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Abstract

In this paper we describe a formalism which uses the stochastic process algebra PEPA as the inscription language for
labelled stochastic Petri nets. Viewed in another way, the net is used to provide a structure for linking related PEPA systems.
The combined modelling language naturally represents such applications as mobile code systems where the PEPA terms are
used to model the program code which moves between network hosts (the places in the net). We describe the implementation
of a tool to support this modelling formalism and apply this to model a hierarchical cellular network.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Variants of Petri nets have been widely used in the description and performance analysis of computer,
telecommunications and manufacturing systems[1]. The appeal of Petri nets as a modelling formalism is
easy to see. They provide a graphical presentation of a model which has an easily accessible interpretation
and they also have the advantage of being supported by an unambiguous formal semantics.

In their use as performance modelling languages stochastic Petri nets have recently been joined by
stochastic process algebras such as PEPA[20], EMPA[4] and IMC[18]. Stochastic process algebras lack
the attractive graphical presentation of Petri nets and properties such as the depiction of causality and
conflict in a model. In contrast though, in stochastic process algebras an explicit compositional structure
is imposed on the model. This structure makes the model easy to understand, may alleviate problems
of model construction and can be exploited for both qualitative and quantitative analysis. A comparison
of these two modelling formalisms[11] concludes that “there is scope for future work incorporating the
attractive characteristics of the formalisms, such as structural analysis or functional abstraction, from
one paradigm into the other”. Some work has been done in this area in beginning to develop a structural
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theory for process algebras[14] on the one hand and in importing composition operations from stochastic
process algebras into net formalisms on the other[19,21,30]. The present work considers using both Petri
nets and process algebras together as a single, structured performance modelling formalism. There is
some reason to believe that these two formalisms complement each other.

Petri nets have previously been combined with other modelling formalisms such as the lazy functional
programming language Haskell (used with non-stochastic Petri nets in[29]) and queueing models (used
with generalised stochastic Petri nets in[3]). The combination of stochastic Petri nets with queueing
networks in particular has been a source of inspiration to several authors. Earlier work in this area includes
Bause’sQueueing Petri nets[2] and Haverkort’sDynamic Queueing Networks[17]. An extension of
(non-stochastic) Petri nets which provides modelling concepts similar to ours is Valk’selementary object
systems(EOS)[31]. The tokens in an elementary object system are themselves Petri nets having individual
dynamic behaviour.

Coloured Petri nets are a high-level form of classical Petri nets. The plain (indistinguishable) tokens
of a classical Petri net are replaced by arbitrary terms which are distinguishable. In stochastic Petri nets
the evolution of the net from one marking to another is associated with a random variable drawn from an
exponential distribution. Here we consider coloured stochastic Petri nets where the colours used as the
tokens of the net are PEPA components. We refer to these asPEPA netsfrom here on.

Structure of this paper. Section 2introduces the notation and terminology of PEPA nets, to give the
reader an informal explanation of the ideas. However, PEPA is a formal language with a precise semantic
definition and so inSection 3we present the operational semantics of PEPA nets. InSection 4we present
two small examples, a simple mobile agent system and a Jini architecture, both modelled as PEPA nets.
Having presented the reader with examples of modelling with PEPA nets we then compare them to the
related modelling formalisms of Petri nets and the PEPA stochastic process algebra inSection 5. In each
case we seek to show that PEPA nets offer some expressivity which is not directly offered by the other
formalisms.Section 6is a more detailed case study of a hierarchical cellular network. InSection 7we
discuss tool support for PEPA nets. Related work is discussed inSection 8. Concluding remarks and
further work are presented inSection 9.

2. PEPA nets

In this section we present the concepts and definitions used in PEPA nets. In the following paragraphs
we give a brief overview of PEPA. Readers are referred to[20] for a more detailed introduction.

2.1. Summary of the PEPA language

The PEPA language provides a small set of combinators. These allow language terms to be constructed
defining the behaviour of components, via the activities they undertake and the interactions between
them. The syntax may be formally introduced by means of the grammar shown in the lower part ofFig. 1.
In that grammarS denotes asequential componentandP denotes amodel componentwhich executes
in parallel.I stands for a constant which denotes either a sequential or a model component, as defined
by a defining equation. The component combinators, together with their names and interpretations, are
presented informally below.
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Fig. 1. The syntax of PEPA extended with contexts.

Prefix. The basic mechanism for describing the behaviour of a system is to give a component a designated
first action using the prefix combinator, denoted by a full stop. For example, the component(α, r).S carries
out activity (α, r), which has action typeα and an exponentially distributed duration with parameterr,
and it subsequently behaves asS.

Choice. The life cycle of a sequential component may be more complex than any behaviour which
can be expressed using the prefix combinator alone. The choice combinator captures the possibility of
competition between different possible activities. The componentP +Q represents a system which may
behave either asP or asQ. The activities of bothP andQ are enabled. The first activity to complete
distinguishes one of them: the other is discarded. The system will behave as the derivative resulting from
the evolution of the chosen component.

Constant. It is convenient to be able to assign names to pattern of behaviour associated with components.
Constants are components whose meaning is given by a defining equation.

Hiding. The possibility to abstract away some aspects of a component’s behaviour is provided by the
hiding operator, denotedP/L. Here, the setL of visible action types identifies those activities which are
to be considered internal or private to the component and which will appear as the unknown typeτ.

Cooperation. In PEPA direct interaction, orcooperation, between components is the basis of com-
positionality. The set which is used as the subscript to the cooperation symbol, thecooperation setL,
determines those activities on which thecooperandsare forced to synchronise. For action types not inL,
the components proceed independently and concurrently with their enabled activities. However, if a com-
ponent enables an activity whose action type is in the cooperation set it will not be able to proceed with that
activity until the other component also enables an activity of that type. The two components then proceed
together to complete theshared activity. The rate of the shared activity may be altered to reflect the work
carried out by both components to complete the activity (for details see[20]). We writeP Q to denote
cooperation betweenP andQ overL. We writeP‖Q as an abbreviation forP Q whenL is empty.
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In some cases, when an activity is known to be carried out in cooperation with another component,
a component may bepassivewith respect to that activity. This means that the rate of the activity is left
unspecified (denoted�) and is determined upon cooperation, by the rate of the activity in the other
component. All passive actions must be synchronised in the final model.

