
A survey of the PEPA tools

Stephen Gilmore Jane Hillston∗

5th June 2003

Abstract

This paper surveys the history and the current state of tool support
for modelling with the PEPA stochastic process algebra and the PEPA
nets modelling language. We discuss future directions for tool support
for the PEPA family of languages.

1 Introduction

The PEPA stochastic process algebra [1] is a small modelling language which
is used to express models of systems which are composed of cooperating
components which undertake timed activities either individually or in co-
operation with other components. Constraints on the nature of the timing
information (exponentially distributed random delays) mean that a PEPA
model defines a Continuous-Time Markov Chain. The analysis of a PEPA
model proceeds by deriving its underlying Markov chain and solving this
to find the long-run probability of the states of the chain. The states of
the chain are in one-to-one correspondence with the states of the deriva-
tion graph of a PEPA process as specified by the operational semantics of
the language so information about the long-run behaviour of the CTMC
translates directly to information about the PEPA model from which it was
derived.

The benefit of using a high-level description language for Markov mod-
elling is that it is possible to implement tools to automate the process of
deriving the CTMC from the high-level model. The first tool which we
implemented for PEPA did exactly this, and this tool was the PEPA Work-
bench [2]. The PEPA Workbench was implemented in Standard ML [3],
partly because it is a beautiful programming language, and partly because
we thought that this might facilitate interoperation with other process alge-
bra tools and verification platforms such as the Concurrency Workbench [4]
and HOL/ML [5]. In fact, we never connected the PEPA Workbench to
either of these tools and this remains a missed opportunity to this day.

∗Laboratory for Foundations of Computer Science, The University of Edinburgh, Ed-
inburgh, EH9 3JZ. Email: {stg, jeh}@lfcs.ed.ac.uk

40



The ML edition of the PEPA Workbench exported its results as the in-
finitessimal generator matrices of CTMC, represented in the matrix formats
used by numerical computing platforms such as Maple, Matlab and Math-
ematica. This format had the advantage that it was human-readable and
even outside the Workbench the PEPA modeller worked with high-level data
structures such as sparse matrices and vectors without having to deal with
the concrete data structures which were used to implement these.

Having even modest tool support available allowed us and others [6, 7, 8]
to solve meaningful models of realistic applications. However, some mod-
ellers wanted to make more detailed models still and more detail equates
to more states in the system and in the underlying Markov chain. One de-
velopment in the PEPA tools came about because the ML edition, together
with Maple, was unable to solve Robert Holton’s robotic workcell model [9]
quickly enough to generate an acceptable set of experimental plots. For this
reason we modified the PEPA Workbench to interoperate with an external
solver written in C [10].

This set the pattern for much of the PEPA tool development which was to
follow; we would use a simple high-level tool to gain experience and insights
and then extend this to a better engineered tool later. The ML edition of
the PEPA Workbench is still used in this way, as a testbed for extensions of
the PEPA language such as PEPA nets [11] and for new algorithms [12].

At this time a number of users were using the PEPA Workbench on a
number of platforms (Solaris, Linux and Windows) and at the same time
the ML language was undergoing a significant revision (from SML’90 [13] to
SML’97 [3]). In addition, Graham Clark had implemented some additional
PEPA tools such as the PEPAroni simulator in Pizza [14], an extension
of Java. The development of the Pizza compiler was then discontinued in
favour of GJ [15], meaning that something had to be done with PEPAroni
also. For these reasons we decided to port the PEPA Workbench to Java [16].
In addition we incorporated transient solution facilities [17] as well as the
PEPAroni simulation capabilities [18].

The Java edition of the PEPA Workbench became a vehicle for exper-
imentation also. The Java language is supported by an enormous set of
libraries and APIs. Some of these have no equivalents in Standard ML and
so some experimental extensions are easier to implement in the Java edition
than in the ML edition of the workbench. One example of this would be the
extension of the workbench to interoperate with Argo/UML [19] whereby
UML state machines encoded in XMI format can be loaded onto the work-
bench and solved. This depends on an XML parsing package which is native
to Java, but not to Standard ML.

