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Abstract

PEPA nets are coloured stochastic Petri nets which are used for modelling mobile software
and computing systems. We describe the compilation of models in this language into an impera-
tive language of static modules which has no built-in concept of mobility, the PRISM modelling
language. We show the application of PEPA nets and PRISM to the modelling and analysis of
the Mobile IP protocol.

1 Introduction

PEPA nets [1] extend the PEPA stochastic process algebra [3] by allowing PEPA components to be
used as the tokens of a coloured stochastic Petri net. Communication between tokens at different
places is not allowed; for tokens to communicate they must first meet at one of the places of the
net. While they are together in the same place they may communicate but when one or other of
them moves to another place the communication between them must cease until another firing of
the net brings the tokens together again in the same place.

In addition to the PEPA components which are used as tokens, a PEPA net contains static
components. Each static component is resident in a place of the net and is unable to move. Static
components may communicate with tokens while they are present or they can communicate with
other static components in the same place. Communication between static components at different
places is not allowed.

Restricting communication according to these rules provides a credible formalism for represent-
ing mobile code systems where the tokens of a PEPA net model stateful mobile objects under a
system of dynamic binding of names. A PEPA component has local state which can be modified by
performing timed actions, either individually or in cooperation with another component. These ac-
tivities define an interface analogous to the interface made up of the methods which can be invoked
on an object.

The static components in a PEPA net represent immobile parts of the system which may be
either hardware (such as servers) or software (such as databases). Modern real-world systems are
typically made up of a mixture of mobile and immobile components in this way.

The legitimate analysis of such a system depends crucially on the accurate modelling of such
patterns of communication, regulated by rules such as those characterised above (components in
separate places cannot synchronise; and a mobile component can only communicate with a static one
by migrating and communicating locally). However, many effective state-of-the-art analysis tools
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do not provide support for differentiating between simple local communication and the movement
or migration of processes which can change the allowable pattern of communication.

In this paper we describe a method of compiling a model of a mobile code system into an
equivalent model in a language which has no explicit notion of either location or mobility between
locations. This method has been implemented in a software tool which we have applied to the
example which we present in this paper.

The target of our translation is the modelling language used by the PRISM [4] probabilistic
model checker. This language is a probabilistic extension of Alur and Henzinger’s reactive mod-
ules [5]. The PRISM tool provides the ability to model check probabilistic CSL formulae against
a stochastic model and to solve CTMCs for their equilibrium probability distribution. For this
purpose it represents a CTMC as an MTBDD, providing a compact representation which allows
the modeller to solve significantly larger models than those which can be handled by sparse matrix-
based approaches such as those provided by the PEPA Workbench [6] and its extension to the
PEPA Workbench for PEPA nets.

It is well understood in theory that BDDs can provide compact representation of large, sym-
metric state spaces. In addition to this we know from previous work that the PRISM tool is more
efficient in practice at solving large PEPA models than is the PEPA Workbench. Accessing the
BDD-based representation and solution technology offered by PRISM is the primary motivation
for choosing it as the target language of our translation. The ability to model check CSL formulae
is an additional benefit of this choice.

Structure of this paper: In the next section we present descriptions of the PEPA nets and
PRISM modelling languages. In Section 3 we describe the method of translating PEPA nets to
PRISM. In Section 4 we describe our Mobile IP [7] case study. In Section 5 we describe the
implementation of our translation method as an extension to the PEPA Workbench for PEPA nets
which connects to the PRISM probabilistic model checker. Conclusions are presented in Section 6.

2 Background

In this section we provide a brief overview of PEPA nets, PEPA and PRISM. Readers interested
in supporting definitions and theory should consult [1], [3] and [8].

2.1 PEPA nets

The tokens of a PEPA net are terms of the PEPA stochastic process algebra which define the
behaviour of components via the activities they undertake and the interactions between them. The
syntax of PEPA nets is given in Figure 1. In that grammar S denotes a sequential component
and P denotes a concurrent component which executes in parallel. I stands for a constant which
denotes either a sequential or a concurrent component, as bound by a definition.