Model components capture the structure of the system in terms of itsstaticcomponents. The dynamic
behaviour of the system is represented by the evolution of these components, either individually or in
cooperation. The form of this evolution is governed by a set of formal rules which give an operational
semantics of PEPA terms. The semantic rules, in the structured operational style, are presented inFig. A.1
in Appendix Awithout further comment.

The semantics of each term in PEPA is given via a labelledmulti-transitionsystem—the multiplicities
of arcs are significant. In the transition system a state corresponds to each syntactic term of the language,
or derivative, and an arc represents the activity which causes one derivative to evolve into another. The
complete set of reachable states is termed thederivative setof a model and these form the nodes of the
derivation graphwhich is formed by applying the semantic rules exhaustively.

The timing aspects of components’ behaviour are represented on each arc as the parameter of the
negative exponential distribution governing the duration of the corresponding activity. The interpretation
is as follows: when enabled an activitya = (α, r) will delay for a period sampled from the negative
exponential distribution which has parameterr. If several activities are enabled concurrently, either in
competition or independently, we assume that arace conditionexists between them. The evolution of
the model will determine whether the other activities have beenabortedor simply interruptedby the
resulting state change. In either case the memoryless property of the distribution eliminates the need to
record the previous execution time.

When two components carry out an activity in cooperation the rate of the shared activity will reflect the
working capacity of the slower component. We assume that each component has a capacity for performing
an activity typeα, which cannot be enhanced by working in cooperation, unless the component is passive
with respect to that activity type. For a componentP and an action typeα, this capacity is termed the
apparent rate[20] of α in P . It is the sum of the rates of theα-type activities enabled inP . The apparent
rate ofα in a cooperation betweenP andQ overα will be the minimum of the apparent rate ofα in P
and the apparent rate ofα inQ.

The derivation graph is the basis of the underlying continuous time Markov chain (CTMC) which is
used to derive performance measures from a PEPA model. The graph is systematically reduced to a form
where it can be treated as the state transition diagram of the underlying CTMC. Each derivative is then a
state in the CTMC. Thetransition ratebetween two derivativesP andQ in the derivation graph is the rate
at which the system changes from behaving as componentP to behaving asQ. It is denoted byq(P,Q)
and is the sum of the activity rates labelling arcs connecting nodeP to nodeQ. In order for the CTMC
to beergodicits derivation graph must be strongly connected. Some necessary conditions for ergodicity,
at the syntactic level of a PEPA model, have been defined[20]. These syntactic conditions are imposed
by the grammar inFig. 1.

2.2. Introduction to PEPA nets

In PEPA, as in most performance modelling formalisms, there is a single modelling mechanism,
activities, used to represent changes of state within a system. PEPA nets are motivated by the observation
that in many systems we can identify distinct types of change of state. We refer to these asfirings of
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the net andtransitionsof PEPA components. Each are special cases of PEPA activities. Transitions of
PEPA components will typically be used to model small-scale (orlocal) changes of state as components
undertake activities. Firings of the net will typically be used to model macro-step (orglobal) changes
of state such as context switches, breakdowns and repairs, one thread yielding to another, or a mobile
software agent moving from one network host to another.

A firing in a PEPA net causes the transfer of one token from one place to another. The token which
is moved is a PEPA component, which causes a change in the subsequent evaluation both in the source
(where existing cooperations with other components now can no longer take place) and in the target
(where previously disabled cooperations are now enabled by the arrival of an incoming component which
can participate in these interactions). Firings have global effect because they involve components at more
than one place in the net.

A transition in a PEPA net takes place whenever a transition of a PEPA component can occur (either
individually, or in cooperation with another component). Components can only cooperate if they are
resident in the same place in the net. The PEPA net formalism does not allow components at different
places in the net to cooperate on a shared activity. An analogy is with message-passing distributed systems
without shared-memory where software components on the same host can exchange information without
incurring a communication overhead but software components on different hosts cannot. Additionally,
we do not allow a firing to coincide with a transition which is shared, i.e., it is not possible for two
components in one place to cooperate and transfer to another place as an atomic action. Thus transitions
in a PEPA net have local effect because they involve only components at one place in the net. Maintaining
this strict distinction between firings and transitions is essential in order to provide the separation into
macro- and micro-step state changes that we are seeking to represent.

Each place has a distinct alphabet for transitions and firings, meaning that the same action type cannot
be used for both. Thus there can be no ambiguity between such micro- and macro-scale transitions.

Within the set of firings offered at the net level of a PEPA net we allow the modeller to assign different
priorities. Note that this does not mean that more than two time-scales of activity are being represented.
This mechanism is offered as a modelling convenience to allow one macro-step transition to be fired in
preference to another when both are enabled.

A PEPA net is made up of PEPAcontexts, one at each place in the net. A context consists of a number
of static components (possibly 0) and a number ofcells (at least 1). Like a memory location in an
imperative program, a cell is a storage area to be filled by a datum of a particular type. In particular,
in a PEPA net a cell is a storage area dedicated to storing a PEPA component. The components which
fill cells can circulate as the tokens of the net. In contrast, the static components cannot move. Most
variants of Petri nets do not include static tokens, the closest concept being “self loops” where a token is
deleted from a place and then immediately replaced. Here static components provide the infrastructure
of the place and act as cooperation partners in synchronisation activities with tokens. Contexts have
previously been used in both classical process algebras[26], and in the stochastic process algebra PEPA
[9].

We use the notationQ[ ] to denote a context which could be filled by the PEPA componentQ or one
with the same alphabet. IfQhas derivativesQ′ andQ′′ only and no other component has the same alphabet
asQ then there are four possible values for such a context:Q[ ],Q[Q],Q[Q′] andQ[Q′′].Q[ ] enables
no transitions.Q[Q] enables the same transitions asQ.Q[Q′] enables the same transitions asQ′.Q[Q′′]
enables the same transitions asQ′′. As usual with PEPA components we require that the component has
an ergodic definition so that it is always possible to return to a state which one has previously reached.
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This has as a consequence that ifQ′ is a derivative ofQ then it is also the case thatQ is a derivative of
Q′, for anyQ andQ′.