41



2 Analysis Tools

Of course, generating the CTMC underlying a PEPA model, and finding
its steady state probability vector is rarely, if ever, the objective of PEPA
modelling. Formal tool support for querying performance models is an area
which has received little attention until recently, despite its practical im-
portance. Whilst some effort has been applied in this direction for PEPA
models, it remains an area in which we see much scope for future work.

At the most basic level the modeller wishes to construct a reward struc-
ture over the state space of the CTMC, to be used in conjunction with the
steady state probability vector to derive performance measures. For steady
state measures the reward structure is a vector recording a “reward” for
each state, although for many state the reward value will be zero. Thus the
problem becomes one of identifying the appropriate set of states to attach a
non-zero reward to. Clearly, when the CTMC arises from a stochastic pro-
cess algebra model we prefer to characterise the state at the process algebra
level. PEPA analysis tools have been developed which tackle this problem
in two distinct ways.

2.1 The PEPA State Finder

The PEPA State Finder is intended to be used with the ML edition of the
PEPA Workbench. It identifies subsets of states using regular expression
pattern matching, applied to the table of PEPA expressions which make up
the state of the model. Recall that there is a one-to-one correspondence be-
tween the syntactic forms of the PEPA process as it evolves and the states
of the CTMC. The Workbench maintains a table recording this correspon-
dence, and usig regular expression pattern matching the PEPA State Finder
is able to extract the states of interest. For example, it is possible to use an
expression such *|(next,r).* to return the state numbers of all the sate in
which the second component enables a (next, r) activity. This could then be
used to construct a reward structure suitable for calculating the throughput
of next in the second component: the value r is placed in the reward vector
at each position corresponding to a (numerical) state found by the PEPA
State Finder.

2.2 PMLµ

A more sophisticated means of specifying rewards is described in Graham
Clark’s PhD thesis [20], and developed around the stochastic logic PMLµ.
Inspired by the probabilistic model logic of Laren and Skou, PML [21], PMLµ

is able to differentiate PEPA terms which perform the same activities but
at different rates. The key to this is a modification to Hennessy-Milner
logic in which the diamond operator becomes decorated with a rate. The

42



semantics of an expression in the logic is a subset of states, and thus logical
expressions may be used, in conjunction with a value, to specify a reward
structure. Graham Clark extended the ML edition of the PEPA Workbench
to include support for PMLµ and associated reward structures [20].

3 Interoperation with other tools

The new pattern of working with the PEPA tools is to connect them to,
or build them into, existing tools for performance modelling. This section
recounts three such efforts, all of which are still ongoing.

3.1 PEPA and Möbius

Because the Möbius modelling framework [22] is both a multi-formalism and
multi-paradigm modelling tool it was an ideal place to begin integrating
PEPA with another, distinctly different, modelling tool [23]. When working
with a custom tool such as the PEPA Workbench, the goal is very clear: it
is to produce a correct implementation of the PEPA language. Deviations
of the PEPA Workbench from the PEPA semantics are simply errors which
need to be fixed. The unexpected effect of integrating PEPA into Möbius
was that not only was PEPA support built into Möbius but Möbius features
were built into the version of PEPA which was implemented in Möbius. The
reason for this was that it then became possible to share variables between
components modelled in PEPA and components implemented in another
Möbius formalism, such as SANs.

Building support for PEPA directly in another tool has the advantage
that the language is supported efficiently, without additional overheads im-
posed by translation from one representation into another. However, it has
the implementation cost that the implementor must be familiar not only
with the concepts of the host tool but also with their representation in data
structures and algorithms. This means that although this approach can
produce very good results it can do so at relatively high cost.

3.2 PEPA and PRISM

We next progressed to a lighter-weight, component-based method where we
attempted to work with a relatively loose coupling between the language
and the host solver. This was the approach when we produced a binding
for the PEPA language in the PRISM [24] probabilistic model checker. This
proceeded in two stages. Firstly, Dave Parker and Gethin Norman extended
the PRISM model checker to support PEPA’s combinators (parallel and hid-
ing). Then an existing PEPA tool, the PEPA-to-Ada translator [25], was
adapted to form the PEPA-to-PRISM Compiler. This involved re-targeting
the compiler to generate as its output format the reactive modules language

43



supported by PRISM, including the extension to the PEPA modelling con-
structs.

