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Abstract

We address the problem of applying resource-bounded functional programming lan-
guages in practice on object-oriented virtual machines which include calls to native
methods coded in low-level languages without garbage collection support. We con-
sider the application of a functional language with a high-level type system which
incorporates measures of heap space consumption in types on such an execution
platform. We supplement the syntactic type inference procedure of the functional
language with a separate analysis which estimates the costs of memory leaks in-
curred by calls to garbage collection-ignorant functions.

1 Introduction

Camelot is a resource-bounded functional programming language which com-
piles to structured Java byte code which runs on an unmodified Java virtual
machine. Camelot functions recycle memory locations in order to reduce the
number of object allocations performed, and consequently, the cost of garbage
collection. The object allocation cost of evaluating a Camelot function is
computed by a syntactic type inference procedure which inspects the abstract
structural expression of the function in Damas-Milner style. A type is as-
signed to a function which includes both the usual surface typing specifying
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the types of the function parameters and result and a cost expression speci-
fying the number of objects allocated in terms of the size of the input data
structures.

Camelot also provides a foreign function interface which allows an appli-
cation developer to invoke Java methods. Java in turn has its Java Native
Interface (JNI) which allows Java methods to invoke functions which have
no equivalent byte code representation. These are typically C routines which
manipulate raw memory, access peripherals, or allocate non-Java objects such
as operating system resources. In some cases these might be library functions
from a proprietary source available only as compiled images with no corre-
sponding program source code. In this case, even if a space leak is detected
in the library code it could be impossible to repair without the source code.
One can only file a bug report and wait for the maintainers to fix the problem
in the next release.

In practice, Camelot programs need to invoke such native methods in order
to perform tasks such as building and displaying user interface components.
The type inference algorithm which guarantees resource-consumption bounds
for applications written entirely in Camelot is not applicable in this situation
because not all of the program text is available for inspection and enquiry;
and not all of the program text is in the Camelot language in any case. In
this paper we propose a complementary resource-based analysis which can be
applied to (impure) Camelot applications which invoke Java methods which
call C functions.

The invocation of native methods has an impact on the inference of mem-
ory heap-allocated by a Camelot application in that the invoked native meth-
ods might themselves allocate memory. This memory is allocated in an address
space which is inaccessible to the garbage collector of the JVM. If these na-
tive methods do not themselves deallocate all of the memory which they have
allocated then this effect will manifest itself as a space leak in our application.

Space leaks are not a very significant concern in short-lived applications
but they are a highly significant one in long-running applications such as
server-side code which is intended to run for weeks or months without failing.
As more and more space is leaked in a long-running application the allocation
of new memory becomes unproductive. In the short term this leads to per-
formance degradation and in the long term to the application failing with an
out-of-memory error.

Thus our analysis is most applicable to server-side code but on the server
side is also the right place to use native methods. Native methods are not on-
line portable code in the sense of Java byte code. A native method compiled
for a Unix platform will not run under Windows, and wice versa. Portability
is a significant concern for code which is to run on the client machine be-
cause different clients will have different operating systems and hardware but
non-portability is not the same issue on the server side. It is frequently the
case that a Java application running on a server will be compiled to native
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code entirely through the use of a ‘way ahead of time’ optimising native code
compiler such as BulletTrain, SpecialJ or GCJ. Because the analysis which
we describe here is specifically tailored for native methods it is to be applied
by the code producer as part of software development and tuning, not by the
code consumer as part of the code verification process.

We propose a resource-based analysis which predicts resource consumption
as a function of time. The main effect of the analysis will be to quantify the
severity of the space leaks from native methods with respect to the application
overall. This analysis constitutes a soft type system for impure server-side
Camelot applications. The analysis does not reject any programs but instead
classifies the severity of their space leak flaws. Even an application with
significant space leak problems might be usable on a large enough server for
sufficiently long that regular maintenance on the server would cause it to be
likely to be taken down during the time frame in which the application has
not leaked enough space for it to be a genuine concern.

In the presence of source-unavailable C functions which must be treated
as opaque (“black boxes”) by the analysis, the resource-based analysis will
necessarily rest on the use of quantified approximation as made formal in
the probabilities and average durations used by the model. This leads to
the definition of a stochastic process used to represent the impure Camelot
application under study.

