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Abstract

We present two process algebra models of a Kai-protein based circadian clock. Our models are
represented in the Bio-PEPA and the continuous pi-calculus process algebras. The circadian clock
is not based on transcription and has been shown to persist with a rhythmic signal when removed
from a living cell. Our models allow us to speculate as to the mechanisms which allow for the
rhythmic signals. We reproduce previous results based on ODE models and then use our models
as the basis for stochastic simulation.

Keywords: Circadian, ODE, stochastic, temporal logic, Bio-PEPA, Continuous Pi

1 Introduction

Circadian clock systems are found in many living organisms and regulate many
biological functions. Many circadian clock systems oscillate around a 24 hour
period, rely upon transcription (the process of producing a complementary
RNA copy of a sequence of DNA), and may be entrained by external time
cues (often light). As such, circadian clock systems may be complex systems
with a series of inputs and outputs. The system which we investigate here is a
somewhat simple example found in cyanobacteria which produces a rhythmic
signal which can be reproduced in vitro. The signal produced is the mean
phosphorylation level of the KaiC protein and a good overview can be found
here[12]. This has been studied previously with the use of Ordinary Differ-
ential Equations [5,7,6,9], and remains an interesting system of investigation
due to its simplicity and the relatively low cost of performing experiments.

We present two process algebra-based models of the Kai-based circadian
clock, the first written in Bio-PEPA, the second in the continuous pi-calculus.
Both Bio-PEPA[4] and the continuous pi-calculus [11,10] have been designed
for modelling the behaviour of biochemical systems but from different per-
spectives.

We base our models on those described by Van Zon et al. [15], who used
an ODE-based model and were able to reproduce experimental observations.
By producing a Bio-PEPA model for these phenomena, we can, from the same
model, reproduce the ODE results of Van Zon et al. and investigate the role of
stochasticity using stochastic simulation algorithms. In addition, we believe
our process algebra model to be more amenable to in silico experimentation
and we demonstrate this with an investigation of the role of so-called shortcut
reactions which will be explained Section 4.

1 Email: C.Banks@ed.ac.uk
2 Email: a.d.clark@ed.ac.uk
3 Email: ageorgou@staffmail.ed.ac.uk
4 Email: stg@staffmail.ed.ac.uk
5 Email: Jane.Hillston@ed.ac.uk
6 Email: d.milios@sms.ed.ac.uk
7 Email: Ian.Stark@ed.ac.uk

2

mailto:C.Banks@ed.ac.uk
mailto:a.d.clark@ed.ac.uk
mailto:ageorgou@staffmail.ed.ac.uk
mailto:stg@staffmail.ed.ac.uk
mailto:Jane.Hillston@ed.ac.uk
mailto:d.milios@sms.ed.ac.uk
mailto:Ian.Stark@ed.ac.uk


Banks, Clark, Georgoulas, Gilmore, Hillston, Milios and Stark

2 Background

The system under investigation is based upon three proteins KaiA, KaiB and
KaiC. The rhythmic signal that is produced is the mean phosphorylation level
of the KaiC protein. The phosphorylation level ultimately regulates the KaiC
protein’s activity as a global transcriptional repressor. However, this rhyth-
mic signal has been shown to persist when transcription and translation have
been inhibited, and in addition, the signal can be reproduced in in vitro ex-
periments with only the Kai{A,B,C} proteins and Adenosine Triphosphate
(ATP) present[13].

The KaiC proteins form hexamers. Each monomer within a KaiC hex-
amer can be individually phosphorylated (the addition of a phosphate group).
Thus a single KaiC hexamer can exist in seven distinct levels of phosphoryla-
tion corresponding to the number of monomers within the hexamer which are
currently phosphorylated. In addition each KaiC hexamer can exist in one of
two states, the active and the inactive state. A hexamer in the active state
is more readily phosphorylated than dephosphorylated and the reverse is true
for a hexamer in the inactive state. Thus a single KaiC hexamer may exist in
one of 14 states, corresponding to the seven distinct levels of phosphorylation
in both the active and the inactive states.