A PEPA net differentiates between two types of change of state. We refer to these as firings of
the net and transitions of PEPA components. Each are special cases of PEPA activities. Transitions
of PEPA components will typically be used to model small-scale (or local) changes of state as
components undertake activities. Firings of the net will typically be used to model macro-step (or
global) changes of state such as context switches, breakdowns and repairs, one thread yielding to
another, or a mobile software agent moving from one network host to another. The set of all firings
is denoted by Ay. The set of all transitions is denoted by A;.
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N == D*M (net)

(definitions and marking)

M == (Mp,...) (marking) D = I¥g (component defn)
Mp == P[C,..] (place marking) | P[C] € P[] (place defn)
| PlC,..]ZPO]XP (place defn)

(marking vectors) (identifier declarations)

S = (a,r).S (prefix) P == PDIP (cooperation) C == ‘’ (empty)
| S+S (choice) | P/L (hiding) | S (full)
| I (identifier) | P[C] (cell)

| I (identifier)
(sequential components) (concurrent components) (cell term expressions)

Figure 1: The syntax of PEPA nets

A PEPA net is made up of PEPA contezts, one at each place in the net. A context consists
of a number of static components (possibly zero) and a number of cells (at least one). Like a
memory location in an imperative program, a cell is a storage area to be filled by a datum of a
particular type. In particular in a PEPA net, a cell is a storage area dedicated to storing a PEPA
component. The components which fill cells can circulate as the tokens of the net. In contrast, the
static components cannot move.

Definition 1 A PEPA net N is a tuple N = (P, T,I,0,¢,7,C,D, M) such that
e P is a finite set of places;

o T is a finite set of net transitions;

I:T — P is the input function;

O : T — P is the output function;

0:T = (Af,RT U{T}) is the labelling function, which assigns a PEPA activity ((type, rate)
pair) to each transition. The rate determines the negative exponential distribution governing
the delay associated with the transition;

7 : Ay = N is the priority function which assigns priorities (represented by natural numbers)
to firing action types;

C : P — P is the place definition function which assigns a PEPA context, containing ot least
one cell, to each place;

D is the set of token component definitions;

My is the initial marking of the net.
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2.2 PRISM

PRISM [4] is a probabilistic model checker developed at the University of Birmingham. It sup-
ports three models: discrete-time Markov chains (DTMC), Markov decision processes (MDP), and
continuous-time Markov chains (CTMC). Model analysis is performed through model checking
specifications in the probabilistic temporal logics PCTL (for DTMC and MDP), and CSL (for
CTMCO).

In order to define and analyse a model this tool requires two input files: a description of the
system under investigation and a set of properties to be checked against it.

The system is described in the input PRISM language: a state-based specification language
whose fundamental components are modules and wvariables. A system is in fact composed of a
number of modules which can interact with each other. The behaviour of each module is described
by a set of commands and each module contains a number of local, integer-valued variables. The
values of these variables at any given time constitute the state of each module. The global state of
the whole system is determined by the local state of all modules.

Modules can run in parallel or can synchronise following the CSP-like synchronisation style:
commands can be labelled with action names which can be used to force two or more modules
to execute transitions simultaneously. The rate of the synchronisation transition is equal to the
product of the rates of the individual transitions. Since the product of the rates does not always
meaningfully represent the rate of a synchronised transition [9], a common technique is to have a
passive/active synchronisation, where the rate of the passive transition is equal to one.

PRISM parses the model description and then constructs the corresponding probabilistic model.
Depending on the type of model specified, this will either be a DTMC, an MDP or a CTMC. PRISM
also computes the set of reachable states of this model and identifies any deadlock states.

Assuming there are no problems during the model construction, the user can then specify in a
second file one or more properties to be verified against the model. These properties are written in
temporal logic: PCTL for DTMCs and MDPs; CSL for CTMCs. PRISM performs model checking
for each of these properties and determines whether or not each one is satisfied. The steady-state
probability distribution for a CTMC can be automatically derived.

2.2.1 Importing PEPA models to PRISM

For CTMCs, PRISM can read model descriptions written in the stochastic process algebra PEPA.
The tool compiles such descriptions into the PRISM input language and then constructs the model
as normal. The language accepted by the PEPA to PRISM compiler is actually a subset of PEPA.
The restrictions applied to the language are firstly that component identiers can only be bound to
sequential components (formed using prefix and choice and references to other sequential compo-
nents only). Secondly, each local state of a sequential component must be explicitly named. Finally,
active/active synchronisations are not allowed since the PRISM definition of these differs from the
PEPA definition. Multi-way synchronisation is permitted but every PEPA synchronisation must
have exactly one active component.