Structure of this paper:

In the following section we present an overview of Camelot, an extended
strict first-order functional programming language. We detail in particular
those features which the Camelot language provides for reusing heap-allocated
memory. In Section 3 we give an overview of the heap-usage analysis for pure
Camelot programs. We discuss this both at the high-level in terms of bounds
on heap-space consumption in the functional language and then at the low-
level in terms of certifying the byte code into which our high-level programs
are compiled by the Camelot compiler. After this we go on in Section 4 to
present a novel analysis which shows how impure Camelot programs which
call C routines can be analysed for their space consumption behaviour. We
describe the tools used to compute the results of the analysis. Conclusions
are presented in Section 5.

2 Camelot

The Camelot compiler targets the Java Virtual Machine and provides language
support for reusing memory. The JVM does not provide an instruction to
free memory, consigning this to the garbage collector, a generational collector
with three generations and implementations of stop-and-copy and mark-sweep
collections. The Camelot run-time disposes of unused addresses by adding
them to a free list of unused memory. On the next allocation caused by the
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program the storage is retrieved from the head of the free list instead of being
allocated by the JVM new instruction. When the free list becomes empty the
necessary storage is allocated by new.

This storage mechanism works for Camelot, but not for Java, because
Camelot uses a uniform representation for types which are generated by the
compiler, allowing data types to exchange storage cells. This uniform repre-
sentation is called the diamond type [4,5], implemented by a Diamond class in
the Camelot run-time. The type system of the Camelot language assigns types
to functions which record the number of parameters which they consume, and
their types; the type of the result; and the number of diamonds consumed or
freed.

2.1 Functional and imperative programming

One example of a situation where type-safe reuse of addresses can be used is in
a list updating function. As with the usual non-destructive list processing, this
applies a function to each element of a list in turn, building a list of the images
of the elements under the function. In contrast to the usual implementation
of a function such as map, the destructive version applies the function in-place
by overwriting the contents of each cons cell with the image of the element
under the function as it traverses the list.

The following simple function increments each integer in an integer list.

The Camelot concrete syntax is similar to the concrete syntax of Caml. Where
addresses are not manipulated, as here, a Camelot function can also be com-
piled by Caml.
The constructor “::” used below is pronounced “cons”. When used on the
left hand side of an arrow in the context of a pattern match it will decompose
a non-empty list into its head and its tail. When used on the right hand side
of an arrow in the context of an expression it will construct a cons-cell to add
a new element onto the front of a list.

let rec incList Ist =
match Ist with

I —1
| hzt —> (h 4+ 1) incList t

The above is a non-destructive version of the list processing function which
allocates as many cons-cells as there are elements in the list.

In the following version (“destIncList”) we have a destructive implementa-
tion where the storage in the list is reused by overwriting the stored integers
with their successors. Thus this version does not allocate any storage.

The constructor “@” used below is pronounced “stored at”. When used
on the left hand side of an arrow in the context of a pattern match it will
obtain the address which a cons-cell is stored at (similarly to the address-of
operator & of C but without the attendant problems of lack of type safety
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or pointer-related memory faults). When used on the right hand side of an
arrow in the context of an expression it will store a cons-cell at a given address
(thereby overwriting the allocated object which is stored there).

let rec destlncList Ist =
match Ist with

[ —> ]
| (h::t)@ —> ((h + 1) :: destlncList t)@a

In a higher-order version of this function, a destructive map, we would have
the memory conservation property that if the function parameter does not
allocate storage then an application of the destructive map function would
not either.

Selective use of in-place update in this way can be used to realise defor-
estation, a program transformation which eliminates unnecessary intermediate
data structures which are built as a computation proceeds.

2.2 Linearity

As an example of a function which is not typable in Camelot we can consider
the following one. This function attempts to create a modified copy of a list,
interleaved with the original list. The (deliberate) error in implementing this
function is to attempt to store the cons cells at the front of the list and the
cons cell in second place at the same location, d.

let rec incListCopy Ist =
match Ist with
| —> ]
| (h::t)@d —>
let tail = ((h +1): t)od
in (h :: tail )@d (+ Error: d used twice! x)

This function is faulted by the Camelot compiler with the following diagnostic
error message.

File "incListCopy.cmlt", line 4-5, characters 18-80:
L let tail = ((h + 1) :: t)@d

! in (h :: tail)@d.............