For any token component its action type set can be partitioned in distinct subsets corresponding to
transitions and firings, respectively. For a componentQ we will denote these sets byAt(Q) andAf (Q),
whereAt(Q) is the set of local transitions currently enabled inQ andAf (Q) is the set of firings currently
enabled forQ. Note that for a firing to be enabled the token must enable the corresponding activity, it
must be in a place connected to a net-level transition of the same type and there must be an empty cell at
the output place of the transition of the correct token type.

We use capitalised names to denote PEPA components (such asP andQ) and lowercase for PEPA
transitions (such asa andb). We use bold capitalised names for PEPA net places (such asP1 andP2) and
bold lowercase for PEPA net firings (such asa andb).

2.3. Markings in a PEPA net

Themarkingof a classical Petri net records the number of tokens which are resident at each place in
the net. Since the tokens of a classical Petri net are indistinguishable it is sufficient to record their number
and one could present the marking of a Petri net with placesP1, P2 andP3 as (P1: 2,P2: 1,P3: 0). If an
ordering is imposed on the places of the net a more compact representation of the marking can be used.
Place names are omitted and the marking can be written using vector notation thus,(2,1,0).

Consider now a PEPA net with placesP1, P2 andP3 as shown below:

P1[Q]
def=Q[Q] R, P2[Q]

def=Q[Q] S, P3[Q]
def=Q[Q] (R‖S).

From its use in the contexts at each place we see thatQ is a component which can move as a token around
the net, whereasR andS are static components which cannot move. There is a copy ofR at placeP1 and
another atP3. There is a copy ofS at placeP2 and another atP3.

Given the above definitions for the places in this PEPA net, we can denote a marking of this net by
(P1[Q],P2[ ],P3[ ]). In general, a context may have more than one parameter, to be filled by PEPA
components of different types. Where an ordering is imposed on places and each context has only a
single cell to be filled we can abbreviate such a marking by(Q, , ).

Moreover, the local state captured by a place marking will also depend on the current state of the
static components in the place. To identify these states we allow place definitions to specify a particular
state of each of the static components. Thus, in the example above, ifS can evolve toS′ we can define
P′

2[Q]=defQ[Q] S′.

2.4. Net-level transitions in a PEPA net

Transitions at the net-level of a PEPA net are labelled in a similar way to the labelled multi-transition
system which records the unfolding of the state space of a PEPA model. A labelling function� maps
transition names into pairs of names such as(α, r) where it is possible that�(ti) = �(tj) but ti �= tj.
The first element of a pair(α, r) specifies anactivitywhich must be performed in order for a component
to move from the input place of the transition to the output place. The activity type records formally
the activity which must be performed if the transition is to fire. The second element is an exponentially
distributed random variable which quantifies therate at which the activity can progress in conjunction
with the component which is performing it.
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As an example, suppose thatQ is a component which is currently at placeP1 and that it can perform
an activityα with rater1 to produce the derivativeQ′. Further, say that the net has a transition between
P1 andP2 labelled by(α, r2). If Q performs activityα in this setting it will be removed fromP1 (leaving
behind an empty cell) andQ′ will be deposited intoP2 (filling an empty cell there).

A priority function π maps action types to the natural numbers, and can be used to eliminate some
firings from the labelled multi-transition system: only enabled firings with the highest priority value are
considered eligible to fire. For example, suppose thatQ is a component which is currently at placeP1

and that it can perform activities of typesα, β andγ, whereπ(α) = π(β) = 2 whereasπ(γ) = 1.
Further, suppose that there are net transitions betweenP1 and each ofP2, P3 andP4 labelled byα, β
andγ, respectively. Assuming that there are empty cells in all places,Q may perform activityα and be
deposited in placeP2, or activityβ and be deposited in placeP3 but it cannot perform activityγ and be
deposited in placeP4. Only if there are no empty cells in placesP2 andP3 will activity γ become enabled.

2.5. Net structure of a PEPA net

From the preceding explanation it is clear that the expression of the macro-level structure of a PEPA
net could be represented by any transition-based modelling formalism. Indeed it would be possible to use
a PEPA component to control the possible “firings” (macro-steps) of the model. However, we feel that
there are some advantages in using a Petri net in this role.

Firstly, using a different formalism gives a clearer separation of concerns within our model making it
both easier to construct and to understand. Furthermore, this macro-level is often of a size that can benefit
from graphical representation, to give an intuitive understanding of the coarse structure of the model.
Finally, themovementof components—to a new host, to a new context, etc.—has resonance with the
systems we study.

The class of nets that we currently use for modelling the net structure of a PEPA net is restricted to
structural state machines, i.e. nets whose transitions can have only one input place and one output place.
This means that we can represent conflicts at the net level, while synchronisations are not allowed. This
is consistent with the fact that PEPA components cannot cooperate on a shared activity when they are
resident in different places. However, we have imposed this restriction in the interests of developing a
clear theory of PEPA nets incrementally; it is not in any way inherent in the formalism. Indeed we hope
to relax it in due course.

It is usual with coloured Petri nets to associate functions with arcs, offering a generalisation of the
usual, basic “functions” offered by arc multiplicities. In PEPA nets the arc functions are implicit. The
modification of a token which takes place when it is fired is wholly specified by the action type of the firing,
the definition of the token and the semantics. Furthermore, although we allow multiple tokens within net
places, only one token can move at each firing. Thus arc multiplicities greater than one are not allowed.

3. Semantics

The PEPA language is formally defined by a small-step operational semantics. In order to describe the
firing rule for PEPA nets formally we need a relational operator which is to be used to express the fact that
there exists a particular transition in the net superstructure. This operator must have the properties that it
identifies the source and target of the transition and that it records the activity which is to be performed in
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order for a component to cross this transition, moving from the source to the target. We use the notation

P1 P2

to capture the information that there is a transition connecting placeP1 to placeP2 labelled by(α, r).
This relation captures static information about the structure of the net, not dynamic information about
its behaviour. We could describe the net structure in a PEPA net using a list of such declarations but the
more familiar graphical presentation of a net presents the same information in a more accessible way.