One aspect of this work which came as a surprise was the extent to
which one could have small, but problematic, mismatches between one mod-
elling language and another. One of the most obvious is that PEPA defines
synchronisation between active participants (via apparent rates [1]) differ-
ently from PRISM (the rate of the synchronised activity is the product of
the rates of the participants in the synchronisation). For this reason the
PEPA-to-PRISM compiler implements a static check to detect active/active
synchronisation and to fault any model which uses it.

This method of working with PEPA models requires a significant degree
of expertise on the part of the modeller, because errors in evaluation can
occur right from the PEPA parser through PEPA-to-PRISM and PRISM
down to CUDD [26], the BDD library which provides MTBDD data struc-
tures and algorithms to PRISM. Even if errors do not occur in translation
still to achieve the best performance from the solver it is necessary to know
how to configure both PRISM and CUDD which means that this method is
best suited to experienced modellers only.

3.3 PEPA, IPC and Dnamaca

A recent development in the PEPA tools is Jeremy Bradley’s ipc (The Im-
perial PEPA Compiler). The ipc tool translates an input PEPA model into
the Petri net notation provided by Will Knottenbelt’s Dnamaca tool [27].
Translating a process algebra model into a Petri net might seem a rather
strange thing to do but we can now view PEPA as a sublanguage of the
PEPA nets modelling language and then translating a coloured high-level
Petri net into an uncoloured classical net seems a much more familiar activ-
ity. In fact, Dnamaca would be an excellent target for PEPA nets because
of its native support for priorities, which are available in PEPA nets but not
in PEPA.

The ipc tool supports the PEPA language comprehensively. Apparent
rates are supported, as are anonymous components. These are two advan-
tages over the PEPA-to-PRISM compiler, and a richer class of PEPA models
can be analysed by ipc/Dnamaca as a result.

In one other important respect, ipc provides more comprehensive PEPA
support than comparable tools because it also translates PMLµ formulae into
the Dnamaca specification language. The Dnamaca specification language
is a classical Petri net logic allowing specification formulae to quantify the
number of tokens in the places of the net and thereby identify states and
sets of states within the reachable state space of the model.

Via ipc, the unique solution capabilities of Dnamaca become available
and because of this it is possible to efficiently perform passage time analysis
over PEPA models.

44



4 Tools for PEPA nets

The PEPA nets modelling language extends PEPA by using PEPA com-
ponents as the tokens of a high-level coloured Petri net. The PEPA nets
formalism is considerably newer than the PEPA stochastic process algebra
and consequently tool support is less extensively developed.

4.1 The PEPA Workbench for PEPA nets

Our first tool to support PEPA nets was an extension of the ML edition
of the PEPA Workbench, as might have been expected. As a high-level
programming language with strong support for compile-time checking of
programs, Standard ML was an excellent choice for the implementation
language for the first PEPA nets tool. The PEPA nets semantics look simple
on the page but they proved to be a challenge to implement both efficiently
and correctly.

The changes to the PEPA Workbench involved changes to the parser
and the internal data structure for representing components, and most sig-
nificantly, the derivation function for next-step derivatives. This is now
considerably more complex than in the PEPA case because of the inter-
play between transitions of tokens and firings of the net, together with the
intervention of priorities on firings.

4.2 The PEPA net compiler

Because our experience with connecting PEPA to other modelling tools had
been a positive one it became evident that we could continue this by com-
piling a PEPA net down to a PEPA model (and then analysing this with
Möbius, PRISM or ipc/Dnamaca). Direct compilation from a PEPA net
into the native format of the host tool would be preferable but translation
into PEPA provided us with an opportunity to at least investigate some of
the issues involved without all of the additional complexity of unexpected
interactions with the modelling language of the host tool, which is typically
less familiar to us than our own languages.

PEPA stochastic process algebra models have no notion of context, nor
any capacity to move components from one context to another, and therefore
cannot express the concept of dynamically varying communication structure.
The task performed by the PEPA net compiler is then to remove all of the
mobility from the PEPA net by making components’ behaviour depend on
location. This is achieved by expanding the definition of the tokens of the net
replicating local state behaviours and customising these for each cell which
the token may visit. (Cells are the storage areas for tokens in a PEPA net.
A net may have many places and each place may have many cells.)