! Variable d of type <> used non-linearly

The destIncList function above demonstrates storage re-use in Camelot.
As an example of programmed control of storage deallocation consider the
destructive sum function shown below. Summing the elements of an integer
list—or more generally folding a function across a list—is sometimes the last
operation performed on the list, to derive an accumulated result from the
individual values in the list. If that is the case then at this point the storage
occupied by the list can be reclaimed and it is convenient to do this while we
are traversing the list.
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let rec destSumlList Ist =
match Ist with
I —>0
| (h::t)@. —> h + destSumlList t

Matching the location of the object against a wildcard pattern (the _ symbol)
indicates that this address is not needed (because it is not bound to a name)
and thus it can be freed. The destSumList function frees the storage which
is occupied by the spine of the list as it traverses the list. In a higher-order
version such as destructive fold we would have the memory reclamation capa-
bility that the function passed in as a parameter could also free the storage
occupied by the elements of the list, if these were other storage-occupying
objects such as lists or trees.

2.3  Object-oriented features

Camelot classes contain methods which can invoke functions which are not
associated with any class. At the interface between the object sublanguage
and the functional sublanguage of Camelot it is necessary to specify the types
of the formal parameters of a function. Thus, in the following (contrived)
example it is necessary to specify the type of the parameter of the id function.

(x+ An example Camelot class with a method calling a
function which is defined outside the class )
class callExample =
method myName() : string = id "callExample”
end

let id (s : string) =s

As usual, within the functional sublanguage a type inference procedure re-
moves almost all need for the programmer to supply type information.

2.4 Implementation

The Camelot compiler functions in a very different operational mode from
most compilers for functional programming languages because it concentrates
on having predictable analysis of space consumption and intentionally will
not apply optimisations if they are not known to always guarantee to improve
space usage with respect to the type-based analysis. The Camelot compiler
is also structured in a way which tends to increase our confidence in its cor-
rectness by compiling into a structured dialect of Java bytecode called Grail.
Grail is structured bytecode in the sense that it is in A-normal form (functions
and primitives are applied to values only). The Camelot compiler is available
for free download from http://groups.inf.ed.ac.uk/mrg/camelot/.
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3 Analysis

To explicate the context for the analysis of impure Camelot applications we
first give an overview of the analysis of pure Camelot applications (which do
not call functions written in other languages).

The existing inference procedure for Camelot [5] tracks heap allocations in
order to report the quantity of heap memory allocated by a Camelot function
call. This cost is expressed as a function of the size of the input arguments.
The cost may be negative, if presently-allocated memory is freed by the call
and returned to the managed free-list in the Camelot run-time.

Other types of memory use are not recorded. Specifically, stack allocation
is not tracked by the analysis. Thus, it is possible for Camelot functions to
fail for the reason that they recurse sufficiently deeply that they overflow the
Java run-time stack. This is possible in principle—nothing in the heap-space
analysis prevents it—and it also happens in practice, requiring the developer
to rewrite their code to prevent this fault.

3.1  Analysis of Camelot Functions

The Camelot runtime provides a freelist of unused heap units (“diamonds”).
When a “diamond” is needed then

* unless the freelist is empty, it is taken from the freelist;

* a JVM new (allocation) is performed otherwise.

Deallocation means just returning the “diamond” to the freelist.

The inference procedure is aimed to solve the following task:
to find, if they exist, linear in the size of arguments and a value, functions o_(-)
and 64 (+), such that if a freelist contains at least §_(xy, ..., x,,) “diamonds”
and f(x1, ..., Tn) terminates with the value v, then during the evaluation
no new heap units are allocated, and after the evaluation there will be at least
04 (v) “diamonds” in the freelist.

The inference rules are designed for a notated-type system. For example,
a value of a type L(A, k) is a list of elements of a type A, such that per each
element there are k heap units in a freelist, which play a role of a “credit”.
A judgment I', n Fx e: A, n’ means that with a signature ¥ in a notated
typing context I' and with n extra “diamonds” available, the term e has a
notated type A with n’ unused “diamonds” left. For the sake of simplicity, we
will omit a subscript .