The introduction of contexts requires an extension to the syntax of PEPA. This extension is presented
in Fig. 1.

We assume that there is a setA of PEPA action types which can be partitioned into disjoint subsetsAf

andAt corresponding to firings and local transitions, respectively.

Definition 1. A PEPA netN is a tupleN = (P, T, I,O, �, π, C,D,M0) such that

• P is a finite set of places;
• T is a finite set of net transitions;
• I : T→ P is the input function;
• O : T→ P is the output function;
• � : T→ (Af ,R

+ ∪ {�}) is the labelling function, which assigns a PEPA activity ((type, rate) pair) to
each transition. The rate determines the negative exponential distribution governing the delay associated
with the transition;

• π : Af → N is the priority function which assigns priorities (represented by natural numbers) to firing
action types;

• C : P→ P is the place definition function which assigns a PEPA context, containing at least one cell,
to each place;

• D is the set of token component definitions;
• M0 is the initial marking of the net.

The semantic rules for PEPA nets are provided inFig. 2. The Cell rule conservatively extends the PEPA
semantics to define that a cell which is filled by a componentQ has the same transitions asQ itself. A
healthiness condition on the rule (also called atyping judgement) requires a context such asQ[ ] to be
filled with a component which has the same alphabet asQ. We writeQ =a Q

′ to state thatQ andQ′

have the same alphabet. There are no rules to infer transitions for an empty cell because an empty cell
enables no transitions.

The Transition rule states that the net has local transitions which change only a single component
in the marking vector. This rule also states that these transitions agree with the transitions which are
generated by the PEPA semantics (including the extension for contexts). Recall that the transition and
firing alphabets of any place must be distinct. We do not give priority to one alphabet of actions over the
other; the highest priority firings and the transitions compete based on a race policy.

The Firing rule takes one marking of the net to another marking by performing a PEPA activity and
moving a PEPA component from the input place to the output place. This has the effect that two entries in
the marking vector change simultaneously. In order to take account of the priorities we define a number
of supplementary transition relations, one for each priority level.
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Fig. 2. Additional semantic rules for PEPA nets.

A net-level transition’s eligibility for firing depends on two conditions. Firstly, there must be an empty
cell in the destination place into which the token can be transferred. The Enabling rule ensures that this is
the case, and defines a transition relation, decorated with the priority level of the corresponding activity
type. The rate at which the activity is enabled is calculated as in the PEPA semantics of cooperation.

In order for a firing to take place it must also be the case that the type of the enabled firing has the highest
priority level in the set of the enabled firings. This is imposed by the firing rule in which we discard those
enabled firings which do not have the highest priority. In other words, for a firing to occur there must not
be any other firing satisfying the Enabling rule (empty destination cell) which has a higher priority.

3.1. The net bisimulation relation

In this section we define a bisimulation relation for PEPA nets callednet bisimulation. This relation
is important both in theory and in practice. In the evolution of the state space of a model by our tool we
only store states up to net bisimulation, i.e. we carry out automatic aggregation over equivalent states.
This provides a dramatic reduction in the state space of the model under certain conditions.

Our relation is defined in the style of Larsen and Skou[25], based on a conditional transition rate
betweenmarkings, rather than the strong equivalence relation of PEPA which considers the transition
rates between components. Theconditional transition ratefrom markingM to markingM ′ via action
typeα, denotedq(M,M ′, α), is the sum of the activity rates labelling arcs connecting the corresponding
nodes in the derivation graph which are labelled by the action typeα. The total conditional transition
rate from a markingM to a set of markingsE is defined as

q[M,E, α] =
∑
M ′∈E

q(M,M ′, α).
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Definition 2. An equivalence relation over markings,R ⊆ M ×M, is a net bisimulation if whenever
(M,M ′) ∈ R then for allα ∈ A and for all equivalence classesE ∈ M/R,

q[M,E, α] = q[M ′, E, α].

4. Examples

4.1. A mobile agent system

We present a small example to reinforce the reader’s understanding of PEPA nets. In this example a
roving agent visits three sites. It interacts with static software components at these sites and has two kinds
of interactions. When visiting a site where a network probe is present it interrogates the probe for the data
which it has gathered on recent patterns of network traffic. When it returns to the central co-ordinating site it
dumps the data which it has harvested to the master probe. The master probe performs a computationally
expensive statistical analysis of the data. The structure of the system allows this computation to be
overlapped with the agent’s communication and data gathering. The marshalling and unmarshalling costs
for mobile code applications are a significant expense so overlapping this with data processing allows
some of this expense to be offset.

The structure of the application is as represented by the PEPA net inFig. 3. This marking of the net
shows the mobile agent resident at the central co-ordinating site. In this example the activities which can
cause a firing of the net arego andreturn.

Formally, we define the places of the net as shown in the PEPA context definitions below. We denote
the local state of the contextP2 by P′

2. This local state is arrived at when the static componentMasterhas
evolved toMaster′.

P1[Agent]
def=Agent[Agent] Probe, P2[Agent]

def=Agent[Agent] Master,

P′
2[Agent]

def=Agent[Agent] Master′, P3[Agent]
def=Agent[Agent] Probe

The initial marking of the net is( ,Agent, ). The behaviour of the components is given by the following
PEPA definitions:

Agent
def=(go, λ).Agent′, Agent′def=(interrogate, ri).Agent′′, Agent′′def=(return, µ).Agent′′′,

Agent′′′def=(dump, rd).Agent, Master
def=(dump,�).Master′,

Master′def=(analyse, ra).Master, Probe
def=(monitor, rm).Probe+ (interrogate,�).Probe.

Fig. 3. A simple mobile agent system.
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The derivation of the transition system underlying the model is the first step in the performance analysis
of such a system. The transition system contains the specification of a CTMC model of the system. This
CTMC is solved for its stationary distribution and performance measures are calculated from that. For
a model as simple as this one we can solve it simply with Gaussian elimination. We also have available
solvers such as an efficient implementation of the preconditioned biconjugate gradient method.

4.2. A Jini Federation

In this example we present a model of aJini Federation. The Jini architecture is designed to support
spontaneous networking, allowing both the clients and the servers within a network to change dynamically.
In this model we consider the discovery and use of servers by clients, and since the model is presented
for illustrative purposes we consider only two distinct services, a printer and an information server.