A single KaiC hexamer can cycle through the fourteen possible states via
the following reactions (note that by convention we use the ‘r’ prefix for a rate
and the ‘k’ prefix for a constant):

Ci

rps
i−⇀ Ci+1, (i ∈ {0, . . . 5})

C6

rf
6−⇀ Ĉ6

Ĉi

r̂dps
i−⇀ Ĉi−1, (i ∈ {1, . . . 6})

Ĉ0

rb
0−⇀ C0

Here Ci denotes a KaiC hexamer in the active state with i phosphorylated
monomers and Ĉi denotes the same for a KaiC hexamer in the inactive con-

figuration. So the C0

rps
0−⇀ C1 reaction is the non-catalysed phosphorylation

of a KaiC hexamer with zero phosphorylated monomers which occurs at rate
rps
0 . The rates rf

6 and rb
0 are associated with the reactions which flip the KaiC

hexamers between the active and the inactive configurations. To achieve a
macro-level signal such cycles must be somehow synchronised. This is the role
of the KaiA and the KaiB proteins. It has been proposed that the KaiA pro-
tein catalyses the phosphorylation of the KaiC hexamers in the active state,
but does so with a preference for those KaiC hexamers with a low level of
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phosphorylation. The catalysed phosphorylation of active KaiC is written as:

A+ Ci

rAf
i−⇀↽−

rAb
i

ACi

rpf
i−⇀ A+ Ci+1(i 6= 6)

rAf
i = kAf

i × A× Ci

rAb
i = kab × αi

The KaiC hexamers bind together with the KaiA protein at a rate which we
initially set to be equal, that is kAf

i = kAf
0 . However the rate of dissociation

is greater for those KaiC hexamers with a larger level of phosphorylation
which are therefore less likely to continue the catalysed addition of a further
phosphate group and thereby increase their phosphorylation level. We can
ensure this by setting α > 1 since this makes rAb

i < rAb
i+1 because αi < αi+1.

The role of the KaiB protein seems to be to sequester away the KaiA protein
when sufficient concentration of the KaiC hexamers are in the inactive state,
in a manner which will be further described in Section 3.2.

3 The Simple Model

The first model follows the approach taken by Van Zon et al. and models the
preferential catalysing of the phosphorylation of active KaiC hexamers. In
this model each individual KaiC hexamer may be in one of twenty states as
shown in Figure 1. This gives rise to the reaction set:

C6

rf
0−⇀ Ĉ6, Ĉ0

rb
0−⇀ C0

Ĉi

r̂dps
i−⇀ Ĉi−1(i 6= 0)

A+ Ci

rAf
i−⇀↽−

rAb
i

ACi

rpf
i−⇀ A+ Ci+1(i 6= 6)

In Bio-PEPA we define each biochemical entity as a distinct species and
thus each state of the KaiC hexamer is a separate species. For example, a KaiC
hexamer with a phosphorylation level of four in the active state is modelled
by the following process definition:

C4 = (rAf
i , 1) ↓ +(rAb

4 , 1) ↑ +(rpf
3 , 1) ↑

In Bio-PEPA each species is defined to have a number of behaviours where
a behaviour is written as (name, i)op. The name part is the name of the
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AC0 AC1 · · · AC5

C0 C1 · · · C5 C6

Ĉ0 Ĉ1 · · · Ĉ5 Ĉ6

Fig. 1. Depicts the possible states of the KaiC hexamers in the simple model.

reaction for which the behaviour is being defined. The i is the stoichiometry,
essentially how many parts of the species being defined are involved in the
reaction. Finally op is the role which the defined species plays in the reaction
name, it may be one of the following: ↓ the species is a reactant, ↑ the species
is a product, ⊕ the species is an activator for the reaction, 	 the species
inhibits the reaction, � a general modifier operator.

As described above the rates which govern the dissociation from the ACi

states are different according to the level of phosphorylation equal to the suffix
i. This is achieved by setting rAb

i = kab×αi, where kab is a constant. When α
is greater than 1 this means that the higher the level of phosphorylation the
greater the rate of dissociation. It is due to this that we believe that KaiC
hexamers which are lagging behind their peers in the cycle are preferentially
assisted in catalysed phosphorylation allowing them to catch up. In this way
the cycles are synchronised. Note that this explains why the individual cycles
are synchronised but not necessarily why those synchronised cycles would
retain a steady period under stochastic conditions.

3.1 Analysis

We have first written this model in Bio-PEPA, and used the Bio-PEPA
software[2] to convert the model into the SBML[8] format suitable for use
with the SBSI software[14]. The SBSI software is used to perform parameter
optimisation and is particularly applicable for models exhibiting oscillating
behaviour. We have used SBSI to estimate parameters which allow our model
to give an oscillating signal. Figure 2 shows the time course data from eval-
uating the model (via ODEs) both pre- and post-optimisation. This shows
that the optimisation procedure has allowed us to identify parameters which
allow this model to oscillate with a strong and maintained signal.