Notations play the role of coefficients for the linear bound functions J_,
04, mentioned in the task. Consider the meaning of a typing judgment in
more detail. Let, for example, for an expression e and its free variable x of
a type L(L(int)) one obtains the following typing: x : L(L(int,2),4),6 +
e : L(int,3),1. This means that if z is evaluated to [l1, ..., [,], and the
evaluation of e terminates with a result [ and a freelist has size at least
6+ Xim1. m(d+2|l;]) =64+ 4m + 25, ,|l;| “diamonds”, then after the
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evaluation there will be at least 1+ 3|{| “diamonds” in the freelist (|- | denotes
the length of a list).

As an example of an annotated inference rule consider the rule for the
destructive pattern-matching:

I' nke A n
Ixh:A xt:L(A k),n+1+kbe: A n

[, z: L(A, k), n Fymatch x with
Nil -> e
| (xh::x )0 -> ey
A, n
The sum 1+ k in the antecedent exposes that to evaluate es one may demand
additionally 14+k “diamonds”. One extra heap unit is provided by deallocation
while destructive pattern-matching. The k heap units are for sure in the

freelist, just because it’s a necessary “credit” of the matched cell. Compare
the rule above with the rule for the nondestructive match:

I nke A n
U,zh:A xt:L(A k), n+kFe: A n

[' x: L(A, k), n Fymatch x with
Nil -> e
| (xh::xt) ->ey
A, 0

Here one can provide only k extra “diamonds” guaranteed by a credit of the
matched cell.

The whole typing system is sound w.r.t. the notated operational semantics,
where a relation m, E, h b e ~ v, b/, m’ means that the evaluation of e with
environment £, and heap h terminates in the presence of a freelist of size m,
with a value v, modified heap h’, and the freelist has m’ “diamonds”. Here,
as usually, an environment (stack) E : Var — Val is a finite partial map
from variables to values, heaps h, b’ : Loc — Val are finite partial maps from
location set to values.

Using the notated type system one may obtain a notated signature for a
given Camelot function, like “copy : L(A,1),0— > L(A,0),0” for a usual, not
in-place, copy-function. First one augments a type derivation with variables
instead of numbers and builds a notated derivation tree for a given function.
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Then one collects and solves numerical linear constraints, arising from the side
conditions of the rules. Assuming benign sharing of heap regions occupied by
values of variables, a solution of the system of constraints contains desired
coefficients of linear heap bounds for the function - they are the notations in
its signature.

The semantical condition called benign sharing means that if at a certain
point in the evaluation of a program a heap cell is deallocated by a destruc-
tive pattern matching, then this cell must not be accessible from the variables
occurring in the continuation. This condition is formulated on the level of
the operational semantics of the language. Proving a predicate for a compiled
Grail image of a given Camelot program (recall that Grail is the structured
dialect of Java bytecode which Camelot is compiled into) we have to approx-
imate this condition statically. Until now this has been done by essentially
linear usage of Grail variables. We are considering different possibilities to
make the approximation of benign sharing less restrictive. There are a few
methods available, see for instance, the paper on usage aspects [1] or the work
on layered sharing [7].

In general, the method does not necessary subsume a “freelist size” in-
terpretation for a number in the notated operational semantics. One views
it just as a number of free units available. Suppose that one has a garbage
collector instead of maintaining a freelist. Then, given a functional program
f, we find, if exist, linear bounds 0_(-), d.(-), such that if f(xy, ..., z,)
terminates with the value v, and if there are at least §_(x1, ..., x,,) free cells
available, then starting the evaluation with N heap units occupied, if we run
the garbage collector every time, when the number of occupied units reaches
N+6_(xq, ..., xy), during the evaluation the number of occupied units will
never exceed N + 0_(x1, ..., Tp).

3.2 Verification of Heap Bounds

One needs to prove that the same functions _ and d, define the consumption
and gain for a Grail image of the Camelot program under consideration. We
define an assertion for Grail programs

[U, n, T » A, m],

the definition of which basically corresponds to the meaning of the high-level
type judgment I', n Fe: A, m, where U contains the set of free variables of
e.