The matching of clients and servers in Jini is managed by alookup serverwhich provides the discovery
service. Servers wishing to accept service requests register with one or more lookup servers. A client with
no current access to a lookup server sends a join message to a well-known IP port, and any lookup server
which receives it will respond with its own address on which it receives discovery requests. The client
can then access the discovery service and on discovery will be given a proxy to the service required. This
allows the client to then make direct contact with the relevant server.

In order to cope with disconnection both proxies and registration are considered to be granted by the
lookup server on aleasedbasis meaning that after some time the proxy or registration is assumed to have
expired and subsequently must be explicitly re-established. This means that if a server has crashed, then
after some period the client will no longer be granted a defunct proxy, and the proxies already held by
clients will expire. The following model could be used to experiment with the trade-off created by the
leasing mechanism. If the expiry rate is low, then clients can be granted proxies which will not work.
However, if the expiry rate is high, overhead is increased due to the delay incurred in re-registering a
functioning server (Fig. 4).

In the PEPA net model the net-level represents the different contexts of operation experienced by the
clients. In the placeClients, clients are assumed to be newly connected or in possession of expired leases
to a discovery service, and so without access to servers. In the placeLookup Service the presence of
a client indicates that the client has joined the service, while the presence of a server indicates that the
corresponding service is currently registered with the lookup service. Thus the services that a client can
access from the lookup service will depend on the servers which are currently registered (i.e., have tokens
currently in that place). There are also placesPrinter and Info Server corresponding to each of the
potential services, and the presence of a client token in these places corresponds to the client being in
possession of a proxy for that service. In this model we assume that the leasing periods are set so that the
probability of a client being in possession of two proxies simultaneously is negligible.

The tokens of our model are the PEPA componentsCl, PSandIS. TheCl component represents the
evolution of the client, containing both firings (net-level transitions) representing changes of context and
transitions representing computational steps within a context.

Clients[Cl,Cl,Cl]
def=(Cl[Cl]‖Cl[Cl], ‖Cl[Cl]),

Cl
def=(join, r1).Cl′,

Cl′def=(pr lookup, r2).PProxy+ (i lookup, r3).IProxy+ (expire, r4).Cl,

PProxy
def=(pr request, r5).PProxy′,
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Fig. 4. The net-level description of the Jini Federation example.

PProxy′def=(print,�).PProxy′′,

PProxy′′def=(print,�).PProxy′′ + (release, r6).Cl′,

IProxy
def=(i request, r7).IProxy′,

IProxy′def=(info,�).IProxy′′,

IProxy′′def=(info,�).IProxy′′ + (release, r6).Cl′.

Each of the servicesPrinter andInfo Server is represented as the composition of a static service element
(PServeandIServe, respectively) and a token component, which acts as the service proxy with the lookup
service. When a client is granted a proxy by the service proxy in the lookup service, it can make a request,
represented by moving to the service context. Once there the client cooperates with the server directly
until all its needs are satisfied or until the proxy expires. The role of the static service element is simply
to satisfy service requests from proxied clients.

Printer[PS, , , ]
def=(PServe‖PS[PS]) (PProxy[ ]‖PProxy[ ]‖PProxy[ ]),

PServe
def=(print,pr).Pserve,

PS
def=(pr register, r8).PS′,

PS′def=(pr deregister, r9).PS+ (pr lookup,�).PS′,
Info Server[IS, , , ]

def=(IServe‖IS[IS]) (IProxy[ ]‖IProxy[ ]‖IProxy[ ]),

IServe=def(info, ir).IServe,
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IS
def=(i register, r10).IS′,

IS′def=(i deregister, r11).IS+ (i lookup,�).IS′.

The lookup service itself is represented by the placeLookup Service. This place has no static elements
but a context for each potential server proxy and each potential client. The lookup activities (pr lookup
and i lookup) are carried out in cooperation between a client and a server proxy, and thus require the
presence of both in theLookup Service place.

Lookup Service[ , , , , , ]
def=(PS[ ]‖IS[ ]) (Cl[ ]‖Cl[ ]‖Cl[ ]).

We have run this PEPA net model for different number of clients and servers. In the simplest case of one
client, one printer server, one information server, and when considering the following ordering for the
net places(Lookup Service,Printer, Info Server,Clients), the initial markingm0 is

m0 = (Lookup Service[ , , ],Printer[PS, ], Info Server[IS, ],Clients[Cl]).

The model has 32 states, 20 transitions and 88 firings; a portion of the transition system, describing some
possible accesses to the printer server and some possible accesses to the information server is shown in
Fig. 5. For readability, many firings and transitions are omitted from the graph as well as activity rates;
solid lines represent local transitions while dotted and dashed lines represent firings.

Fig. 5also describes the markings in the path whose states are drawn as black squares. This path shows
one possible evolution of the client contacting the printer server. Starting from the initial markingm0, the
printer server registers with the lookup server. This is obtained by moving the componentPSfrom the
placePrinter to the placeLookup Service, filling the appropriate empty cell there (m1). Afterwards, the
client joins the lookup server, as shown in markingm5 where the componentCl has left placeClient and
has reached the appropriate empty cell inLookup Service. Now the internal transitionpr lookupcan take
place (m22). The client is granted the printer proxy and can move to the placePrinter (m28). Finally, the
request can be satisfied thanks to the cooperation on actionprint performed by the two components resident
in the same place (m29). A similar evolution is possible for the path in the right part of the graph connecting
markingsm0,m2,m7,m8,m10,m19 when considering the information server instead of the printer server.

The right part of the graph describes a situation in which both servers have registered with the lookup
server and the client can choose among one of them (see markingm6 in Fig. 5).

5. Relating PEPA nets to Petri nets and PEPA

If they were to be viewed purely formally as high-level description languages for specifying CTMC,
then PEPA nets, stochastic Petri nets and the PEPA stochastic process algebra would be considered to be
equally expressive. That is to say, for a given CTMCC, it is possible to construct a high-level model in
each of these three formalisms such that the underlying CTMC derived from the model is isomorphic toC.