In the next section we will discuss how to translate PEPA nets into standard PEPA models so
that the PEPA to PRISM compiler can be reused to input PEPA nets to PRISM as well.

3 Translating PEPA nets to PEPA

The algorithm that translates PEPA nets into PEPA models is composed of a number of different
steps which are in turn described in the following sections.
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Before starting the translation, a preprocessing phase in necessary in order to rename firings
that in the PEPA nets share the same input place and same action type. This is done by checking

(er,r1) (a,r2)
the arcs specification in the PEPA net file. For example, arcs P, —f{}— P; and P, —{}— P; need

(o1,r1) (a2,r2)

to be changed into P, —{— P; and P, —{—— F; and the triples (o, a1, 1) and (o, az,r2) are
stored in an array denoted by Fire. Several data types and a function are used in the algorithm
and are introduced below. In addition we use the standard operators of the PEPA theory [3] such
as ./_l'(C), returning the complete action type set of C.

All /] keeps track of all action types of the PEPA model

NumberSC[] // keeps track of the number of occurrences of static components

Numbera // keeps track of the number of renamings of activity

OccurSC1 | // keeps track of the static components appearing several times

Fire[ ] /] keeps track of the triples resulting from the preprocessing phase

TargetP[ | // triples (P, c,r) where P is the output place of the arc and («a,r) is its label
Extract(a;) // returns the original action type « from the triple in Fire, Nil otherwise

Lsync(Ti, SCy) /] synchronisation set between token type T; and the static component SCj,

3.1 Step 1: Translating Static Components

This step concerns the translation of static components. We need to count the occurrences of static
components within the places of the PEPA net and rename action types and derivatives of each
occurrence of the static component. This allows us to avoid erroneous synchronisations since in a
PEPA net synchronisation is possible only when the components are resident in the same place.

for each static component SC;

NumberSCli] + 0;
OccurSCi] + 0
for each place P; € P

if (SC; in P;) then NumberSCJi] - NumberSC[i] + 1,
make a copy of SC;; // retain the original unchanged
All + All U A(SC)); // save all action types in All
if (NumberSC[i] > 1) then

OccurSCli] < SCjy;

for k=1... NumberSC[i] — 1

make an instance SCy of SCj, renumbering activities and derivatives;

—

All «+ AllU A(SC); // save all action types in All

3.2 Step 2: Translating Cells

In this step we consider all the PEPA net places containing cells and we associate one component
with each cell within a place. Each cell definition is built by considering the input and output arcs
to the place itself. Moreover, each cell can be in two states: empty, denoted by a subscript 0 in its
derivative, and full denoted by a subscript 1. Firing a token into the place changes the state of the

27



cell from empty to full. Firing a token out of the cell changes its state from full to empty. This
allows us to prevent a token from moving to a place where all of the cells are already full.

for each place P; € P

for each cell 7 in P;

create a component Cell;;
(e,r)

for each input arc P, —f— P;
All + AllU {a);
Cellyy < Celljp + (a,7).Cell;y; // avoiding redundant activities

(a,r)

for each output arc Pj —{— P
All + All U {a};
Cell; < Cell; + (OA,T).Cellio;

3.3 Step 3: Translating Tokens

Token definitions need to be changed according to their dynamic behaviour. Two aspects are taken
into account: the movement of a token into a new place after a firing and its interaction with static
components within a PEPA net place. Again, in order to avoid erroneous synchronisations, we
need to create new names for action types and derivatives. This is done for both net firings with
the same labels and for actions on which tokens and static components synchronise. In this case,
we consider only static components which appear several times in the net. Recall that in Step 1
the action types and the derivatives of each occurrence of the static component were renamed.
Therefore here we need to copy the derivatives of the token where the synchronising action type
appears and we do this for each renaming of the synchronising action.
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for each token type T;

// movement of the token in the net
for each action type o € Af(T;)

