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Abstract

This paper describes a static analysis for Bio-PEPA models based on the notion of conservation of mass. Failure
to obey the law of mass conservation can be an indication that there is an error in the model description. Here we
focus on the use of invariant analysis to identify such potential flaws in models. We extend the basic technique
to consider open models, in which it is possible to automatically ignore some causes of mass production or
consumption that are unlikely to be errors. Our approach is an improvement on direct application of invariant
analysis because it does not depend on a deep understanding of the model and prior expectations of the sets
of components which should have conserved mass. We demonstrate the use of our technique on a published
model from the literature and explain how our analysis can be used to uncover potential problems in the model
description. Of course, not all models which fail to conserve mass are flawed. Nevertheless, this represents an
important method of model verification which can be applied before the model itself is evaluated — since the
analysis does not depend on accurate dynamics it can be undertaken early in the model development process,
before the model has been fully parameterised.
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1 Introduction

As modelling approaches for systems biology grow in sophistication, and exper-
imental techniques gather ever more data about biological function, constructed
models grow ever more complex. One of the advantages of using a high-level mod-
elling language, such as a process algebra, rather than the low-level mathematics,
such as ordinary differential equations, is that the language facilitates automated
techniques to support the modeller in constructing models that are faithful to her
intentions, i.e. her current understanding of the biological mechanisms at play.

This paper is concerned with a particular kind of static analysis of dynamic
biological models aimed at uncovering problems and errors in the model descrip-
tion as early as possible in the model development process and in particular before
the model is simulated to produce analysis results. Our analysis is concerned with
the conservation of mass in a model and the use of invariant generation to identify
definitions of species or reactions in a model which may violate the principle of
conservation of mass.

We are exclusively interested in automatic analysis procedures which can be
applied without human intervention and automated with acceptable efficiency in
practice. Such procedures can then be applied to every version of a biological
model produced during the model development process, leading to a supervision
process which we believe lessens the possibility of undetected errors in models.
We have previously [9] considered the verification of Bio-PEPA models using a
combination of static and dynamic analysis. In the present paper we extend the
repertoire of static analyses.

A significant component of the analysis is the ability to generate invariants over
the chemical species in the model which identify sets of species whose total quan-
tity remains unchanged throughout simulation. Invariants such as these can be cal-
culated from the stoichiometric information in a model using the Fourier-Motzkin
elimination procedure [12]. This is a procedure of numerical linear algebra which
operates on the stoichiometric matrix in order to calculate invariants over species
and invariants over reactions. The Fourier-Motzkin procedure is known to have
doubly exponential running time in the worst case but for small or medium-sized
models we have always found the running time of the algorithm to be acceptable in
practice.

1.1 Positioning with respect to the state-of-the-art

Many researchers working on static analysis of biological models have been gen-
erating invariants and inspecting these by eye. Thus, although the computation of
invariants is automatic the modeller has been until now left with the problem of
deciding whether the invariants which have been computed are the expected set of
invariants for this model. If these match then the modeller is reassured that the
model has been constructed as intended. If these do not match then this suggests
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that an error has been made in constructing the model.
The difficulty with this current common practice is that knowing which invari-

ants are expected often requires a combination of both strong mathematical rea-
soning skills and deep biological domain knowledge, making it a non-trivial task
to decide whether the invariants computed suggest an error in the model. Added
to this, standard invariant analysis is not so easily interpreted for models of open
biological systems in which matter flows into the model via sources and flows out
again via sinks. However, such models are entirely legitimate and thus we would
like our analysis to apply to these also.

The novel contributions of our paper are

(i) transforming the invariant evaluation problem which relies on the application
of human expertise and skill into a decision problem which can be entirely
automated to give either a yes or no answer; and

(ii) devising a procedure to apply invariant analysis to models of open biologi-
cal systems which bounds the problem to form a closed model which can be
entirely covered by species invariants.

The discussion in this paper is focused on models written in the process algebra
Bio-PEPA [7] which is designed to be particularly applicable to modelling biolog-
ical systems such as signalling pathways. However much of what is said applies
to other kinds of modelling paradigms and in particular to models which can be
converted to an SBML [16] model. In fact since this is a qualitative analysis we
require only knowledge of the stoichiometry matrix.

2 Related work

Invariant generation and analysis is regularly applied when modelling with Petri
nets [19], also in the context of models of biological processes [15,14]. Invariants
can be used for a range of analysis purposes (see [2] for a survey), including guiding
the modular decomposition of large models [13].