45



In the worst case—when there is only a single class of token, all to-
kens can travel to all of the places of the net, and the net has no static
components—the resulting PEPA model is n times larger than the input
PEPA net, where n is the number of cells in the net.

By chaining the PEPA nets compiler together with the PEPA compila-
tion tools we have been able to solve PEPA net models of significant size.

4.3 DrawNET

One putative advantage of the PEPA nets modelling language over PEPA is
that it has an accessible graphical syntax. As a result it seemed worthwhile
to implement a graphical editor for PEPA nets. Together with Marco Grib-
audo we configured the generic DrawNET tool for PEPA nets, including
PEPA as a sublanguage [28].

DrawNET provides interactive consistency checking of models while they
are being edited and saves models in XML format for easy parsing and
conversion into other concrete syntaxes, with subsequent compilation as
above.

5 Availability

The PEPA Workbench and related tools are available from the PEPA Web
site at www.dcs.ed.ac.uk/pepa. Möbius is available from the University of
Illinois at www.crhc.uiuc.edu/PERFORM/mobius-software.html. PRISM
is available from www.cs.bham.ac.uk/~dxp/prism/. ipc is available from
www.doc.ic.ac.uk/ipc/. The Dnamaca and DrawNET tools are available
from their authors.

6 Conclusions

Despite the difficulty of the approach, and the possibility of errors through-
out the process, linking the PEPA tools to external solvers such as PRISM
and Dnamaca provided orders of magnitude improvements in solution power
over the capabilities of the native PEPA tools. For this reason, this seems
like a very profitable avenue for future tool development. Connecting other
front-ends such as DrawNET or Argo/UML would provide a high-level di-
agrammatic syntax which might appeal to other users. The role of PEPA
in this work is to function as an intermediate language, forming a mid-
dle ground between unrelated tools such as DrawNET and PRISM. There
remains much which can still be achieved in this way and there is great
potential to go forward.

46



Acknowledgements: Many people have contributed software or ideas or
both to the development of the PEPA tools: Jeremy Bradley, Linda Brodo,
Catherine Canavet, Graham Clark, Marco Gribaudo, Robert Holton, Jon
Hunter, Gethin Norman, Dave Parker, Matthew Prowse, Kris Powell, Fotis
Strathapolis, Nigel Thomas, Feng Wan, and others.

The work on the PEPA tools would not have been done if not for the
interest of users of the PEPA language such as Howard Bowman, Robert
Holton, Marta Kwiatkowska, Amani El-Rayes, Nigel Thomas, Lëıla Kloul,
Marina Ribaudo, and others.

The authors are supported by the DEGAS (Design Environments for
Global Applications) IST-2001-32072 project funded by the FET Proactive
Initiative on Global Computing.

References

[1] J. Hillston. A Compositional Approach to Performance Modelling.
Cambridge University Press, 1996.

[2] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Sup-
port a Process Algebra-based Approach to Performance Modelling. In
Proceedings of the Seventh International Conference on Modelling Tech-
niques and Tools for Computer Performance Evaluation, number 794 in
Lecture Notes in Computer Science, pages 353–368, Vienna, May 1994.
Springer-Verlag.

[3] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML: Revised 1997. The MIT Press, 1997.

[4] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The con-
currency workbench: A semantics-based tool for the verification of con-
current systems. ACM Transactions on Programming Languages and
Systems, 15(1):36–72, January 1993.

[5] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A
theorem proving environment for higher order logic. Cambridge Uni-
versity Press, 1993.

[6] H. Bowman, J. Bryans, and J. Derrick. Analysis of a multimedia stream
using stochastic process algebra. In C. Priami, editor, Sixth Interna-
tional Workshop on Process Algebras and Performance Modelling, pages
51–69, Nice, September 1998.

[7] A. El-Rayes, M. Kwiatkowska, and S. Minton. Analysing performance
of lift systems in PEPA. pages 83–100, Department of Computer Sci-
ence, The University of Edinburgh, September 1996.

47



[8] E. W. Dempster, N. T. Tomov, J. Lü, C. S. Pua, M. H. Williams,
A. Burger, H. Taylor, and P. Broughton. Verifying a performance es-
timator for parallel DBMSs. In Proceedings of EuroPar (EuroPar’98),
September 1998.