Numbera; < 0;
TargetP[j] < 0;
(action,r)
for each arc P, —{— P,
o < Extract(action);
if (o = ) then Numbera; < Numbera; + 1;
TargetP[j] < P
if (Numbera; > 1) and (TargetP[] items are not the same) then
for each distinct place in TargetP] |

add the corresponding activity (action,r) in TargetP
followed by a new component identifier C*;
duplicate the sequential component C resulting from the
execution of action «; in Tj, replacing C' with C*;
else make a copy of the current derivative of Tj;

// interaction of the token with the static components
for each place P, € P
if (7; in P;) then
for each static component SCj, in OccurSC
for each action type a; € Lsync(Ti, SC)
for z =1... NumberSCIk]

duplicate the derivatives where «; appears in T; for
each renaming of «; during the translation of
the static component SCYy;

3.4 Step 4: Building the System Equation

We build the system equation by putting in parallel all the components generated in the previous
steps. Then we force them to synchronise on common action types.

3.5 Example: A mobile agent system

We present a small example to reinforce the reader’s understanding of the translation algorithm. In
this example a mobile software agent visits three sites. It interacts with static software components
at these sites and has two kinds of interactions. When visiting a site where a network probe is
present it interrogates the probe for the data which it has gathered on recent patterns of network
traffic. When it returns to the central co-ordinating site it dumps the data which it has harvested
to the master probe. The master probe analyses the data.

The structure of the application is as represented by the PEPA net in Figure 2. This marking
of the net shows the mobile agent resident at the central co-ordinating site. As a memory aid, in
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both the net and the PEPA token definitions, we print in bold the names of those activities which
can cause a firing of the net. In this example the activities which can cause a firing of the net are
go and return.

(g0, T) (g0, T)
- T1 7 T3
Py P2 @ P3
M Tz ] T4
(return, T) (return, T)

Figure 2: A simple mobile agent system

Formally, we define the places of the net as shown in the PEPA context definitions below.

Pq[Agent] & Agent[Agent] {mtffgate} Probe

Py[Agent] = Agent[Agent] {Eﬁp}Master

Ps[Agent] = Agent[Agent] DX Probe

{interrogate}

The behaviour of the components is given by the following PEPA definitions.

def

&
&

Agent = (go, \).Agent’ Master = (dump,T).Master'
Agent’ = (interrogate,r;).Agent” Master' = (analyse, ry). Master
Agent” ¥ (return, p).Agent” Probe ¥ (monitor, ry,).Probe +

Agent" = (dump,rq).Agent (interrogate, T).Probe

The initial marking of the net has one Agent token in place P2 and no other tokens:

(Agent[] Probe, Agent[Agent] {ESP} Master, Agent|[_] Probe)

{interrogate} {interrogate}

3.5.1 Translating the mobile agent example into PEPA

The example has two static components Master and Probe. As the latter appears twice in the PEPA
net model (in places Py and P3), the application of the algorithm generates two instantiations of
this component Probe and Probe;. Thus in the PEPA model we have:

Master = (dump, T).Master’
Master’

II&;

(analyse,ry).Master

Probe ' (monitor,ry,).Probe + (interrogate, T).Probe
Probe; & (monitory, ry,).Probey + (interrogatey, T).Probe;

As each place contains one cell, the translation algorithm generates three new components Cell;,
where ¢ = 1...3. Firings and transitions are no longer distinguished because there is only one class
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of activities in PEPA and so we no longer embolden the names go and return.

de

Cellyy = (goy, T).Celly, Cellyy = (return,T).Celly,
Cell;, ¥ (return, T).Cellyy Celly, ¥ (go1, T).Cellay + (go2, T).Cellag

Cellg() dZEf (goz,T).Cellgl
Celly; ¥ (return, T).Cellsp

Component Agent is the token in the net and its definition is modified to take into account its
complete dynamic behaviour in the net.