Most implementations of invariant generation require the complete stoichio-
metric description of a model 5 and work forwards from this using the Fourier-
Motzkin procedure to generate a set of invariants. In contrast, the Traviando trace
analysis tool [17] contains a novel on-the-fly algorithm to infer a set of invariants
from a trace generated by a discrete stochastic simulation. An implementation of
the Fourier-Motzkin elimination procedure due to Peter Kemper is included in the
Bio-PEPA tool suite in the Bio-PEPA Eclipse Plug-in [6].

We are working here with a high-level language which gives us the consid-
erable advantage of being able to switch between different views of a model and
between different regimes for dynamic analysis. The latter has already proven to be

5 In Petri nets terms, the incidence matrix.
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valuable in detecting previously unknown problems with the analysis of biological
models [4]. Papers working directly with ODE models in order to find errors appear
to be relatively rare, and when this is done – as in [20,18] – the authors require
two independent implementations of their mathematical model, then need to gener-
ate residuals with fixed geometric properties, and subsequently isolate errors using
feature matrices which describe the subspace imposed by such errors. Most of the
methods required here would be relatively unfamiliar to most biologists and are not
automated. In contrast we have automated methods which relate to the well-known
notion of conserved moieties, familiar to biological modellers.

3 The Bio-PEPA language

Bio-PEPA [7] is a stochastic process algebra for modelling and analysis of bio-
chemical systems. We give here a brief overview of the main features of the lan-
guage. For a detailed presentation of its syntax and semantics, see [7].

In a Bio-PEPA model of a biochemical system, each molecular species (i.e. pro-
teins, genes, mRNAs) is represented by a process. The state of the system at a given
time is given by the current amount of the molecular species, and the result of the
occurrence of a biochemical reaction is a change in the available amount of the
involved species.

Processes interact by means of shared action names representing reactions and
specifying their role in the reaction (reactant, product, catalyser, inhibitor, etc.) and
their stoichiometric coefficient for that reaction. The effect of a reaction occur-
rence is to decrease the amount of reactants and increase the amount of products
according to the stoichiometry 6 .

Species amounts in Bio-PEPA can either be concentrations (continuous seman-
tics) or molecule counts (discrete semantics), hence allowing both numerical meth-
ods based on differential equations and also stochastic analysis either via stochastic
simulation using the Gillespie algorithm or by numerical evaluation of the under-
lying continuous-time Markov chain. For each biochemical species, the modeller
specifies the set of reactions in which the species is involved and the role of the
species in each reaction. Each reaction is associated with a kinetic law which spec-
ifies the rate of occurrence of that reaction.

Formally, the main components of a Bio-PEPA system are the species compo-
nents, describing the behaviour of each species, and the model component, spec-
ifying all interactions and initial amounts of species. The syntax of Bio-PEPA

6 The stoichiometry of a species with respect to a reaction indicates how many molecules of this
species are produced or consumed by this reaction. In Bio-PEPA the semantics automatically adjusts
the quantitative variable for a species to reflect the stoichiometry whenever a reaction occurs.
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components is given by:

S ::= (α,κ) op S | S+S |C with op= ↓ | ↑ | ⊕ | 	 | �

P ::= P ��
I

P | S(x)

where S is a species component and P is a model component. In the prefix term
(α,κ) op S, κ is the stoichiometry coefficient of species S in reaction α , and the
prefix combinator “op” represents the role of S in the reaction. Specifically, ↓ indi-
cates a reactant, ↑ a product, ⊕ an activator, 	 an inhibitor and � a generic modi-
fier. The notation α op in the definition of species S is a shorthand for (α,κ) op S
when κ = 1. The operator “+” expresses a choice between possible actions, and
the constant C is defined by an equation C def

= S. The process P ��
I

Q denotes syn-
chronisation between components P and Q; the set I determines the activities on
which the operands are forced to synchronise, with ��

∗ denoting a synchronisation
on all common action types. In the model component S(x), the parameter x ∈ N
represents the initial number of molecules of S present.

In addition to species and model components, a Bio-PEPA system consists of
kinetic rates, parameters and, if needed, locations, events and other auxiliary infor-
mation for the species. Complexes are sometimes denoted with colons, as in E:S,
but the colon is just a letter in the name, not an operator.

Here we illustrate the basic concepts using the following simple example. A
reaction S E−→ P which converts a substrate molecule S into a product molecule P
catalysed by an enzyme E is modelled in Bio-PEPA as

S def
= r1 ↓

P def
= r1 ↑

E def
= r1⊕

where r1 is a name associated with the reaction. The kinetic law of r1 is defined by
the Michaelis-Menten kinetics

r1 =
kcat ·E ·S
KM +S

and kcat and KM are the reaction kinetic constants.
This represents the fact that S, P and E are all involved in the occurrence of

reaction r1, and that the result of the occurrence of r1 is to decrease the total amount
of S molecules (↓) and increase the total amount of P molecules (↑); the role of the
enzyme E is to speed up the reaction, but its amount is unaffected (⊕).