In practice, the three languages present different sets of conceptual tools to the modeller. From the
pragmatic perspective of a performance modeller who wishes to reliably encode a high-level model of a
particular system then there might be reasons to select one of the languages instead of the others for this
particular modelling study. In the remainder of this section we compare modelling with PEPA nets with
modelling with Petri nets and the PEPA stochastic process algebra.
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Fig. 5. Partial transition system of the Jini Federation example and marking descriptions of selected states.

5.1. Relating PEPA nets to Petri nets

To illustrate the difference between PEPA nets and Petri nets we first show how to represent an ordinary
k-safe stochastic Petri net as a PEPA net. In a classical stochastic Petri net tokens are indistinguishable.
We can replicate this in a PEPA net by having only a single class of tokens which have only one (PEPA)
state. The definition of such a token would also need to always permit firings of the net to take place. We
define these tokens by summing over all of the transition activity names, for all of the transitions of the
net (tni ∈ T ).

Token
def=

∑
tni∈T

(tni,�).Token.

To define ak-safe stochastic Petri net with a PEPA net we then need simply to specify the places of the
net as being capable of storing up tok of these tokens, and making no use of static components.

Pi[Token, . . . ,Token]
def=Token[Token]‖ · · · ‖Token[Token].
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Fig. 6. Tokens in a PEPA net can decouple from a static component.

This reconstruction of ordinaryk-safe stochastic Petri nets from PEPA nets points to the difference between
the two formalisms. A PEPA net can be viewed as a Petri net where the tokens areprogrammable. The
tokens of a PEPA net have state, can count, can observe activities, and can even refuse to be fired from the
place where they reside. We believe that this gives the PEPA net modeller a novel conceptual modelling
tool which can be used to express natural descriptions of systems with active, stateful mobile agents.

5.2. Relating PEPA nets to PEPA

The relationship between PEPA nets and PEPA is straightforward. A PEPA net with only one place
and no transitions is simply a PEPA stochastic process algebra model. To explain how a PEPA net can
offer added expressive power we consider a PEPA net with more than one place, as inFig. 6.

In this model a token of typeP moves between placeP1 and placeP2. In doing so it decouples itself
from a static componentQ, located atP1. The token thereby moves out of the scope of the cooperation
setL. Cooperation sets are used to configure copies of components, coupling them to communication
partners. In this way they restrict the behaviour of a component, requiring it to perform some activities
(those in the cooperation set) only if they have a partner who is able to cooperate in performing them. In
the example inFig. 6 if Q is unwilling to perform some of these activities then the behaviour ofP will
be restricted. Even ifQ is willing to perform all the activities in the cooperation setL then it can still
influence the rate at which they are performed. In contrast when the tokenP is resident inP2 then it is
subject to no such restriction and can perform all of its activities at the rates which it itself specifies.

This concept cannot be expressed in a PEPA stochastic process algebra model. The cooperation sets
used in a PEPA model impose a static communication topology on the model. In contrast, a PEPA net has
dynamically varying communication structure and, in consequence, a given action in a component might
sometimes be performed in isolation and sometimes be performed in cooperation. The ability to express
the concept of dynamically varying communication structure offers an additional conceptual tool to the
performance modeller which is not available when modelling in PEPA.

6. Case study: a hierarchical cellular network

Hierarchical cellular networks consist of two tiers of cells, a macrocellular level overlaying a micro-
cellular one. This means that a geographical point is potentially covered by two levels of cells and a user
can be assigned to one of these two levels. Generally, such a network architecture takes into account two
user classes according to their speed: the pedestrians and the vehicles. Usually, macrocells are deployed
in rural areas and have good properties for fast users, whereas the microcellular network concept has been
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developed to satisfy the high traffic demand in the dense urban regions and is better suited to providing
for services requiring low mobility.

The objective of the hierarchical architecture is to take advantage of the wide coverage of macrocells
and the traffic capacity of microcells. However, this architecture suffers from the major drawback of
microcellular systems, which is thehandoff problem.

The handoff is defined as the change of radio channel used by a wireless terminal. For example, if a
subscriber crosses a cell boundary to move to an adjacent cell while the call is in progress, the call must
be handed off to the new cell in order to provide uninterrupted service to the mobile subscriber. If the new
cell does not have enough channels to support the handoff, the call is dropped. So, the handoff procedure
has an important effect on the performance of the system and the probability of forced call termination
must be limited because from the point of view of a mobile user, forced termination of an ongoing call is
less acceptable than blocking a new call.

6.1. Topology and assumptions

The topology of the hierarchical network we study is depicted inFig. 7. In this topology, each macrocell
overlays a cluster of seven microcells. As in an hexagonal model each microcell has six neighbouring
cells, we consider a microcell cluster model composed of a central microcell surrounded by six peripheral
cells (Fig. 7). We consider the fixed channel allocation (FCA) scheme[22], where a constant numberB
of channels is distributed among the two layers of cells.

Although hierarchical cellular networks are studied, we consider only one class of users. As we focus our
study on dense urban regions, we consider only services which require low mobility such as slow-moving
vehicles or pedestrians. However, we consider two types of customers within the network, the new calls and
the handover calls. Thus, external arrivals to a microcell consist either of new calls or handover requests
coming from its adjacent microcells or from the macrocell. Similarly, external arrivals to a macrocell
consist either of new calls or handover requests coming from either its adjacent macrocells or from one of
the microcells of the cluster. Thus, new calls can be assigned at either the microcell or the macrocell level.

Fig. 7. The hierarchical cellular network and cluster model.
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For the microcell level, we consider the overflow strategy with reversible capability. Therefore, a
request, which could be either a new call or a handover, initiated at the microcell level, is served in its
originating microcell if a channel is available. Otherwise, according to the overflow strategy, the request is
overflowed to the upper layer and is satisfied at this level if a channel is free. In the case where all channels
are busy at both levels, the request is blocked (new call) or dropped (handover). Similarly, when a request
is first initiated at the macrocellular level and there is no available channel, the request is transferred to
the microcell level where it may be satisfied if a channel is available; otherwise, it is dropped.