To get automatic, syntactically driven, proofs for such predicates we apply
derived rules which mirror the high-level notated typing rules. The Grail rules
are proven a-priori for any syntactical construct of Grail plus freelist managing
functions, make and free. For instance,
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I'(z) = L(int, k)

Diamond.Free(x) : [U, 0, T" » L(int, k), 1]

One can immediately see technical limitations of our approach. If one has
to certify a Grail method m1, invoking another method, say m2, then eventually
the specification of m2 should be present in a specification table in the exact
form above. It means that:

* either m2 is an image of a Camelot function and the specification of m2 is
derivable,

* or the specification is supplied externally.

In order to estimate the reliability of our approach we propose to apply
statistical methods. Omne can consider the “pure” subprograms of impure
Camelot application separately and then

* evaluate (statistically) the possible “harm” from native invocations;

e and evaluate the probability of native calls.

In this paper we concentrate on the former task.

4 Analysing impure Camelot applications

Recall that Camelot programs compile to Java bytecode and can execute on
an unmodified JVM. The compiled representation of a Camelot program has
access to the APIs of the Java platform, and the Java language, in its turn,
has a foreign function interface for invoking native methods written in C (the
JNT).

We give an example of such interaction, which leads to fatal, from the
point of view of heap consumption, consequences.

Consider a Camelot program with a Java method invocation of a method
called allocate applicable to object instances of the class outOfMemory. The
program below introduces such an object instance (with the name c) and
invokes the allocate method in a recursive function called allocLoop.

(+ A Camelot program which repeatedly calls a Java method *)
val main: string array —> unit
val allocLoop: unit —> unit

let rec allocLoop() =

let ¢ = new outOfMemory() in (*+ ... a Java class x)
let _ = c#allocate() in (x ... native method call x)
allocLoop () (x+ ... tail call of this function )

let main s = allocLoop()
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The implementation of the Java class outOfMemory is given below.

/* The Java class used by the Camelot program x/
class outOfMemory {
/* The allocate method is a native method */
public native void allocate ();

/* A static block of code executed at class load time x/
static {
/* Load the shared object library with the compiled
C implementation of the allocate () method x/
System. loadLibrary (" outofmemory”)

}
}

The C function allocate allocates some memory every time that it is called.
Clearly, this process cannot continue forever.

The following C program contains the necessary JNI imports to be invo-
cable from the Java class presented above.

/* The C function compiled to a shared library to be used
by the Java class x/

#include <jni.h>

#include "outOfMemory.h”

#include <stdio.h>

JNIEXPORT void JNICALL
Java_outOfMemory_allocate(JNIEnv xenv, jobject obj)

{

printf (" Allocating memory ...");

/* malloc may fail by returning a null pointer x/
if ((void*)malloc(102400) == NULL) {
printf (" failed \n");
} else {
printf ("succeeded\n");
}

return;

}

On a typical Linux platform, this program will allocate memory very rapidly,
filling up the available real memory. Then the Kernel Swap Daemon (kswapd)
will be invoked to swap pages of memory out to the swap file. Fairly soon,
the swap file fills up and the program may be killed by the operating system
(thereby freeing up all of the memory which it claimed) or may simply hang,
requiring the program to be killed by the user or the machine to be rebooted.
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The effect of attempting to allocate memory when there is no more left to
be allocated depends ultimately on the definition of the malloc function. The
malloc function is defined in the C language specification for the standard
library to return a null pointer when it cannot allocate the required memory.
Potentially any call to malloc in a C program must be prepared to deal with
a null pointer being returned as a result.

This is form of Camelot application which we seek to analyse via stochastic
modelling, (Camelot calling Java, calling C) because it is not amenable to the
precise space inference of Hofmann and Jost [5].

4.1 Details of the analysis

Our statistical analysis of impure Camelot applications proceeds by first walk-
ing over the program to obtain its control flow graph. During this pass much of
the information which relates to the logic of the application can be abstracted
away. Arithmetic expression evaluation and other parts of the computation
which do not incur heap-allocation events, or call native methods or call pure
Camelot functions can be removed in order to formulate a significantly simpler
program on which the remainder of the analysis is based.

At this point much of the data dependencies in the program are removed
and replaced by statistical approximations to the control flow behaviour. Thus
a deterministic conditional expression can be replaced by a probabilistic choice
between alternatives and the conditional expression which is contained in the
test in the conditional can itself be removed, if its evaluation allocates no
storage on the heap either directly or indirectly and calls no native meth-
ods. Multi-way branching caused by pattern match evaluation can be treated
similarly to give a compound probabilistic choice.