A “Tracker” component is added to the Bio-PEPA model in order to track
the level of phosphorylation. The value of the Tracker is equal to the num-
ber of phosphorylated KaiC monomers (of which six comprise a single KaiC
hexamer). The “Tracker” component for the simple model is defined by the
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Fig. 2. The graph on the left shows the simple model with rate parameters taken from the
literature. This shows an oscillating signal but with a dampened amplitude as time proceeds to
the right. The graph on the right shows the same model with optimised rate parameters which
gives a more maintained oscillating signal.

following component definition.

Tracker = (rdps
i , 1) ↓ Tracker + (rpf

j , 1) ↑ Tracker

for 0 < i < 7 and 0 ≤ j < 6. The rates of each reaction remain unaffected
which also means that they should not refer to the “Tracker” component even
though it may be defined as a reactant. One nice feature of this Tracker
component is that we need not modify any of the other process definitions.

The unoptimised version clearly shows an oscillating signal but one which
is dampening, however the optimised version maintains a strong rhythmic
signal. The rates are mass action except that where “Tracker” is a reactant
the rate will be unaffected by the population of “Tracker”. As noted before
by convention we use the prefix ‘r’ for a rate law and ‘k’ for a rate constant
parameter, so in general the rate rX

i = kX
i × reactant populations. Except for

the unbinding rate laws rAb
i which we have noted to depend upon kAb × αi.

Additionally, all the kpf
i are equal as are all the k̂dps

i . Here are the optimised
parameter values:

α = 3.341

kf
6 = 1.155

rb
0 = 0.255

init A = 153

init C 0 = 580

kab = 1

k̂dps = 1.3083345

kpf = 1.0157632

kaf
0 = 1720000

kaf
1 = 1720000

kaf
2 = 1720000

kaf
3 = 1720000

kaf
4 = 1170734.1

kaf
5 = 17200

It should be noted that although we conjectured that the constant α which
controls the difference in the dissociation rates should be greater than 1 to
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allow those KaiC hexamers which are lagging behind in the cycle to catch
up, we did not constrain it to be so. It was also possible that setting α to a
number less than one would allow those KaiC hexamers ahead to more quickly
move to the inactive state and thus complete a full extra cycle. However our
optimised α parameter was greater than one.

Figure 3 shows the results of performing stochastic simulation over the
simple model with the optimised parameter values. Each graph depicts the
time course for the number of phosphorylated monomers within KaiC hex-
amers and the number of KaiA dimers which are not bound to any KaiC.
The first thing to notice is that the stochastic simulation does produce results
which agree with the ODE results in the first graph of the figure. Secondly
the subsequent graphs depict simulations with varying amounts of initial KaiA
dimers in the system. As we increase the amount of initial KaiA dimers we
reduce the ability for the model to reproduce the rhythmic signal suggesting
that the method of synchronisation for this simple model does indeed depend
upon a low concentration of the KaiA protein. Since this is unsupported by
experimental evidence, we seek a model to explain the rhythmic signal even
in the presence of a large quantity of the KaiA protein.

3.2 The Full Model

To account for the continued observation of sustained oscillation even in the
presence of higher concentrations of the KaiA protein we extend our simple
model. As before we follow the route taken by Van Zon et al. and allow the
KaiB dimers to bind with a KaiC hexamer in the inactive configuration (at
any level of phosphorylation). Once bound, the complex may then further
bind with free KaiA dimers and in this way sequester away KaiA dimers to
allow the preferential catalysation of the phosphorylation of the active KaiC
hexamers to once again synchronise the individual cycles.

The reactions for the full model are:
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Fig. 3. The results of stochastic simulation using the optimised parameter values for the simple
model. Here we have changed the initial population of the KaiA protein by multiplying it by
increasing factors — the title of each plot gives the actual initial population of KaiA. The results
support the hypothesis that the differential affinity can only account for the sustained oscillations
if the population of the KaiA protein is sufficiently small.

Ci

rf
i−⇀↽−

rb
i

Ĉi

A+ Ci

rAf
i−⇀↽−

rAb
i

ACi

rpf
i−⇀ A+ Ci+1(i 6= 6)

Ci

rps
i−⇀↽−

rdps
i

Ci+1, Ĉi

r̂ps
i−⇀↽−

r̂dps
i

Ĉi+1(i 6= 0)

Ĉi + 2B
r̂Bf
i−⇀↽−

r̂Bb
i

B2Ĉi, B2Ĉi + 2A
r̂Af
i−⇀↽−

r̂Ab
i

A2B2Ĉi

B2Ĉi

r̂ps
i−⇀↽−

r̂dps
i

B2Ĉi+1, A2B2Ĉi

r̂ps
i−⇀↽−

r̂dps
i

A2B2Ĉi+1(i 6= 6)

Figure 4 as before shows the time course data the model produces via
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Fig. 4. The graph on the left shows the time course obtained by ODE solution from the full version
of the model prior to optimisation of the rate constant parameters. No rhythmic cycle at all is
detected. However, once we optimise the rate parameters, as the graph on the right reveals, we
can obtain a sustained oscillating signal.