We consider a homogeneous system in statistical equilibrium. Thus any microcell overlaid by a macro-
cell has statistically the same behaviour as any other microcell overlaid by a macrocell. We can then
analyse the overall system by focusing on a given cell under the condition that the neighbouring cells
exhibit their typical random behaviour independently. Moreover, we assume that any geographical point
of this network is covered by both microcellular and macrocellular levels, and that the whole area is
crossed randomly by mobile users, according to an uniform traffic matrix.

This system is studied under the usual Markovian assumptions. It is assumed that the average new call
arrival rate and the handover rate in each cell in the network follow a Poisson distribution. The amount
of time that a user remains within a coverage cell of a given base station (calleddwell-time) is modelled

Fig. 8. The PEPA net of a basic cluster.
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by a service time which is exponentially distributed. In the next section, we present the PEPA net model
corresponding to this system.

6.2. PEPA net model

In the hierarchical cellular network, all microcells of the network are assumed to have exactly the same
behaviour. Moreover, all customers have the same behaviour and do not change behaviour according to
the microcell in which they evolve. Therefore, the PEPA net model is based on the description of the
behaviour of one microcell (here the central microcell) and its links with the cells surrounding it. This
model is depicted inFig. 8where each cell is represented by a placeMICROj, 1 ≤ j ≤ 7, in which the
wireless network customers evolve. Note thatMICRO7 represents the central microcell. Similarly, the
macrocell is modelled using a place denotedMACRO. Moreover, we use a place denotedNETENV to
model what we callthe network environment. This part of the network is assumed to generate the new
calls and absorb the dropped or terminated ones.

The places of the PEPA net are defined as follows:

MICROj=1,... ,7[ , . . . , ]
def=(Client[ ]‖ · · · ‖Client[ ]) Microj,

MACRO[ , . . . , ]
def=(Client[ ]‖ · · · ‖Client[ ]) Macro,

NETENV[C1, . . . , CN ]
def=Client[C1]‖ · · · ‖Client[CN ].

The behaviour of a network customer is modelled using a dynamic componentClient. Formally, compo-
nentClient is defined as shown below:

Client
def=(in, λ).Client1 + (handoffup, λ).Client1,

Client1
def=(handoffright, p3 × α).Client1

+ (handoffleft, p6 × α).Client1 + (handoffright.b, p4 × α).Client1
+ (handoffleft.b, p5 × α).Client1 + (handoffright.t, p2 × α).Client1
+ (handoffleft.t, p1 × α).Client1 + (handoffup, α).Client1
+ (handoffdown.1, q1 × β).Client1 + (handoffdown.2, q2 × β).Client1
+ (handoffdown.3, q3 × β).Client1 + (handoffdown.4, q4 × β).Client1
+ (handoffdown.5, q5 × β).Client1 + (handoffdown.6, q6 × β).Client1
+ (handoffdown.7, q7 × β).Client1 + (service, µ).Client2 + (dropping, r).Client,

Client2
def=(ending, µ′).Client.

The new calls arrival process (external arrival) to a microcell is represented by anin activity. If all
channels of the microcell, covering the area where the new customer is, are busy then the new call has
to be transferred to the macrocell. This transfer is modelled using the activityhandoffup. If all channels
of the macrocell are busy too, this transfer fails and the new call is blocked. As shown inFig. 8, in
andhandoffup are activities which can cause the firing of the net. The firingin has priority over the
firing handoffup, capturing the fact that a call will be allocated a channel in the microcell if there is
one available. The rate of these activities is the same and is equal to the external arrival rate to the
microcell,λ.
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The relative priorities of the firings of this model are listed below:

{
in,handoffright,handoffleft,

handoffdown.3,handoffdown.6,handoffdown.7

}
> handoffup > dropping.

A customer may terminate its communication during its sojourn in a microcell. This is modelled using
the activityservice. The execution of this activity is followed by the execution of activityending which
specifies that the customer is leaving the network. The customer may also cross the cell boundary to move
to an adjacent cell during its communication. The call must then be handed off to the new cell in order
to provide uninterrupted service. For that a handoff request is generated to ask for another channel in
the destination microcell. In our model, this aspect of the communication is modelled using the activity
handoffdir where dir may be one of the following values:right, left, right.b, left.b, right.t or left.t,
according to the direction taken by the customer during his communication. The rate of this activity is
pi × α wherepi, i = 1, . . . ,6, is the probability associated with each possible destination among the
adjacent cells. If the handoff procedure does not succeed because all channels of the target microcell are
busy, the network tries to transfer the call to the macrocell overlapping the area. This is modelled using
activity handoffup. If once again all channels of the macrocell are busy, the transfer fails and the call
is dropped. This is modelled using activitydropping. As previously,handoffup has lower priority, and
heredropping has lowest priority.

For the sake of readability ofFig. 8, the rates of the activities on the transitions from the adjacent
microcells to the central microcell are omitted. These rates may be easily deduced from the transition
with the same activity name from the central microcell to the opposite peripheral microcell. For example,
the rate of activityhandoffright on the transition fromMICRO6 to MICRO7, the central microcell, can
be deduced from the activity on the transition fromMICRO7 to MICRO3 and is thereforep3 × α.

A customer in the macrocell has exactly the same behaviour except that activityhandoffup is no longer
enabled. Instead, as the customer can be transferred to the microcellular level, we include an activity
handoffdown.j wherej is the microcell number where the call is transferred. The rate of this activity is
qj × β whereqj, j = 1, . . . ,7, is the probability to transfer the call to microcellj. Conversely, this
activity cannot be executed by a customer in a microcell.

The services provided by a microcellj, 1 ≤ j ≤ 7, and the macrocell to their customers are modelled
using static components denotedMicroj andMacro, respectively, and are formally defined as follows:

Microj
def=(service,�).Microj, 1 ≤ j ≤ 7, Macro

def=(service,�).Macro.

Activity service is the only activity on which componentsClient andMicroj, on one hand, andClient
andMacro, on the other hand, must synchronise.

We assume that in the initial state all macrocell and microcells channels are available and all potential
network customers (N) are in placeNETENV.

As already remarked, in order to capture the exact behaviour of the network, we have assigned priorities
to the firings. For example, in the net the transition labelledin has a higher priority than that labelled
handoffup. Thus a customer can firehandoffup only if the firing of activityin is not possible, i.e., there
are no slots available in the placeMICROi.