The Bio-PEPA Eclipse Plug-in [11] is a software framework for Bio-PEPA
model development and analysis. In addition to dynamic time-series analysis via
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stochastic simulation and the solution of differential equations, the Bio-PEPA Eclipse
Plug-in enables modellers to perform static analysis — such as the identification
of invariants, sources and sinks described in the following. More information on
the Bio-PEPA language and on the features of the tool and its import/export for-
mats can be found in [3,6,11]. The Bio-PEPA software tools are available from
http://www.biopepa.org/.

4 Invariants

In this section we review the definition of an invariant with respect to a Bio-PEPA
model and the process of computing the set of invariants for an entire model. The
set of invariants for a model is usually computed during model construction in order
to assist in model validation. There are two kinds of computed invariants; state
invariants and reaction invariants. A state invariant involves a set of components
or species in the model. At any time during a simulation one may sum together the
populations of the components of a state invariant and the result will always be the
same. Consider the following simple model presented in reaction syntax on the left
and Bio-PEPA syntax on the right:

E +S r−→ ES E def
= r ↓ + rm ↑ + p ↑

ES rm−→ E +S S def
= r ↓ + rm ↑

ES
p−→ E +P ES def

= r ↑ + rm ↓ + p ↓

P def
= p ↑

In this model there are exactly two state invariants: E +ES and S+ES+P. To see
this, consider symbolically combining the Bio-PEPA definitions of the species E
and the species ES. Each occurrence of a ↑ reaction is then matched with its cor-
responding ↓ reaction. The same is true when the definitions of S, ES and P are
combined. In contrast, the quantity E + S is not an invariant of this model and
we can see this when the definitions of the species E and S are combined because
the p ↑ term in the Bio-PEPA definition of the species E is not matched by a corre-
sponding p ↓ term in the definition of S.

More generally, a state invariant may have a set of coefficients such that we may
for example say that (1×O2)+(2×O) is a state invariant. A coefficient may also
be negative. We may have that A−B is invariant in a model in which the species A
and the species B are only ever produced or consumed together.

A reaction invariant is a set of reactions such that from any state X that the
model may reach, if one of each of the reactions in the reaction invariant is fired in
sequence then the model is returned to X . In the example model above there is only
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one reaction invariant: r+ rm, as illustrated below,

E +S r−→ ES rm−→ E +S.

As in the case of state invariants, a reaction invariant may include a set of coeffi-
cients, such that some of the reactions may be required to fire more than once to
return the model to the original state. Note that it does not matter in which order
the reactions are fired. Reactions not included in the invariant may be interspersed
with the reactions of an invariant, in which case the effect on the state of the model
will be the same as if only the interspersed reactions had occurred, and therefore we
will not return to the original state unless the interspersed reactions form a reaction
invariant themselves.

5 Invariants, sources and sinks

In this section we detail the relationship of both component and reaction invariants
to sources and sinks within the model. A model can have both sources and sinks. In
the interests of readability we refer to sources and sinks collectively as taps. Taps
may be component-based or reaction-based. A component source is consumed by
at least one reaction but is never produced by any reactions. Conversely a com-
ponent sink is a component which is produced by at least one reaction but never
consumed by any reaction. The syntax of Bio-PEPA makes the identification of
component taps trivial; a component is a source if its definition contains at least
one ↓ operator and no ↑ operators, although it may contain ⊕, 	 or �. Conversely
the definition of a sink component contains at least one ↑ operator and no ↓ opera-
tors. The following snippet of Bio-PEPA highlights this.

Source def
= a ↓+b ↓+c⊕

Sink def
= a ↑+b	+c ↑

Reaction taps are defined analogously. That is, a reaction source is a reaction which
has no reactants but at least one product and a reaction sink is a reaction which
has no products and at least one reactant. Simply put, a reaction source produces
something but does not consume anything whereas a reaction sink consumes some-
thing but does not produce anything. In the Bio-PEPA syntax, while it is trivial to
observe component source and sinks, reaction source and sinks can only be iden-
tified by viewing the entire model. The Bio-PEPA software however provides an
outline view of your model showing reactions and in this view reactions which are
source or sink reactions are trivial to identify. In any case the outline view lists
all component and reaction sources and sinks. The following snippet shows two
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reactions one of which is a source and the other of which is a sink.

source reaction : −→ P1 +P2

sink reaction : R1 +R2 −→

5.1 Taps mark boundaries

When constructing a model the modeller must choose which features of a physical
system to include. Components of the real system which are included are called
model components. Those which are excluded are called external components or
collectively referred to as the external environment. By their nature, models are
finite in extent and scope. The external components are essentially everything not
mentioned in the model.