Where a native function is called in the Camelot program we insert a
possible failure point representing a fatal out-of-memory error which abruptly
terminates the execution of the program. The relative frequency of these also
needs to be estimated. Some of these potential failure points can be eliminated
if we can determine that the native code routines do not have space leaks using
tools such as Dmalloc, Valgrind or others [9].

In order to reflect the strong simplification which has been applied to the
program at this point we choose to render it into a different formal language,
Ramsey and Pfeffer’s stochastic lambda calculus [10].

ex=zx|v|Are|le e|letz=¢ine
| choose p ¢ ey
| (e1,e2) | e1]e2
| Le;|Rey|caseeee,

The distinctive feature of the stochastic lambda calculus is the probabilistic
choice between alternatives (choose p e; ey evaluates to e; with probability p
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and to ey with probability (1 — p)). The remaining constructs are more famil-
iar and include the left- and right-labelling of values in order to distinguish
exceptional (or error) results from good values. The case construct tests such
a label and applies subexpressions ¢; and e, respectively to the carried value.

We make use of the usual datatypes (such as booleans and integers) and
built-in functions such as succ, pred, and cond. In addition we use functions
such as sizeof to return the size of a machine-representation of a type. For
readability we write succ(x) as + 1 and applications of the three-place condi-
tional function cond bexp exp, exp, as if berp then exp, else exp,. Again for
reasons of readability, we will sometimes write let x = e; in let y = e; in e3
as let x = e;; let y = ey; e3. Where it is certain that no ambiguity can
arise, we will omit the semi-colon in this syntactic form. We will also add re-
dundant parentheses if they seem to be needed to clarify complex compound
expressions which enclose multiple sub-expressions.

4.2 Ezample

Consider a Camelot function of a type List—unit which calls a static Java
method fnative if the length of an input list is even. We suppose that
the body of fnative contains a native call of a C function with, perhaps,
a memory leak.

let rec evenOddLength Ist =
match Ist with
[ —> fnative()
| h::t  —> match t with
[l—>0
| hh :: tt —> (evenOddLength tt)

Suppose that we have obtained, say experimentally, the probability p of
the length of a list to be even. We can abstract a list to its length and obtain a
very simple stochastic A-term, representing the body of the Camelot function:

choose p memleak ()

We have inserted a potential memleak point instead of the Java method in-
vocation, assuming that we cannot guarantee that the native call does not
contain memory leaks.

We want to map a term in a stochastic A-calculus onto a Markov chain,
the states of which are, in their turn, terms. The transitions of the chain are
labeled with pairs («, 7), with « for an action and r for a rate. A rate is a
concept which is more general than a transition probability, in a sense that
the sum of two rates for two branching transitions is not necessary equal to 1.

Consider, for instance, a function f(1st) in a stochastic A-calculi which
body is presented by the term above: e = choose p memleak (). In this
simple case the body of the function does not contain 1st as a free variable.

13



GILMORE AND SHKARAVSKA

The transition graph for the call of this function on a list x will have the form

f(z) 3 e[llst =z
o
& (0, 2)
o
memleak 9

The rates are proportional to probabilities: r; = kp;, for some positive k,
where p; = p and p; = 1 — p. The rate r is equal to r; +ry = k.

4.3  Second example

Consider a stochastic lambda calculus term which represents a Camelot func-
tion which, with probability p. will invoke a Java method, javaMethod, and
with probability 1 — p. will invoke another Camelot function, camelotFn. We
track the changes to the available program memory m, as allocations are made.
The outcome is examined in a case expression. If all of the memory allocations
have been successful then the function will recurse to perform other function
or method calls, otherwise the application exits with an out-of-memory error.

let loop = Am. let step =
choose (p.)(javaMethod m)(camelotFnm)
in case step loop exit

Having determined using the Hofmann-Jost type system that the Camelot
function does not allocate memory then we could model this using a stochastic
lambda calculus term which represents preservation of the current memory
level (the current value is labelled with an L tag, indicating success).

let camelotF'n = dm. L'm

Examining the Java method we realise that this either invokes a pure Java
method (compiled to type-safe, garbage-collected bytecodes), bytecode Method,
or calls a native function (compiled to type-unsafe, memory-unsafe native
code), nativeFn. With probability p, it is the bytecode method which is
called.