[9] D.R.W. Holton. A PEPA specification of an industrial production cell.
In S. Gilmore and J. Hillston, editors, Proceedings of the Third Inter-
national Workshop on Process Algebras and Performance Modelling,
pages 542–551. Special Issue of The Computer Journal, 38(7), Decem-
ber 1995.

[10] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press, second edition, 1993.

[11] S. Gilmore, J. Hillston, and M. Ribaudo. PEPA nets: A structured per-
formance modelling formalism. In T. Field, P.G. Harrison, J. Bradley,
and U. Harder, editors, Proceedings of the 12th International Confer-
ence on Modelling Tools and Techniques for Computer and Communica-
tion System Performance Evaluation, number 2324 in Lecture Notes in
Computer Science, pages 111–130, London, UK, April 2002. Springer-
Verlag.

[12] S. Gilmore, J. Hillston, and M. Ribaudo. An efficient algorithm for ag-
gregating PEPA models. IEEE Transactions on Software Engineering,
27(5):449–464, May 2001.

[13] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-
dard ML. The MIT Press, 1990.

[14] M. Odersky and P. Wadler. Pizza into Java: Translating theory into
practice. In Proceedings of the 24th ACM Symposium on Principles
of Programming Languages (POPL’97), Paris, France, pages 146–159.
ACM Press, New York (NY), USA, 1997.

[15] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
Making the future safe for the past: Adding genericity to the Java
programming language. In Proceedings of OOPSLA 98, Vancouver,
October 1998.

[16] J. Hunter. Re-evaluation of the PEPA Workbench. Master’s thesis,
School of Computer Science, The University of Edinburgh, September
1999.

[17] F. Wan. Interface engineering and transient analysis for the PEPA
Workbench. Master’s thesis, School of Computer Science, The Univer-
sity of Edinburgh, September 2000.

48



[18] Fotis Stathopoulos. Enhancing the PEPA Workbench with simulation
and experimentation facilities. Master’s thesis, School of Computer
Science, Division of Informatics, The University of Edinburgh, 2001.

[19] C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and P. Stevens. Perfor-
mance modelling with UML and stochastic process algebras. IEE Pro-
ceedings: Computers and Digital Techniques, 150(2):107–120, March
2003.

[20] G. Clark. Techniques for the Construction and Analysis of Algebraic
Performance Models. PhD thesis, The University of Edinburgh, 2000.

[21] Kim Guldstrand Larsen and Arne Skou. Bisimulation through proba-
bilistic testing. Information and Computation, 94(1):1–28, 1991.

[22] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M. Doyle,
W. H. Sanders, and P. Webster. The Möbius modeling tool. In Proceed-
ings of the 9th International Workshop on Petri Nets and Performance
Models, pages 241–250, Aachen, Germany, September 2001.

[23] G. Clark and W.H. Sanders. Implementing a stochastic process al-
gebra within the Möbius modeling framework. In L. de Alfaro and
S. Gilmore, editors, Proceedings of the first joint PAPM-PROBMIV
Workshop, volume 2165 of Lecture Notes in Computer Science, pages
200–215, Aachen, Germany, September 2001. Springer-Verlag.

[24] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic
symbolic model checker. In T. Field, P.G. Harrison, J. Bradley, and
U. Harder, editors, Proceedings of the 12th International Conference
on Modelling Tools and Techniques for Computer and Communication
System Performance Evaluation, number 2324 in Lecture Notes in Com-
puter Science, pages 200–204, London, UK, April 2002. Springer-Verlag.

[25] S. Gilmore, J. Hillston, and D.R.W. Holton. From SPA models to
programs. pages 179–198. Dipartimento di Informatica, Università di
Torino, CLUT, July 1996.

[26] F. Somenzi. CUDD: CU Decision Diagram Package. Department of
Electrical and Computer Engineering, University of Colorado at Boul-
der, February 2001.

[27] W.J. Knottenbelt. Generalised Markovian analysis of timed transition
systems. Master’s thesis, University of Cape Town, 1996.

[28] S. Gilmore and M. Gribaudo. Graphical modelling of process algebras
with DrawNET. In F. Bause, editor, Companion volume of tools papers
to Proceedings of Tools’03, September 2003. To appear.

49