For a model to be useful we hope that either in the physical system the influ-
ence of the external components on the model components is negligible or that this
influence can be ignored for the purposes of the current analysis. This leads to
boundaries between the model components and the external components and here
we wish to argue that taps in the model represent such boundaries. (Note that we
are not claiming that such boundaries are only represented by taps in the model.)

A reaction sink forms a natural boundary between the model components and
the external environment. This is because from the point of view of the model a
reaction sink is removing mass from the system. In reality, mass does not reduce to
nothing, but the species that it does reduce to is an external component and hence
not mentioned in the model. The same is of course true for a reaction source.
Mass is not produced from nothing, but instead from an external component not
mentioned in the model.

5.2 Invariants affected by taps

None of the reactions which modify a component tap can be involved in any reac-
tion invariant. The reason for this is straightforward: if a component P is a source
then any reaction r which modifies P must decrease the population of P, since there
are no reactions which increase the population of a component source. The origi-
nal population of component P before a firing of reaction r can never be restored
by any combination of other reactions in the model. Thus, reaction r cannot be
involved in any reaction invariant. The same reasoning applies to component sinks.
A component tap may however be involved in a component invariant.

A reaction tap may be part of a reaction invariant but a component listed as a
reactant or product of a reaction tap cannot form part of a component invariant. The
reasoning is fairly straightforward when we consider a reaction source r. If r mod-
ifies the population of P it must increase the population P, because r is a reaction
source. Being a source, r cannot reduce the population of any other component.
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The consequence is that any putative invariant in which P is involved would also
have its value increased by a firing of r and therefore would not be an invariant at
all. Analogous reasoning applies in the case that r is a sink reaction. However just
as a component tap may be involved in a component invariant, a reaction tap may
be involved in a reaction invariant/loop, as in:

source reaction : −→ P
sink reaction : P−→

5.3 Removing reactions and components

When modelling it is sometimes desirable to remove a component or a reaction
from the description of the model. This may be done to see the effect it has on the
evaluation of the model. Removal may be done by hand, or can be automated in
modelling software. In this section we briefly describe the removal of components
and reactions from a Bio-PEPA model and then how this affects invariants.

The removal of a reaction is straightforward: simply delete the kinetic law
and update any component description by removing the corresponding reaction
behaviour from the component definition. The following shows the removal of
a reaction named am. The model before removal is on the left; the model after
removal is on the right.

E def
= a ↓ +am ↑ +b ↑

S def
= a ↓ +am ↑

ES def
= a ↑ +am ↓ +b ↓

P def
= b ↑

E def
= a ↓ +b ↑

S def
= a ↓

ES def
= a ↑ +b ↓

P def
= b ↑

If we remove the only reaction which a species is involved in then that species
simply becomes a constant equal to its initial population.

Removal of a component involves simply the removal of that component’s def-
inition. In Bio-PEPA this automatically involves updating the reaction descriptions
of any reactions in which the deleted component was involved. This then raises the
question of what should be done to kinetic laws which involve the deleted com-
ponent’s population. In most cases it can be safely deleted from the kinetic law.
Further treatment of this issue is outside the scope of this paper, since our main
analysis is a rateless analysis.

What happens to the computed set of invariants when we remove a reaction
from the model? The first observation is that by removing a reaction from the model
we cannot invalidate a component invariant: any group of components which previ-
ously formed a component invariant will still do so. (If we removed all the reactions
from a model then all of the components would have constant populations.) This
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is illustrated by the example above where we can see that the component invariants
are the same — E +ES and S+ES+P — in both the left hand and the right hand
model.

Our second observation is that by removing a reaction we may create more
component invariants, if we remove a reaction which violates an invariant property
and there are no other reactions left which violate the candidate invariant property.
A reaction invariant is disrupted by the removal of any reaction within the reaction
invariant, but undisturbed by the removal of any reaction not within the reaction
invariant.

What happens to the computed set of invariants when a component is removed
from the model? If the removed component is part of a component invariant then
naturally that invariant may be invalidated. However the removal of a component
will not disrupt any component invariants in which it is not involved nor will it
disrupt any reaction invariants. It may however cause the invariant analysis to
report what was previously a single (reaction or component) invariant as two or
more invariants. This is because the analysis procedure reports the set of minimal
invariants and although an invariant will not be invalidated by the removal of a
component it may cease to be a minimal invariant.

6 Conservation of Mass

We have discussed the invariants of a model and the taps which are the sources and
sinks of a model. We have also discussed the effect on invariant analysis of the
removal of components or reactions from the model. In this section we combine
these concepts in order to check the consistency of a model.