ODEs. Again we depict the time courses for both the unoptimised and the
optimised versions of the model. We see that we are once again able to identify
parameters which give us sustained oscillations.

We then attempted the same kind of experiment for the full model as we
have performed for the simple model, that is using stochastic simulation to
first check that we get similar behaviour and then increasing the initial popu-
lation of the KaiA protein to garner the effect on the oscillation of the signal.
However the first graph in Figure 5 depicts the time course produced from a
stochastic simulation for the same model for which ODE analysis is produc-
ing an oscillating signal. As we can see the oscillating signal has been lost.
We are still attempting to verify and explain this result. To add further to
the mystery we have still performed our experiment of increasing the initial
population of the KaiA protein, but using ODEs. As shown in the final two
graphs of the same figure even a very modest increase in this initial popula-
tion removes the oscillation from the signal produced. This is counter to our
expectation that the full model is more resilient to increases in the population
of KaiA protein. As before, it would be useful to force this initial population
to be high and then perform parameter estimation.

4 The Role of ‘Shortcut’ Reactions

As mentioned before this circadian clock system has been studied before nu-
merous times and one reason may be that because of the simplicity it is possi-
ble to investigate which features of the model are necessary for producing the
oscillating signal and under which conditions. We are interested in exploring
several of these, including whether oscillations may be possible with a protein
that forms polymers other than hexamers. In this particular study we investi-
gate the nature of the so-called “shortcut reactions”. The shortcut reactions
are those which flip the state of a KaiC hexamer between the active and the
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Fig. 5. The graph on the top left shows the full model with optimised parameters evaluated using
stochastic simulation and the graph on the top right is the exact same model evaluated via ODEs.
We see a startling difference. The graphs on the bottom increase the initial population of the KaiA
protein, we see that even a very modest increase removes the oscillation from the signal produced.

inactive states whilst not at either end of the loop.

Ci

rf
i−⇀ Ĉi, (0 ≤ i < 6)

Ĉi

rb
i−⇀ Ci, (0 < i ≤ 6)

These are called the shortcut reactions since it is possible that they allow
those KaiC hexamers which are behind the others in the phosphorylation cycle
to catch up through bypassing either end of the loop. We are interested in
evaluating whether these reactions are necessary to sustain the oscillations or
whether they are simply a chemical reality that must be overcome in order
to produce the oscillating signal. In other words, are the shortcut reactions,
necessary, helpful or detrimental to the rhythmic signal. The simple version
of the model containing no shortcuts gives some evidence that the shortcut
reactions are not necessary. However, it may be that the phosphorylation level
— which is the rhythmic signal produced — does not cycle around the loop
but rather sways back and forth, conceptually like a tide rather than a loop.

Our first evidence that the shortcut reactions are not required comes from
the results from our optimisation of the full model. These have returned very
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Fig. 6. ODE analysis of the version of the model which has no shortcut reactions. The graph
on the left is prior to the optimisation of parameters while the graph on the right is after the
optimisation of parameters. Once again parameter optimisation is able to find a configuration in
which the model produces an oscillating signal but here the signal appears to dampen.

small values for the rate parameters associated with the shortcut reactions
which flip the active state to the inactive state. However, there is a single
rate parameter associated with the shortcut reactions which flips the inactive
KaiC hexamers to the active configuration. In the above reaction the rate rb

i

is set to Ci × b where b is a constant which may be optimised. The results
of optimisation give a relatively large value to the shared rate parameter b of
703.

This is an interesting result and highlights an advantage of performing
parameter estimation. By performing parameter estimation we gain insight
into the model in ways that we may not have otherwise thought to investigate.
Our initial thought was to investigate the role of the shortcut reactions, but
we had assumed that they were either all required, or unnecessary or perhaps
even an impediment. We had not considered that the forward and backward
shortcut reactions should be considered separately.

4.1 Removing the Shortcut Reactions

Despite the results of optimisation on the full model we went ahead with the
experiment of removing the shortcut reactions altogether. We did so and once
again performed parameter optimisation to see if we could find parameter
values which would give us sustained oscillations. Figure 6 shows the time
course produced by numerical evaluation of the full model with the shortcut
reactions disabled after parameter optimisation. As we can see we can still
produce an oscillating signal but this now dampens.