let javaMethod = Am. choose (py)(bytecodeMethod m)(nativeFnm)

As with the Camelot function, we may have been able to determine that the
bytecode method does not allocate any memory, in which case it too simply
preserves the current memory.

let bytecodeMethod = Am. L m

Due to its control flow, the native function call will not always lead to a space
leak. Sometimes memory will be freed after having been allocated; or on some
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calls memory is not allocated. Thus, another probability variable enters the
model: the probability with which this application of this function will cause
a space leak, py.

let nativeFn = Am. choose (py)(leakSpace m)(noSpaceLeak m)

The outcome where no space is leaked is similar to the others which we have
seen. In the case where space is leaked either a failure outcome or a success
outcome is returned, depending on whether or not enough memory is available
to satisty the current allocation request. The denote the type of the currently-
requested allocation by alloc;.

let leakSpace = Am. if m > sizeof (alloc;)
then L (m — sizeof (alloc;))
else R (m)

To make use of this representation of the program it is necessary to seed
the stochastic lambda calculus model with estimates of the relative frequency
of events in the computation and their duration. These quantities need to be
estimated as accurately as is possible at the point of undertaking the analysis
of the program. The ideal situation would be to derive these data values from
the cost model for the Grail language [2] but our techniques for doing this
are not at present sufficiently well advanced and so instead we derive values
for these distributions from instrumentation and measurement of our software
implementation.

Fortunately, a modern JVM such as SUN’s Java HotSpot Virtual Machine
release 1.5 has sophisticated intrumentation and measurement capabilities in-
cluding a redesigned and extended interface to the JVM internals through the
Java Virtual Machine Tool Integration API (JVMTI). This generalises and
extends the previous JVM Platform Debugger Architecture and JVM Profil-
ing Interface to provide programmatic access to the JVM management and to
facilitate instrumentation of Java byte code at run-time.

Having built an abstact representation of the program in a stochastic
lambda calculus realisation and having obtained estimates of the frequency of
occurrence of events through instrumentation, measurement or other means
we are now able to effect our analysis.

4.4 Analysis process

We begin by deriving the reduction sequence which follows from our stochas-
tic lambda calculus term. In any deterministic lambda calculus the branching
in such a derivation sequence can be removed by chosing a reduction strat-
egy which identifies a single subterm of the whole which is to be reduced
next, and confluence guarantees that the same end result will be obtained. In
the stochastic lambda calculus the branching which stems from probabilistic
choice cannot be removed and so the reduction path from a given stochastic
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lambda calculus term is in general a tree. This tree has (lambda calculus rep-
resentations of) fatal out-of-memory events at the leaves and we are interested
in the duration of the path from the root to one of these leaves.

Now we have formulated the problem as a stochastic process analysis pro-
cedure. We wish to compute passage-time quantiles for this activity and so we
turn to a stochastic process analysis tool. We have used both the DNAmaca
analyser [6] and PRISM [8] for this model.

In Markovian modelling two kinds of analysis deserve mention, because
they offer up different insights into the model. The first is a steady-state
analysis, which looks at the behaviour of the model in the long run, when any
initial warm-up period has passed. The second is transient analysis, which
looks at the behaviour of the model at an instant of time, which might be
close to the start of its lifetime and still within reach of any effects of the
initial configuration of the system. We perform the latter analysis here.

The results from our analysis tools can be presented either as probability
distribution functions (PDFs) or cumulative density functions (CDFs). The
meaning of the former is the probability of the measured event happening
at this instant in time (so the value of a PDF tends to zero as time tends to
infinity because the event becomes more likely to have already happened). The
meaning of the latter is the accumulated probability that the measured event
has happened plotted against increasing time (so the value of a CDF tends to
one as time tends to infinity because the event becomes more likely to have
already happened). The graphs presented in Figures 1 and 2 show the results
for the above stochastic lambda calculus model presented in Section 4.3.