Having performed invariant analysis over the model we can check if mass is
conserved because every component in the model should be covered by at least
one invariant. We can then obtain a single invariant which covers the entire model
by summing together all of the component invariants in the model. This provides
us with a convenient static analysis consistency check on all kinds of biological
models. This check is always applicable: invariants can always be summed because
the sum of two constants is a constant.

However, due to their finite extent, it is often the case in a biological model
that mass is not conserved. This occurs because mass is lost to or gained from the
external components which are not within the scope of the model. A simple way in
which this occurs is to have a production or degradation reaction which produces or
removes the mass of one or more model components. These reactions show up as
source and sink reactions and are the reason that mass appears not to be conserved
within the model.

As we have observed before, removing reactions from the model does not inval-
idate any component invariants. We utilise this by removing from the model all tap
reactions, that is all source and sink reactions. Once we have done this we have
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removed from the model any obvious means by which mass may be produced or
consumed. Performing invariant analysis on the model with tap reactions removed
should give us total invariant cover. That is, all components in the resulting model
should be covered by at least one invariant. If that is not the case then it means that
mass is produced or consumed internally within the model.

6.1 Summary of Analysis Steps

This section summarizes the steps to detecting, finding and fixing flaws in a model
using conservation of mass analysis.
• Run the invariant check. The software automatically ignores all tap reactions and

calculates the set of invariants. A warning is issued if not all components in the
model are covered by some invariant indicating that mass is not conserved by the
model. Additionally the modeller is shown the set of model components which
are not covered by any invariant.

• Re-run the invariant check once for each reaction in the model. Each analysis
ignores all of the tap reactions plus one of the non-tap reactions in the model.
Each analysis gives a set of components which are not covered by any component
invariant. All of these sets are equal to (or a subset of) the species which are not
covered by any invariant when no non-tap reactions are ignored. This requires
an invariant analysis run for every reaction in the model. This is tolerable in
practice; the analysis for the model in our case study required less than one
second on a conventional desktop computer.

• This provides a suspect list of reactions which may be contributing to the loss
or production of mass in the model. Examine this list and in particular look
for pairs of similar reactions. These should be similar both in their component
participants and in the set of uncovered components produced by ignoring either
of the two reactions. The invariant check can be performed while ignoring all
the tap reactions plus both of the reactions in such a pair. Closely examine any
reaction (or reaction pair) whose removal causes the analysis to determine that
mass is conserved.

• If a reaction is found to have been defined in error then update the model descrip-
tion to amend the reaction and re-run the conservation of mass analysis. In Bio-
PEPA amending the reaction(s) consists of modifying the component definitions
to either add or remove components as reaction reactants or products. If the
model is advanced enough such that rate laws have been written for reactions, it
is a good time now to update the rate law(s) associated with the modified reac-
tions. The Bio-PEPA software can again help with this, as there are warnings
produced when a rate law expression does not contain a reference to a reactant,
or does contain a reference to a non-reactant. This is more fully discussed in [10].
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M1 TNFα

M2 TNFR1
M3 TNFα/TNFR1
M4 TRADD
M5 TNFα/TNFR1/TRADD
M6 TRAF2
M7 TNFα/TNFR1/TRADD/TRAF2
M8 IKK
M9 TNFα/TNFR1/TRADD/TRAF2/IKK
M10 RIP1
M11 TNFα/TNFR1/TRADD/TRAF2/RIP1
M12 TNFα/TNFR1/TRADD/TRAF2/RIP1/IKK
M13 IKK∗

M14 IκB/NF-κB
M15 IκB/NF-κB/IKK∗

M16 IκB-P

M17 NF-κB
M18 RIP1/Caspase-8
M19 RIP1n
M20 RIP1c
M21 FADD
M22 Caspase-8
M23 TNFα/TNFR1/TRADD/FADD
M24 TNFα/TNFR1/TRADD/FADD/Caspase-8
M25 Caspase-8∗

M26 Caspase-8∗/Effector
M27 Effector∗

M28 DNA fragmentation
M29 Effector
M30 Effector/c-IAP
M31 c-IAP

Fig. 1. ODE variable names and biological variable names in the model

7 Case Study

In this section we provide a case study to illustrate our techniques. The exam-
ple model has already been analysed using our previous invariant analysis tech-
niques [9,10]. We update the case study here to include our methods of finding
the particular flaws in the model revealed by conservation of mass analysis and in
particular how this analysis guides us to the erroneous parts of our model.

Our method works directly from the formal text of the differential equations and
does not require additional graphical representations or other supplementary non-
formal designs. Of course, we recommend working with high-level languages such
as process algebras or Petri nets and generating differential equations from these,
but many practitioners begin with ODE models. The model which we consider in
our case study was presented in [5] as a series of ordinary differential equations
which we first had to hand-translate into a Bio-PEPA model. This step represents
another potential source of flaws in the model which we are keen to detect before
any quantitative analysis is performed. Schematic variable names are preserved
from the ODEs. These are related to (biologically) meaningful names in Fig 1.