5 Modelling with the Continuous Pi-Calculus

The final model we present is the model of the full system using the con-
tinuous pi-calculus (c-pi) and a temporal logic of behaviour in context. The
c-pi model generates differential equations for numerical simulation, while the
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logic allows us to specify and check conjectures about the system’s behaviour
over time and under varying conditions.

Our model exhibits the 24-hour cycling of phosphorylation levels in KaiC
hexamers, and we plot the change in concentrations of the various species
present. We formulate statements in the logic to capture the oscillation of
mean phosphorylation level across the KaiC population and its dependence
on the presence of KaiA. Model-checking these confirms that our model has
this behaviour.

5.1 Method

The continuous pi-calculus is a reagent-centric process algebra. It provides a
high-level language for describing the behaviour of individual chemical species,
from which the behaviour of complexes, mixtures and derived species are
automatically computed. The primary mode of execution for c-pi systems is
to generate ordinary differential equations (ODEs) suitable for conventional
numerical simulation.

In recent work we have developed a temporal logic of behaviour in context
to capture properties of c-pi expressions. The basic observations in the logic
are real-valued concentrations and rates of change in individual species. Tem-
poral modalities F and G capture behaviour over time as usual in a continuous-
time linear temporal logic: process P has behaviour F(b) if at some time in the
future it has behaviour b; and it has behaviour G(b) if it has behaviour b at all
future times. Variants Ft and Gt look only at behaviour up to time t. Finally,
we introduce a modality[3] for behaviour in context, based on the guarantee
operator from spatial logics: a process P has behaviour Q.b if, when P and Q
are mixed, then the resulting system P ‖Q has behaviour b.

Purely temporal expressions in the logic describe features of behaviour that
can be directly observed from a single execution trace. Expressions involving
behaviour in context describe features involving multiple traces, with yet more
expressive complexity when nesting the two kinds of modality.

In previous work, Kwiatkowski and Stark built a c-pi model for the S.
elongatus circadian clock, based on the mechanism proposed by van Zon, and
demonstrated its periodic behaviour [11]. Here we have reused some of their
parameters and methods, but with a new tool and new analyses. The tool, the
continuous pi-calculus workbench (CPiWB)[1] provides access to alternative
ODE solvers and a model-checker for the logic of behaviour in context.

5.2 Model

We use a single expression in c-pi for each of KaiA and KaiB stating that they
can bind and unbind at sites a and b respectively.
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species A(a) = a(x).x.A(a);
species B(b) = b(x).x.B(b);

The rates of these bindings are determined by a global affinity network stating
binding affinity between a, b and sites on other species.

...
a − a0 @ 1.72e5,
a − a1 @ 1.72e5,
a − a2 @ 1.72e5,
...

For KaiC we use a mutually recursive collection of declarations to capture all
possible states: phosphorylation states from zero to six; active and inactive
conformations; bound to KaiB dimers, and then to KaiA dimers too.

For example, the following clause for singly-phosphorylated KaiC in the
active conformation indicates that it can: bind on a1 to form a complex
which subsequently unbinds or reacts to phosphorylate the KaiC; constitu-
tively phosphorylate or dephosphorylate; or switch to the inactive conforma-
tion. Here act, r and u are local names that mediate the internal behaviour of
the KaiC-KaiA complex.

species C1() = {act−r@1.0, act−u@30}
a1<act>.(u.C1() + r.C2()) + tau<2.5e−2>.C2() +
tau<0.4>.C0()+ tau<1e−5>.CC1();

Similar clauses capture all of the other KaiC states. Finally, a single clause
expresses the initial state of the system and its affinity network.

process Kai = [0.56] A(a) || [1.78] B(b) || [0.58] C0() : { a − a0 @ 1.72e5, ... };

5.3 Numerical Simulation

The source for the KaiA/B/C model includes 23 explicit species descriptions.
The tool computes a further 41 species and complexes arising from their re-
actions, and generates 64 ODEs describing their behaviour.

The tool CPiWB can send these ODEs either to an internal solver, using
the GNU Scientific Library (GSL), or out to GNU Octave, a numerical soft-
ware toolkit similar to Matlab. In this case the ODEs appear too stiff for the
internal solver to handle successfully so we applied the Octave lsode solver,
making use of the system Jacobian computed symbolically by CPiWB.