Since this is a passage-time analysis of a computer application it is legiti-
mate to ask whether the same information could have been obtained simply by
repeatedly running the application. The answer is that this information could
have been obtained experimentally in this way but that the cost in compute-
time would be prohibitively expensive. To plot the above graph from experi-
mental data one would need to re-run the application and accumulate enough
observations of the point of failure so that one could meaningfully compute
the percentage of times when these failures occurred. Even if we were satisfied
with only 100 runs of the application being considered sufficient to allow us
to calculate statistically valid results for a long-running program such as the
ones considered in the present paper this would mean that the run-time of the
series of experiments would be measured in decades of compute time, which
is infeasible. The passage-time analysis performed via transient analysis of
the underlying continuous-time stochastic process gives us the benefit that we
can generalise from short run-times (on a per-function basis) to long run-times
(over the passage from system initialisation to system failure).
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CDF plot of stochastic lambda calculus model
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Fig. 1. Cumulative density plot of probability of system fault due to accumulated
space leaks varying p.

4.5  Comparison of results and discussion

Figures 1 and 2 show how the probability of system failure increases as time
passes. Thus all of the graphs show the accumulated probability increasing
from zero towards one. To produce these plots we held the durations of func-
tion call times constant and varied only the probabilities of calling functions
of various kinds.

The probability varied in Figure 1 is p., the probability of calling a Java
method. Space leaks only occur in Camelot applications because Java methods
are called so as the probability of these calls being made is reduced, so to is
the likelihood of system failure due to memory exhaustion. We hold p, and p,
constant in this plot (at 0.5).

In Figure 2 we vary p,, the probability that a called native method leaks
space. Variations in this value have a more pronounced effect on the possibility
of a crash than might have been expected if we had not taken the trouble to
conduct the quantitative analysis which we have done. The conclusion is that
reducing the probability of a leak has a marked effect on the longevity of the
application, reducing the impact of the leak to the point where it is practicable
to tolerate it, in the knowledge that periodic system resets will clear all of the
leaked memory in any case. We hold p, and p. constant in this plot (at 0.5).
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CDF plot of stochastic lambda calculus model
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Fig. 2. Cumulative density plot of probability of system fault due to accumulated
space leaks varying py. The value when py, = 0.1 is below 0.0015 even at ¢t = 115.0.

5 Conclusions

We have discussed the Camelot programming language, an innovative high-
level functional programming language which expresses resource consumption
information within its type system. For a principled programming language
to be useful, it must also make concessions to practice [3]. The Camelot
programming language allows users to invoke Java methods which may in turn
invoke native functions in low-level languages such as C. We have taken some
time here to discuss how this can interoperate with the high-level language
analysis.

The problem discussed is how potential memory leaks, which occur with
some probability when a native method is invoked, will impact on the system
as a whole. Qualitatively, the end effect is sure: the memory leak will eventu-
ally cause system failure. However, we are interested in quantitative analysis
here: “How soon will the memory leak cause system failure?” Answers to
questions such as these cannot be determined experimentally because the cost
of the experimental procedure to determine these (repeatedly re-running a
long-running application) is too high. Formal analysis is needed here, and it
is useful here.
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We have considered the case where some parts of the program (written in
the Camelot programming language) are open to inspection and enquiry but
others (pre-compiled library images of C applications) are not. Thus the anal-
ysis which we undertake must inevitably make use of approximation since the
complete behaviour of the C functions is not known. We work with observa-
tions of the function behaviour made externally, as can be obtained from the
profiling information of time- and space-accurate profilers. These are available
for modern JVMs and detail also the cost of native method invocations. Our
analysis depends crucially on the accuracy of these approximations. Our use
of approximations is in contrast to the function heap-space analysis for the
pure subset of the Camelot language due to Hofmann and Jost, which is a
precise analysis making no use of approximation.

Seeded with a stochastic process representation of an impure Camelot ap-
plication obtained via a stochastic lambda calculus intermediate form, the
transformation into a continuous-time Markov chain, transformation via uni-
formisation, transient solution and cumulative density function computation is
entirely automatic and can be performed with low computational cost, point-
ing to the potential usefulness of this method for systems of larger size than
those considered here.

The example which we considered was a relatively simple one, with simple
control flow. However, the method which we used to analyse this example
has greater generality. Mapping into the stochastic lambda calculus allows
us express more complex control-flow structures such as partial application,
function-passing, dynamic method dispatch, callbacks, event handling, and
exceptional completion as found in the functional and object-oriented lan-
guages presently in use. This indicates that the method could have practi-
cal application in modelling more complex program structures in the impure
multi-language application solutions in development today.
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