Agent 2 (goy, \).Agent’ + (goo, \) Agent, Agent” ¥ (return,p).Agent”
Agent = (interrogatey, ;) Agent' Agent” ¥ (dump,rq).Agent
Agent, = (interrogate,r;).Agent”

The PEPA system equation is as follows:

System = (Cellyg ?{? (Probe ?él (Agent ?{? (Celly ?{T (Master ?{? (Probey %? Cellsp))))))

where K; = {goi,return} Ky = {interrogate} Ks = {go1,g09,return}
Ky = {dump} K; = [{interrogate;} K¢ = {gog,return}

4 Case study: Mobile IP

In this section we present a larger case study of modelling with PEPA nets. Based on the Internet
protocol, Mobile IP is a standard protocol that makes user mobility transparent to applications
and higher level protocols like TCP. It allows a mobile node to freely roam between network links
and to remain always accessible. To achieve this the mobile node uses two IP addresses: a home
address which is statically assigned on its home network and a care-of address which changes at
each new point of attachment. On the home network, a proxy known as a home agent is responsible
for forwarding all packets which are addressed to the mobile node on to its current care-of address.

Whenever the mobile node moves, it sends to its home agent a binding update message con-
taining its home address, its current care-of address and the lifetime for which the binding should
be honoured [7]. The home agent may refresh a binding cache entry by regularly requesting the
transmission of the latest care-of address.

When the mobile node receives, via its home agent, a packet from a correspondent, it sends a
binding update message to this correspondent. The correspondent may maintain a binding cache
allowing its transmit function to redirect the packets to the mobile node’s current care-of address [7].
The mobile node maintains a list of all its current correspondents and has to send them a binding
update message each time it changes its point of attachment. Figure 3 summarizes the main steps
of the Mobile IP protocol.

In this study we assume that the system is composed of N domain or network hosts, besides
the home network and the correspondent network. We assume that the home agent sends requests
to the mobile node to update the care-of address. Once the correspondent has the care-of address,
its transmit function redirects the packet to this address, saving one network hop relative to the
route through the home agent [7].
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Mobile Node

Correspondent 7/ — _— \ | ‘

e

/ e, :
1 INTERNET 2 \\\\ Foreign Agent

’x\\
N 4
Q | N \xv/

Home Agent

1 Correspondent sends IP packets addressed to the mobile node

2 Mobile Node sends the binding update message to the home agent

3 Home agent forwards the IP packets to the mobile node

4 Mobile Node sends the binding update message to the correspondent

5 Correspondent sends the following IP packets directly to the mobile node

Figure 3: The Mobile IP Protocol

4.1 The PEPA net Model

The system is modelled using the PEPA net model depicted in Figure 4 where the home network of
the mobile node is represented using a place called HOME_M. The networks to which the mobile
node may move are modelled by places DOMAIN; where i =1,..., N. Place HOME_C models
the home network of the mobile node’s correspondent.

Note that for the sake of readability in Figure 4 the rates of the activities labelling the firings
are omitted. Moreover only the arcs between DOMAIN; and HOME_M on one hand, and
HOME._C on the other, are depicted. The arcs between the other domains and HOME_M and
HOME_C are analogous.

To model the part of the protocol which manages the interaction between the home agent and the
mobile node during its stay in place DOMAIN;, we use two components ProtoMA and CommuMA.
Similarly we use components ProtoMC and CommuMC' to model the protocol interactions between
the mobile node and the correspondent. Moreover the exchanges between the home agent and the
correspondent are modelled using components ProtoAC and CommuAC. Components Mobile,
Agent and Corresp model the behaviour of, respectively, the mobile node, the home agent and
the current correspondent of the mobile node. In contrast to Mobile, the last two components are
static. All these components and places are explained in detail in the following.

4.1.1 The Components

e Component ProtoMA; models the protocol part which consists of updating the care-of
address at the home agent level. When the mobile node changes its point of attachment, it
generates a binding update message, action generatey,,. Here, the rate associated with this
action is unspecified since ProtoMA does not generate this message, but has just to transmit
it. This is modelled using the firing action transmity,, with rate ;. Once component
ProtoMA is in HOME_M, it allows the home agent to update the care-of address using the
synchronizing action updateA with rate A. With each place DOMAIN;, 7 = 1,...,N, is
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Figure 4: The PEPA net model

associated a component ProtoMA; whose behaviour is as follows.