Figure 7 shows the resulting time series of species concentrations. These
clearly show oscillation over approximately a 24-hour period. The traces here
only include unbound KaiC; there are also complexes with KaiA and KaiB.
We can immediately see from the plot that there is ample KaiB available
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Fig. 7. The time series produced by using CPiWB to generate the ODEs for the Kai system and
solving those ODEs using the lsode solver from Gnu Octave. There is a clear oscillating signal.

throughout the reaction, while for long periods there is little free KaiA, it
being sequestered in the KaiA-KaiB-KaiC complex. Note also that only a
small proportion of the KaiC becomes fully phosphorylated.

5.4 Temporal Logic

As well as generating direct plots of process behaviour, CPiWB can check that
behaviour against properties specified in the temporal logic described earlier.
In some cases that requires only a single time series, computed as before; more
complex properties may require several time series and the solution of different
ODEs under varying initial conditions.

For example, a simple query like “is there ever any fully phosphorylated
KaiC?” is formulated as

F([C6]+[CC6] > 0.01)

We can also assess the mean phosphorylation level of KaiC in the system:

phos = (([C0]+[CC0])∗0 + ... + ([C6]+[CC6])∗6) / ([C0]+[CC0]+..+[CC6])

and then ask the following queries:

• F(phos>=x) Does the mean phosphorylation level ever exceed x?

• F(G(phos>=x)) Does the mean phosphorylation level eventually reach and
then stay above x?

14



Banks, Clark, Georgoulas, Gilmore, Hillston, Milios and Stark

By nesting temporal modalities we can ask whether behaviour repeats.

• G{t}(F(phos>x) AND F(phos<x)) Does the mean phosphorylation level re-
peatedly pass above and below the value x for at least time t?

• G{t}(F([S]>y) AND F([S]<y)) Does the concentration of species S oscillate
around y for at least time t?

Here we are forced to use the Gt version of the always operator. This
is because although conceptually we would like to make our G queries run
to time infinity, in practice we are bound by the length of the simulation
trace. So when we say F(phos > x) we mean “Will the mean phosphorylation
level ever rise above x” but what we actually calculate is “Does the mean
phosphorylation level rise above x before the end of the simulation trace”.
The middle part of our query then: F(phos > x) AND F (phos < x) asks will
the mean phosphorylation level both rise above x and fall below x by the end
of the simulation trace. Clearly there will be time points towards of the end
of the simulation trace for which at least one of these is untrue. Therefore we
have to bound our G operator to only look at points so far along the trace.

We may then define our own operators as composites of those provided
by the CPiWB software. Here we make use of an operator for detecting
oscillations of a given quantity around a given value.

OscS(q, v) = G{t}(F(q>v) AND F(q<v))

5.5 Model Checking Results

For the purely temporal formulae above, it takes a minute to test all of the
assertions. This includes generating all species transitions, creating the ODEs,
numerically solving them, and carrying out model-checking on the resultant
time series. This is single-threaded, on an Intel Core2 Duo T7500 running
at 2.2GHz. Around 75% of CPU time is taken up with compiling the model
and solving the ODEs, with the latter being the real bottleneck. The results
are given in the table in Figure 8.

5.6 Formal Experiments

The context operator “− . −” of the logic makes it possible to perform ex-
periments upon the formal model: we can introduce new species and test the
resulting behaviour.

As a very simple example, we can define an additional species Inhib which
binds to the existing interaction site a of species A. This models an agent
which can remove KaiA from the reaction. We can then write the following
query:

• !([0.5] Inhib |> OscS(phos, 3)) Does the introduction of the binding agent
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Query Meaning Truth CPU-Time(s)

F([C6]+[CC6]>1.0e−2) Some fully phosphorylated
KaiC does appear

True 0.48

F(phos>=6) Mean phosphorylation rises
to 6

False 0.22

F(phos>=5) It rises to 5 True 0.00

F(G(phos>=5)) It remains above 5 False 0.23

OscS(phos, 3) It oscillates continually ris-
ing above and falling below
3

True 0.00

OscS([B],1) Concentration of KaiB os-
cillates

True 0.00

OscS([A],0.1) Concentration of KaiA os-
cillates

True 0.00

!([0.5] Inhib |> OscS(phos, 3)) Introducing an additional
binder to KaiA inhibits os-
cillation

True 60.0

Fig. 8. This table captures the results of model checking temporal logic formulae over our con-
tinuous pi-calculus model. Included are the execution times of each individual query. The purely
temporal formulae are solved within a second whilst formulae using the context operator requires
further numerical evaluation and takes significantly longer.

Inhib suppress oscillation in the concentration of KaiB? Here the inner part
of the formula checks if the oscillations persist after the introduction of the
binding agent and the ‘!’ mark is logical not.