The model outline computed by the Bio-PEPA software is provided in Fig. 2.
This includes two additional reactions r20alt and r29alt which represent possible
improvements from an earlier pass of model validation reported in [10]. The pur-
pose here is to represent the methodology used in finding errors in models prior to
evaluation of model results.
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31 Species
M1

with initial #molecules = 30
r1,M1+M2→M3
r2,M3→M1+M2

M2
with initial #molecules = 15
r1,M1+M2→M3
r13,M12→M2+M4+M6+M10+M13
r2,M3→M1+M2
r24,M24→M2+M4+M6+M10+M21+M25

M28
with initial #molecules = 0 (is-sink)
r28,M27→M28

M29
with initial #molecules = 10
r25,M25+M29→M26
r26,M26→M25+M29
r29,M29→M30
r30,M30→M29+M31

M5
with initial #molecules = 0
r20,M5→
r21,M23→M5+M21
r3,M3+M4→M5
r4,M5→M3+M4
r5,M5+M10→M11
r6,M11→M5+M10
r7,M5+M6→M7
r8,M7→M5+M6

...
26 species omitted

33 Reactions
r19,M17→M31
r2,M3→M1+M2
r20,M5→
r20alt,M21→M23
r21,M23→M5+M21
r22,M22+M23→M24
r23,M24→M22+M23
r24,M24→M2+M4+M6+M10+

M21+M25
r25,M25+M29→M26
r26,M26→M25+M29
r27,M26→M22+M27
r28,M27→M28
r29,M29→M30
r29alt,M31→
...
19 reactions omitted

4 Sinks
M16
M19
M20
M28

2 Sink actions
r20,M5→
r29alt,M31→

Fig. 2. A condensed-for-space version of the outline view inferred from the Bio-PEPA model of the
TNFα-mediated NF-κB signal transduction pathway. The r20alt and r29alt reactions have been added to
the Bio-PEPA model during an earlier pass of model validation reported in [10].

7.1 Initial Invariant Analysis

Our initial invariant analysis may provide some clue as to the veracity of this model
for anyone with a deep understanding of the intended semantics of the model and
in particular which state invariants should hold within the system. The results of
invariant analysis give six component invariants and eleven components not cov-
ered by any invariants, as reported in Fig. 3.

The fact that there are uncovered species might give us cause for concern, but
we note that some of these are trivially expected, for example the component M31 is
involved in the sink reaction: r29alt,M31−→, and the component M5 is involved
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State Invariants:
(i) M21+M23+M24

(ii) M12+M13+M15+M8+M9
(iii) M14+M15+M16
(iv) M18+M22+M24+M25+M26
(v) M26+M27+M28+M29+M30

(vi) M10+M11+M12+M18+M22+M24+M26+M29+M30

Uncovered Species:
• {M1,M17,M19,M2,M20,M3,M31,M4,M5,M6,M7}

Fig. 3. The component invariants and reaction invariants computed for the TNFα-mediated NF-κB signal
transduction pathway by the Bio-PEPA Eclipse Plug-in

in the sink reaction: r20,M5−→. We cannot expect either of these components to
be included in any state invariant.

However when we repeat this analysis, choosing to ignore all tap reactions, we
find the same set of invariants and the same set of components uncovered by any
invariant. This removes the doubt that the uncovered components were caused by
mass being produced or consumed at the boundary between the model components
and the external environment. In other words our model is either producing or
consuming mass within the model components. Although we would require a rather
deep understanding of the model and of invariant laws to anticipate the expected
set of invariants in this model we require only a relatively shallow understanding to
know that we expect mass to be conserved by the model components.

7.2 Compositional Reduction Analysis

In this section we narrow down the causes of the non-conservation of mass detected
in our system by iteratively re-analysing the model for invariant coverage whilst
successively removing each reaction. We re-run the analysis once for every non-tap
reaction. In each run all tap reactions plus one other non-tap reaction are ignored.
We call this ‘reduction analysis’ since the model is smaller than the entire original
model. It is compositional because we do this one reaction at a time.