ProtoM A; 2 (generatepyq, T).(transmityya, r1). ProtoM Aj
ProtoM A;; 2 (updateA, \).(return;, r9). ProtoM A;

Component CommuM A; allows us to model the exchanges between the home agent and the
mobile node once the binding update message has been received by the home agent. Once the
communication is established (via newSessionA), the home agent will either generate a packet
or an update request to be forwarded to the mobile node using firing action forward Ay ;
or forwardA,4 ;. Back in place DOMAIN;, CommuMA; delivers the packet (deliverApy;)
or the request (deliverA,,) to the mobile node. The delivery may fail if the mobile node
has already migrated somewhere else or just returned to its home network. Component
CommuMA; is associated with place DOMAIN;. Formally, the behaviour of this component
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is as follows.

CommuM A;
CommuM Aj

CommuM A;s
CommuM A;3
CommuM Ay

(newSessionA, T).(openA, ay1).CommuM Ay
(generateApr, T).(forward Apkt i, a3).Commull Az

+ (generateA,q, T).(forward A g i, a5).CommuM Ay
+ (close;, ag).CommuM A;

(deliver Apg, p1).CommuM Az + (fail, po).CommuM A;s
(return, ay).CommuM A;
(deliver A g, p3).CommuM Az + (fail, pg).CommuM A3

e Component ProtoMC; models the protocol part which consists of updating the care-
of address at the correpondent level. Once the binding update message is generated, it is
forwarded to the correspondent using firing activity transmity,.. Then it allows the home
agent to update the care-of address using the synchronizing action updateC with rate A;.

ProtoMC;
ProtoM Cj;;

Lef (generatepy., T).(transmityyc, r3). ProtoM Cyy
(updateC, \1).(return;, r4).ProtoM C;

def

e Component CommuMC; allows us to model the effective exchanges between the mobile
node and the correspondent. Once the communication is established (newSessionC) by the
mobile node, the correspondent may either generate a packet or an update request that
will be forwarded using firing transition forwardCpy¢ ; or forwardC,q ; respectively. The
delivery may succeed or fail if the mobile has already moved. In the first case, the mobile
node may either stay silent (silent) or generate a packet (generateMyy;) which is forwarded
to the correspondent using firing transition forwardMpk¢. The communication is considered
finished when transition close; is fired at the correspondent level. A component CommuMC;
is associated with each place DOMAIN;, 1 =1,...,N.

CommuM C;
CommuM Cjy

CommuM Cj
CommuM Cjo

CommuM Cjs3
CommuM Cjy
CommuM Cs

def

def

(newSessionC, T).(openC, p1).CommuM Cj

(generateC My, T).(forwardCpks_i, 3).CommuM Cjy
+(generateC Mg, T).(forwardC,q i, O5).Commul Ciy
+(close;, B2).CommuM C;

(deliverCpr, v1).CommuM Cjo + (fail, v2).CommuM Cis

(generate My, T).(forwardMpy¢, B4).CommuM C;3
+(silent,v3).CommuM Cs

(deliver Mpgg, v4).CommuM Cy
(deliverChrqt, vs).CommuM Cys + (fail,ve).CommuM Cjs
(return, fg).CommuM Cy,

e Component ProtoAC models the case where the mobile node returns to its home network
and has to send a binding update message to its current correspondent. This component is
associated with place HOME_M and returns to it once the care-of address has been updated
at the correspondent level using activity updateCh with rate As.

ProtoAC
ProtoAC,

= (generateHpye, T).(transmitpye, 75). ProtoAC,
de

X (updateCh, \s).(return, rg).ProtoAC
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e Component CommuAC models the communication between the correspondent and the
home agent if the mobile node has left its home network or with the mobile node itself
if not. It is associated with place HOME_C and forwards the packets generated by the
correspondent to the mobile node in its home network. This is modelled using the firing
action forwardCpy¢ with rate ;. If the mobile node is present, the packets are delivered
to it with action deliverCpi;. Component CommuAC then forwards the packets generated
by the mobile node to the correspondent. This is done with the firing action forwardMpy¢
with rate 2. If the mobile node is not in its home network, the correspondent’s packets
are saved (saveCpy) by the home agent and component CommuAC goes back to HOME_C
using firing action return at rate ~ys.