Looking at the final entry in the CPiWB log above, we see that indeed it does.
This is also visible if we plot the trace of the system with Inhib, as in Figure 9.

The table of model checking results also shows that checking this formula
takes a further minute of CPU time. This is because testing behaviour in
context involves calculating all transitions for the new c-pi terms, generating
ODEs, and computing a new trace for the system. Nesting temporal and
contextual modalities is potentially even more expensive:

• G([0.5]Inhib |> !OscS(phos, 3)) Does the introduction of the binding agent
Inhib at any future time suppress oscillation in the concentration of KaiB
from that point?

This requires generating a suite of time series solutions starting at each point
in the original execution trace. This has a large impact on the computation
time and indeed this query took nine and a half hours to complete on the
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Fig. 9. CPiWB plots of the clock system with the addition of an inhibitor which is an additional
agent binding to the KaiA protein and thus preventing the catalysed phosphorylation of the KaiC
protein. For each plot we have a different initial concentration of the inhibitor showing that as we
increase that initial concentration of the inhibitor the strength of the oscillating signal diminishes.

same desktop computer as all the other queries have been run.

6 Conclusions and Future Work

We have successfully reproduced a model of a biochemcial circadian clock
originally given as a series of ordinary differential equations in two process
algebras. The process algebra models have allowed us to conduct some more
experimentation on the model to garner further insight. In particular we were
able to perform stochastic simulation of the models, perform parameter opti-
misation and test our hypotheses about the role of the shortcut reactions and
the KaiB protein. The testing of hypotheses involved modifying the models
in question.

We have also demonstrated here a novel software package, the CPiWB
capable of analysing models in continuous-pi. Above this, the software im-
plements a temporal logic for analysis of the time series generated from the
numerical analysis of the model. The CPiWB is open source software and
free to download. The temporal logic is powerful enough to include operators
which allow us to perform in silico experiments on the model, and indeed
experiments which involve changing the model part-way through a numerical

17



Banks, Clark, Georgoulas, Gilmore, Hillston, Milios and Stark

evaluation. In the current implementation such queries rely on the model be-
ing authored in the continuous pi-calculus, but could conceptually be applied
to any kind of model with process composition, including Bio-PEPA. Addi-
tionally queries which do not make use of the context operator to modify the
model may be made over time series produced from any kind of model such
as one written in Bio-PEPA.

Our use of parameter estimation here is worth commenting upon. One way
in which parameter estimation is used, is to calibrate a model of existing known
behaviour in an effort to obtain a predictive model which can then be used for
in silico experimentation. One problem that comes with this is determining
how robust the results of parameter estimation are. In particular you may
have identified parameters which allow your model to account for the observed
data, but they may not be the only such set of parameters and may therefore
be inappropriate for use in a modified model. Here we have used parameter
estimation to gain further insight into the current model under investigation.
Firstly, we have allowed the parameter estimation routine to return values that
are not within our expectation. For example, the α parameter which governs
the difference in the rates involved in the catalysed phosphorylation of the
active KaiC hexamers, we had assumed must be greater than one, to give
preference to those hexamers with a lower level of phosphorylation, but we
did not constrain it to be such. In fact a future optimisation could constrain
it to be less than one and determine whether this destroys any attempt to
find a configuration of parameters which would allow a sustained oscillating
signal.

In addition rather than performing parameter estimation and then modi-
fying the model, we have modified the model and then performed parameter
estimation, in order to gain insight on the role of the parts of the model which
we have modified (in this case deleted). In particular this allows us to answer
the question of whether or not the modification to the model has removed the
ability to identify any parameter configuration which could allow the model
to explain the observed phenomena.

We would still like to verify and explain our strange result for the full
Bio-PEPA model which allows for sustained oscillations when numerically
evaluated via ODEs but not when analysed with stochastic simulation. We
should also perform some further parameter optimisations, in particular we
have performed a range experiment on our models increasing the initial pop-
ulation of the KaiA protein. In particular we have done this for the simple
model and then concluded that the simple model is not enough to explain
the oscillations observed since they cannot be maintained in the presence of
larger quantities of the KaiA protein. However it could be that the optimised
parameters we have found are not well related to the physical parameters we
are modelling, and that those true parameters would continue to allow oscil-
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lations even in the presence of large amounts of KaiA. By performing further
parameter optimisations on the simple model whilst constraining the initial
population of KaiA to be high, we could give greater evidence that this is not
the case.