We will use L to denote the original set of uncovered species. Table 1 shows
the reductions relative to L when each reaction is, in turn, ignored for the purposes
of the invariants check. The results in the first three lines of the table tell us that
those reactions are not independently responsible for causing the non-conservation
of mass. This has narrowed our search from thirty-one initial non-tap reactions to
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Ignored Reaction Uncovered Component Set

r1 . . .r17 L

r25 . . .r28, L

r20,r22,r23,r29alt,r31 L

r18,r24 L −{M19,M20,M6,M7}

r19 L −{M17}

r20alt {M17,M31}

r21 L −{M1,M3,M5,M7}

r29,r30 L −{M17,M31}

Table 1
Table showing the effect which ignoring each reaction has on the set of components that are uncovered by any

invariant. Only the removal of reactions r18,r24,r19,r20alt,r21,r29 and r30 have any effect.

seven reactions. These reactions are:

r18 : M18−→M19+M20+M22
r24 : M24−→M2+M4+M6+M10+M21+M25
r19 : M17−→M31

r20alt : M21−→M23
r21 : M23−→M5+M21
r29 : M29−→M30
r30 : M30−→M29+M31

One point of interest in Table 1 is that there are two rows consisting of a pair of reac-
tions, namely: {r18,r24} and {r29,r30}. Removing either of the two reactions in
these pairs ‘fixes’ the same set of components. The first pair seems unrelated, how-
ever examining the second pair we see a simple loop which creates mass. Reaction
r29 consumes M29 producing M30, which is consumed by reaction r30 in produc-
ing both the original M29 and an additional M31. This seems likely to be a flaw in
the model, either reaction r29 should also consume M31 or reaction r30 should not
produce M31. Of course in order to actually fix this flaw one must fully understand
the intention of the model to begin with. However in this case we can re-write the
two reactions giving the involved components their descriptive biological names.

r29 : Effector−→ Effector-IAP
r30 : Effector-IAP−→ Effector+ c-IAP

From these two reactions we cautiously made the choice to amend reaction r29 to
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Ignored Reaction Uncovered Component Set

r1 . . .r17 M

r19 . . .r20 M

r22,r23 M

r26,r31 M

r18,r24 M −{M6,M7,M19,M20}

r21 M −{M1,M3,M5,M7}

r20alt {}

Table 2
Table showing the effect which ignoring each reaction has on the set of components that are uncovered by any

invariant for the model with a corrected version of reaction r29. Only the removal of reactions r18,r24,r21
and r20alt have any effect.

consume c-IAP.
Having made this correction we re-analyse the model and observe that mass

is still not conserved. This matches our expectations since the flaw that we have
corrected allowed the production of the component M31. However, in the origi-
nal model M31 is only involved in its own production. Hence the fact that there
are other uncovered components could not have been caused by the production of
this single component. We therefore go through the steps again and find a simi-
lar table to Table 1. Table 2 shows an updated version of the original table, this
time analysing the model with a corrected version of reaction r29. Additionally
M = L −{M17,M31}.

The most significant point of interest in Table 2 is the result for reaction r20alt.
Removing r20alt means that the invariant analysis calculates that mass is conserved
within the model. This strongly implicates r20alt or a related reaction. However
a single reaction on its own cannot be at fault, there are only three other reactions
which modify the set of uncovered components. We look at r21 first because it
seems to be the most closely related to r20alt and because r18 and r24 appear to
be a pair. The two reactions r20alt and r21 are:

r20alt : M21−→M23
r21 : M23−→M5+M21

As before we have identified a simple loop: if r20alt and r21 both fire once, the
model is returned to the same original state but with an increased count of M5.
Again the correction is that either r20alt should have M5 as a reactant or r21 should
not have M5 as a product. Just as before, we cannot authoritatively say which
should be the optimal correction for this model but re-writing the reactions with
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Fig. 4. Timeseries analysis of the four models: (a) the original model; (b) the model with r29 corrected; (c) the
model with r20 corrected; and (d) the model with both flaws corrected. Clearly the biological insights which
could be derived from (d) are quite different from the insights which could be derived from (a) – the results are
qualitatively different.

the original component names gives us something of an indication:

r20alt : FADD−→ TNFα/TNFR1/TRADD/FADD
r21 : TNFα/TNFR1/TRADD/FADD−→ TNFα/TNFR1/TRADD+FADD

It appears likely that M5 (TNFα/TNFR1/TRADD) is missing as a reactant of the
reaction r20alt. Having fixed this in our model we re-analyse the model and as
expected the analysis returns that mass is conserved in our new model.

7.3 Results

Figure 4 depicts the results from timeseries analysis of four versions of the TNFα-
mediated NF-κB signal transduction pathway model. The first version is the origi-
nal model before we began any conservation of mass analysis. The second version
has an updated version of reaction r29 introduced to fix the first flaw we have
detected. The third version corrects the original model with respect to our second
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found flaw, as a result this updates the reaction r20alt. The fourth and final ver-
sion updates both reactions r29 and r20alt to represent a model which internally
conserves mass.