CommuAC = (generateCApi, T).(forwardCpys,v1).CommuAC,

CommuAC, < (deliverCpie, w1).CommuACy + (saveCpyt, wa).CommuAC,

CommuACy < (generate My, w3).(forwardMpky, 72).CommuACs
+(silent, wy).CommuACy

CommuACs < (deliver M hpgy, ws).CommuAC

CommuAC,; = (return,ys).CommuAC

e Component Mobile models the behaviour of the mobile node whatever its current point
of attachment. The mobile node may either generate packets, receive packets or simply
choose to move to another network. This is modelled using actions generate My, deliverCpyy
and migrate; respectively. When the mobile node changes its point of attachment, it first
generates a binding update message for its home agent with action generatey,, at rate 7o and
then opens a new communication session (newSessionA). It may then receive from its home
agent either an update request (deliverA,q;) or a correspondent’s packet (deliverApy;). In this
last case, it generates a binding update message for the correspondent with action generatep,.
at rate 73 and establishes a new communication session (newSessionC'). The mobile node may
stay in the current network or with probability p; moves to another network j with firing
action migrate;, j # 1, i being the current host network of the mobile node. It may also just
return to its home network with the firing action returny,.

Mobile < (generate My, T1).Mobile + (deliverCpyy, T).Mobile
+ Zi]\il(migratei,pi x 01).Mobiley

Mobiley = (generatepyq,m2).(newSessionA, s1).Mobiles

Mobile, < (deliver Apgy, T).Mobiles + (deliver Apq, T).Mobile; + (returny, d2).Mobile
Mobiles = (generatey,,,3).(newSessionC, sy).Mobiley

Mobile, < (deliverAyqi, T).Mobile; + (deliver Apgy, T).Mobiles + (deliverChrq, T).Mobileg

+(deliverCpe, T).Mobiley + (generate My, 74).Mobiles + (returny, d2). Mobiles
+ Z?le/#i(migratej,pj X 05).Mobileg

Mobiles < (generatehyy., m5).Mobile
Mobileg < (generatep,q, 76)-(newSession A, s1).Mobiles
Mobile; < (generateyyq, 7). Mobiley
Mobileg < (generateyy., 73).Mobile,

e Component Agent models the home agent’s behaviour. It is given by the following PEPA
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net equations:

&
&

Agent = (
def
Agent; = (
Agenty = (
Agents = (

updateA, T).Agenty + (saveCpp, T).Agents
saveCppt, T).Agenty + (generateAyq,v1). Agenti + (updateA, T).Agenty
generateAyps, 10). Agenty + (updateA, T).Agenty + (saveCyi, T).Agents
saveCppt, T).Agents + (updateA, T).Agents

Component Corresp models the behaviour of a correspondent of the mobile node. It
may generate packets to send to the mobile node in its home network (generateC'A,y;) and
receive packets from the mobile node when it is still there (deliverM hyy;). It may also receive
a binding update message from the mobile node (updateC). In this case, the correspondent
may generate packets (generateCMpy;) or update requests (generateCA,q) to send to the
mobile node in its current attachment point. Action type updateCh models the case where
the correspondent receives a binding update message from the mobile node back in its home

network.

Corresp = (generateC Apgy, c1).Corresp + (deliver M hpy, T).Corresp
+(updateC, T).Corresp;

Corresp;, = (generateC My, c2).Correspr + (generateC My, c3).Correspy
+(deliver Mpy, T).Correspi + (updateC, T).Corresp;
+(updateCh, T).Corresp

4.1.2 The Places

The places of the PEPA net are defined as follows:

HOME, ¥ (ProtoAC’ [ProtoAC) Dg? (Mobile [M obile] E? (C’ommuAC [] %?
((C’ommuMA1 LIl [|CommuM Ay []) B3 (Agent ]
(ProtoM Ay []|] .- . ||ProtoM An []))))))
def
HOME¢ = ((((ProtoAC’ [] Dﬁ? C’orresp) Efl (CommubM Cy []]|...]|[CommuMCn [_])) DL§
(ProtoMCy []||-..||ProtoMCy [])) %? CommuAC [C’ommuAC])
DOMAIN; ¥ ((((ProtoMAi [ProtoM A;] B Mobile [_]) B Commul A; [CommuMAi]) B

ProtoM C; [ProtoM C;)) Eﬂs CommuM C; [C’ommuMCi])

where ¢ = 1... N and the synchronizing sets are defined as follows

= {generateHyp,.} Lg
= {deliverCpy, generate Mpy: } Ly
= {saveCp} Lig
= {generateApy, generateA,q } Ly
= {updateA} Lo
= {updateCh} L3
Ly