There remain many more analyses which could be performed. In partic-
ular we would like to investigate the role of the number six. Is it important
that the KaiC protein forms hexamers and thus gives rise to seven levels of
phosphorylation, or are rhythmic signals equally obtainable if we change this
number, either lower or higher? Further stochastic simulation analysis might
illuminate the question of whether the synchronisation apparatus involved re-
ally gives an oscillating signal of a constant period or whether the signal is
merely synchronised.

References

[1] C. Banks. CPiWB Software Home Page, http://banks.ac/software/.

[2] Bio-PEPA Home Page. http://www.biopepa.org/.

[3] L. Cardelli and A. D. Gordon. Anytime, Anywhere: Modal Logics for Mobile Ambients. In
M. N. Wegman and T. W. Reps, editors, POPL, pages 365–377. ACM, 2000.

[4] F. Ciocchetta and J. Hillston. Bio-PEPA: a Framework for the Modelling and Analysis of
Biological Systems. Theoretical Computer Science, 410(33–34):3065–3084, 2009.

[5] S. Clodong, U. Duhring, L. Kronk, A. Wilde, I. Axmann, H. Herzel, and M. Kollmann.
Functioning and robustness of a bacterial circadian clock. Mol. Syst. Biol., 3:90, 2007.

[6] K. Eguchi, M. Yoda, T. P. Terada, and M. Sasai. Mechanism of robust circadian oscillation of
KaiC phosphorylation in vitro. Biophys. J., 95(4):1773–1784, Aug 2008.

[7] E. Emberly and N. S. Wingreen. Hourglass model for a protein-based circadian oscillator.
Phys. Rev. Lett., 96(3):038303, Jan 2006.

[8] M. Hucka, A. Finney, H. Sauro, H. Bolouri, J. Doyle, H. Kitano, A. Arkin, B. Bornstein,
D. Bray, A. Cornish-Bowden, A. Cuellar, S. Dronov, E. Gilles, M. Ginkel, V. Gor, I. Goryanin,
W. Hedley, T. Hodgman, J.-H. Hofmeyr, P. Hunter, N. Juty, J. Kasberger, A. Kremling,
J. Kummer, N. Le Novere, L. Loew, D. Lucio, P. Mendes, E. Minch, E. Mjolsness, Y. Nakayama,
M. Nelson, P. Nielsen, T. Sakurada, J. Schaff, B. Shapiro, T. Shimizu, H. Spence, J. Stelling,
K. Takahashi, M. Tomita, J. Wagner, and J. Wang. The Systems Biology Markup Language
(SBML): A Medium for Representation and Exchange of Biochemical Network Models.
Bioinformatics, 19(4):524–531, 2003.

[9] G. Kurosawa, K. Aihara, and Y. Iwasa. A model for the circadian rhythm of cyanobacteria
that maintains oscillation without gene expression. Biophys. J., 91(6):2015–2023, Sep 2006.

[10] M. Kwiatkowski. A Formal Computational Framework for the Study of Molecular Evolution.
PhD thesis, University of Edinburgh, 2010.

[11] M. Kwiatkowski and I. Stark. The continuous π-calculus: A process algebra for biochemical
modelling. In Computational Methods in Systems Biology: Proceedings of the Sixth
International Conference CMSB 2008, number 5307 in Lecture Notes in Computer Science,
pages 103–122. Springer-Verlag, 2008.

[12] S. R. Mackey, S. S. Golden, and J. L. Ditty. The itty-bitty time machine genetics of the
cyanobacterial circadian clock. Adv. Genet., 74:13–53, 2011.

[13] M. Nakajima, K. Imai, H. Ito, T. Nishiwaki, Y. Murayama, H. Iwasaki, T. Oyama, and
T. Kondo. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation
in vitro. Science, 308(5720):414–415, Apr 2005.

19

http://banks.ac/software/
http://www.biopepa.org/


Banks, Clark, Georgoulas, Gilmore, Hillston, Milios and Stark

[14] Systems Biology Software Infrastructure Home Page. www.sbsi.ed.ac.uk.

[15] J. S. van Zon, D. K. Lubensky, P. R. H. Altena, and P. R. ten Wolde. An allosteric
model of circadian KaiC phosphorylation. Proceedings of the National Academy of Sciences,
104(18):7420–7425, 2007.

20

www.sbsi.ed.ac.uk

	Introduction
	Background
	The Simple Model
	Analysis
	The Full Model

	The Role of `Shortcut' Reactions
	Removing the Shortcut Reactions

	Modelling with the Continuous Pi-Calculus
	Method
	Model
	Numerical Simulation
	Temporal Logic
	Model Checking Results
	Formal Experiments

	Conclusions and Future Work
	References