Not all species in the model have been plotted for the sake of clarity. The
interesting result is the progression of the population of the species M5. In both
the first two versions in which M5 has been erroneously left out of the reactant list
for reaction r20alt after an initial decline in population size this is recovered and
settles at an equilibrium value of over 10. However when the reaction is fixed to
include M5 as a reactant, the population of M5 has only a brief attempt at a recovery
before settling into an equilibrium value of less than 5. The correction we made to
reaction r29 has a less obvious effect.

8 Limitations

In this section we discuss the limitations of our approach. No static analysis can
detect all flaws in models, and we are not hoping to do this here. Additionally,
any static analysis which warns about possible errors in a model becomes almost
useless if the analysis produces too many false positives. When this occurs the
modeller is likely to begin to ignore the analysis results. In this section we discuss
some reasons for which there may be false positives and we argue that these do not
detract from the general usefulness of our approach.

The most obvious scenario in which our conservation of mass analysis has dif-
ficulty is if the model itself is not expected to conserve mass. This is likely when
the scale of the model is higher than a molecular level, for example cellular or even
organism level.

A legitimate block occurs when using a biological model to measure population
levels with birth and death rates, for example epidemiological models in Bio-PEPA
are considered in [8]. In these cases, “mass” is clearly not expected to be conserved
and hence we would expect our analysis to highlight problems with reactions which
are in fact perfectly correct. Another example would be at the celluar level in which
the growth and splitting of a single cell into two daughter cells (cytokinesis) is
modelled.

Our analysis depends on the process of partitioning the set of all reactions into
two sets; of tap and non-tap reactions. This allows us to ignore reactions which
introduce mass into the model components from outside of the scope of the model,
or discard mass from the model out to the external environment. In turn this allows
us to focus on the reactions entirely within the scope of the model to determine
whether mass is conserved there.

If reactions are written down correctly with respect to the model components,
then our partitioning is conservative in the sense that a non-tap reaction is not erro-
neously ascribed as a tap reaction (although a tap reaction may be identified as a
non-tap reaction). This is the correct relationship since the tap reactions are ignored
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for the analysis so we are better to be conservative in ignoring too few rather than
too many reactions. Additionally a reaction may be explicitly ignored as is done in
the compositional reduction analysis step, see Section 7.2.

9 Conclusions

In this paper we have discussed a methodology for the static analysis of biological
models with particular respect to determining whether the model in question con-
forms to the law of conservation of mass. We are careful to define the boundaries
between the portions of the real system which lie within the scope of the model
and those which do not. We expect that mass may be lost from the model com-
ponents to the external environment or gained by the model components from the
external environment. We ignore reactions which cause such losses or gains in
order to determine whether reactions which describe behaviour entirely captured
within the model conserve mass. If we determine that the model fails to conserve
mass then we search for the reactions which are the cause. This involves compo-
sitional application of the conservation of mass analysis, for each reaction within
the model scope. For each reaction we compare the results of conservation of mass
analysis, with and without that reaction. This can dramatically narrow the search
for erroneous reactions within the model.

We believe that our analysis has several advantages. It is a qualitative analysis
which means that it can be performed on the model at all stages of development
and in particular before parameters are finalised or even estimated.

In addition our analysis is quite inexpensive, although as we have previously
noted [10], the invariant analysis used can be exponential in the worst case, practice
has shown that this rarely occurs. The invariants check can be performed efficiently
enough on a typical desktop computer to be perceived as instantaneous for models
involving more than forty reactions.

The conservation analysis check can be performed automatically with little or
no understanding of the model. Once a fault has been determined to exist, this can
even be sought without detailed knowledge of the nature of the model. To actually
modify the model in order to repair an error will of course require knowledge of
the intentions of the modeller. However the point we wish to make here is that
invariant analysis and the general expectation of conservation of mass combine
well to form an automatic evaluation of the model. Previously we had relied on the
modeller having a pre-existing expectation of the set of invariants which should be
computed.

Although all of our analysis has taken place within the setting of the process
algebra Bio-PEPA, the analysis is not only applicable there. Any formalism which
can be written as a reaction matrix may adopt this analysis. We have performed
this analysis over a Bio-PEPA model which included a use of compartments. This
involved no extra work in order to perform our mass conservation analysis.
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Combining these two final points we have begun work on the automatic classi-
fication of a large database of SBML models. We can mechanically categorise all
such models into those which conserve mass and those which appear not to. The
latter set can be later analysed more closely by a human who will be presented with
a good idea of the reactions which may be erroneous.

We are convinced of the utility of performing static analysis on any kind of
model at all stages in development of the model. In this paper we have described
an inexpensive, qualitative and useful analysis together with a methodology which
greatly reduces the time spent tracking down the source of an error once one has
been detected to exist. We are confident that our approach is scalable as we have
tested it against the models in the Biomodels database [1]. Models which ranged in
size from 4 reactions to 4139 reactions could all be analysed in under 15 seconds.
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