{updateC'}

{generateC App:, deliver M hpp: }

{generatepy,}

{newSessionA, deliver Apy, deliver Apq: }

{generatepy.}

{newSessionC, generate My, deliverCpy, deliverCrqt }
{deliver My, generateC Mpyt, generateC Mg }
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5 Implementation

We have implemented our translation from PEPA nets to PEPA as an extension to our existing tool,
The PEPA Workbench for PEPA Nets. We process the PEPA output from the Workbench with
the compiler from PEPA to PRISM which we have implemented previously. The PEPA-to-PRISM
compiler is a component of PRISM v1.3 [10].

By factoring the translation into two phases in this way we were able to make a clear separation
of concerns between two significant phases of the translation. During the first phase we eliminate
the token mobility in the input PEPA net. During the second phase we re-express a PEPA model in
PRISM’s reactive modules language of imperative guarded commands. In addition to providing this
helpful separation of concerns, this factorisation allowed us to re-use one of our existing software
components (the PEPA-to-PRISM compiler) in its entirety.

We have found the PRISM tool to have a very efficient state-space generation method. For
example, we compiled our Mobile TP model above with one domain from the original PEPA net
into a PEPA model input to PRISM. The PRISM tool generated a state space of over 2.8 million
states (actually 2,800,202) and over 16 million transitions (actually 16,410,778) in 13.2 seconds on
a 1.6GHz Pentium IV with 256Mb of memory running RedHat Linux 7.1. The compilation from
the PEPA net to PEPA took 0.15 seconds. PRISM additionally provides an expressive description
language which allow us to easily express quantities such as the proportion of packets which have
to be forwarded in the Mobile IP protocol.

Compiling our PEPA nets models first to PEPA conveys an additional benefit. There are many
efficient and powerful analysis tools which already support the PEPA stochastic process algebra
as one of their input languages. The approach of compiling PEPA nets to PEPA allows us now
to also use these tools for the more expressive modelling language of PEPA nets. For example,
we could now simulate or solve PEPA nets models with the Mobius multi-paradigm modelling
framework [11] because it provides support for PEPA [12]. As another example, we could use the
distributed Dnamaca Petri net solver to perform transient analysis or compute first passage time
distributions for large PEPA net models by using the PEPA Workbench together with Jeremy
Bradley’s translator from PEPA to Dnamaca.

Set against this, there are losses which are attendant to using PEPA as an intermediate language
in this way. The primary loss is that we are unable to process PEPA net models which use priorities
because the PEPA stochastic process algebra does not support them. A direct translation from
PEPA nets to PRISM could have preserved any uses of priorities in the input PEPA net so we have
to view this as a shortcoming of our two-phase translation but we consider it to be a relatively
minor one.

The PEPA tools are available for download from the PEPA Web site located at http://www.
dcs.ed.ac.uk/pepa/ together with documentation, example models and copies of papers on PEPA
and PEPA nets.

6 Conclusions

Building performance models of realistic real-world systems is an activity which requires careful
attention to detail in order to accurately model the intended behaviour of the system. Proceeding
with care during this part of the modelling process is a wise investment of effort. If the initial
performance model contains errors then all of the computational expense incurred in solving the
model and all of the intellectual effort invested in the analysis and interpretation of the results
obtained would at best be wasted. In general interpreting a model with errors could lead to making
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flawed economic or strategic decisions based on erroneous conclusions made from erroneous results.
For this reason we consider it important to work with structured, high-level modelling languages
which directly support the concepts and idioms of the application domain, such as code mobility.
In this paper we have shown how a mobile code modelling language, PEPA nets, can be mapped
into another language, the reactive modules of PRISM, where mobility is not directly expressible
in the language and there is no notion of physically or logically separated locations being a barrier
to communication.

Our translation from PEPA nets to PRISM is not excessively complicated but it has enough
subtleties that it was worthwhile to implement it in a software tool to prevent making mistakes
that could easily be made if applying the method by hand. We extended our existing workbench for
PEPA nets for this purpose. We applied this to a case study of modelling the Mobile TP protocol.
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