different
starting points and end points similarly.

532 Stephen Gilmore et al.

5 Conclusions

In this paper we have shown that complex, structured performance models of
real-world computing applications can be efficiently solved to give insightful
information about their performance behaviour at run-time. The application
which we investigated was a mobile multi-player networked game for a handheld
device with limited processing power and memory. There are many places for the
performance of such an application to fall below the minimum standard expected
by a customer who buys such a device. Repairing performance faults in software
and firmware after the device has shipped may be cripplingly expensive. For
this reason, developers who are concerned with developing marketable, popular
products need to address performance-related problems as early as possible. Our
methodology strongly supports this by bringing performance analysis capability
back to the design phase of product development.

Acknowledgements

The authors are supported by the DEGAS (Design Environments for Global
ApplicationS) IST-2001-32072 project funded by the FET Proactive Initiative
on Global Computing.

References

1. Bradley, J.T., Dingle, N.J., Argent-Katwala, A.: Expressing Performance Require-
ments Using Regular Expressions to Specify Stochastic Probes over Process Algebra
Models. In: Proceedings of the Fourth International Workshop on Software and Per-
formance, Redwood Shores, California, USA. ACM Press (2004) 49–58

2. Dingle, N.J., Gilmore, S.T., Knottenbelt, W.J., Bradley, J.T.: Derivation of Passage-
Time Densities in PEPA Models Using IPC: The Imperial PEPA Compiler. In:
Kotsis, G. (ed.): Proceedings of the 11th IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunications Systems,
University of Central Florida. IEEE Computer Society Press (2003) 344-351

3. Gilmore, S., Hillston, J., Kloul, L.: PEPA Nets. In: Calzarossa, M.C., Gelenbe, E.
(eds.): Performance Tools and Applications to Networked Systems: Revised Tutorial
Lectures. Lecture Notes in Computer Science, Vol. 2965. Springer, Berlin Heidelberg
New York (2004) 311–335

4. Gilmore, S., Hillston, J, Kloul, L., Ribaudo, M.: Software Performance Modelling
Using PEPA Nets. In: Proceedings of the Fourth International Workshop on Soft-
ware and Performance, Redwood Shores, California, USA. ACM Press (2004) 13–24

5. Gilmore, S., Hillston, J., Ribaudo, M., Kloul, L.: PEPA Nets: A Structured Perfor-
mance Modelling Formalism. Performance Evaluation 54 (2003) 79–104

6. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

7. Knottenbelt, W.J.: Generalised Markovian Analysis of Timed Transition Systems.
Master’s thesis, University of Cape Town (1996)

8. Jones, S.P. (ed.): Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press (2003)

	Introduction
	A High-Level Description of the Game
	The PEPA Net Model
	The Components
	The Places

	The Model Analysis
	Model Solution
	Model Results

	Conclusions