In the case where each cell has two channels (B = 16) andN = 7, the model, once aggregated, has
49,416 states, 147,274 transitions and 571,362 firings.
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This study has been inspired by the work presented in[12]. In that paper the authors investigate the
performance of the hierarchical cellular network using PEPA. They assume a Manhattan model[23] in
which the reuse pattern is composed of a macrocell overlying a cluster of five microcells.

The PEPA model obtained consists of six components, one for each cell. As the customers are not
explicitly modelled, all the information about the activities they can perform in a cell are captured by the
component representing the cell. This results in a model where the mobility of the customers is observable
only from the point of view of the cell.

In our PEPA net model (Fig. 8), a customer is explicitly modelled using a component which captures
the activities that it can perform. So when a customer moves, which is explicitly represented by the firings,
its activities “move” with it. This gives another dimension to the model as the mobility of a customer
is represented from both the point of view of the cell (place) and the customer (Client). Moreover, the
representation of the cell only changes in the sense that its slots are filled when channels are in use; it
does not need to explicitly record the state of the customers. Thus in many ways the PEPA net model
provides a more natural representation of the system.

Furthermore, the PEPA net model offers more compositionality in the sense that it would be possible
to extend the model to represent a number of interacting macrocells, simply by modifying the net-level
description and the initial marking of the model. In the PEPA model the whole model would need to be
re-written to achieve this.

7. Implementation

The PEPA stochastic process algebra is supported by a range of tools including the PEPA Work-
bench[13] and the Möbius modelling framework[10]. We have implemented the PEPA nets formalism
as an extension of the PEPA Workbench. The PEPA modelling tools, together with user documenta-
tion and papers and example PEPA models are available from the PEPA Web page which is located at
http://www.dcs.ed.ac.uk/pepa.

The PEPA Workbench exists in two distinct versions. The first version is an experimental research
tool which is coded in the functional programming language Standard ML[28]. The second version is a
re-implementation of this in the Java programming language. These are known as “the ML edition” and
“the Java edition”, respectively.

Standard ML and Java have very different strengths. For a visual language such as the notation of Petri
nets the Java language’s visualisation capabilities would suit the task much better than Standard ML.
Further, there are existing Java tools for Petri nets which could be extended to provide an implementation
of PEPA nets. After initial experimentation with the Standard ML version of the PEPA Workbench for
PEPA nets, a graphical presentation of PEPA nets could be incorporated into the Java version of the
Workbench. This implementation plan is ongoing, but at an early stage.

The Standard ML language is well suited to implementing symbolic processing applications and pro-
vides built-in support for describing datatypes such as those needed to present the abstract syntax of a
formal language such as PEPA. These features made it possible to rapidly adapt the routines for gener-
ating PEPA derivation graphs to generate derivation graphs for PEPA nets. The compact transition rules
presented inFig. 2 look simple on the page but they proved to be a challenge to implement efficiently.
Here again, the higher-order features of the Standard ML programming language proved to be useful
in allowing us to form function closures from higher-order functions which fixed some of their formal

http://www.dcs.ed.ac.uk/pepa
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Fig. 9. The PEPA Workbench for PEPA nets processing the hierarchical cellular network example for seven clients.

parameters. This allowed us to unroll the derivation graph for the PEPA nets model without suffering a
performance penalty due to accumulated parameter information.

The use of the PEPA Workbench for PEPA nets is illustrated inFig. 9. The input language of the tool
is an extension of the concrete syntax used for storing PEPA language models. The topology of the net
is specified by providing a textual description of the places and the arcs connecting them.

7.1. Model aggregation in the PEPA workbench

As firings or transitions occur in the exploration of a PEPA net model, new syntactic terms are generated
for these one-step derivatives of the model according to the semantics of the language as presented earlier.
Some of the one-step derivatives which are generated will be syntactically distinct but semantically
identical. We have extended our previously published algorithm for computing canonical forms of these
terms[15] from the PEPA stochastic process algebra to be used on PEPA nets. We have extended the
PEPA Workbench for PEPA nets to apply this canonicalisation on-the-fly, replacing derivatives with their
canonicalised equivalents. We quotient the state space of the system with respect to this canonicalisation
and aggregate the rates at which transitions into aggregated states occur.

This aggregation gives a dramatic reduction in the number of states of a PEPA net model. For example,
consider a PEPA net with two places and a tokenT which can fire to move between the places. The net
has the following initial marking:

(T [ ]‖T [ ]‖T [ ]‖T [ ], T [T ]‖T [T ]‖T [T ]‖T [T ]).

This net has 70 states and 640 firings without applying our aggregation algorithm and five states and eight
firings if the algorithm is applied.

As a PEPA net evolves, according to the operational semantics presented inSection 3, there is no
opportunity for it to add or take away places or transitions. As a consequence of this a PEPA net and
its one-step derivatives will be structurally isomorphic, i.e., will have the same net structure. We have
exploited this to include an optimisation in our implementation of aggregation based on the net bisimu-
lation relation as defined inSection 3.1. At each step we simply canonicalise the representation within
each place marking instead of canonicalising at the marking level. Applying this aggregation avoids
the generation of terms which could not be derivatives of the current term according to the operational
semantics.
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8. Related work

As mentioned inSection 1, Petri nets have previously been combined with several other modelling
formalisms. In particular, in the arena of performance modelling, several proposals have been made to
integrate queues or queueing networks with stochastic Petri nets[2,3,17]. However, these proposals differ
from our own in that the two formalisms may be regarded as adjuncts to one another, with one providing
delays to the other, rather than integrated into a single formalism.

Somewhat closer to our own work is Valk’s work onEOS[31]. In this work an extension of Petri nets is
presented in which the tokens circulating in the net structure (called theSystem net) are themselves Petri
nets (termedObject nets). Object nets move like ordinary tokens and they can change their markings but not
their structure. Three different types of transitions are defined. Transitions occurring in the Object net (i.e.,
in the marking) are calledsystem autonomousand represent the object internal behaviour. Aninteraction
takes places when both the Object and the System net enable transitions with the same attached label. A
third type of transition causes a change in the System net only and it is calledtransport. In PEPA nets we
do not allow such transitions, since a firing cannot occur without modifying the state of a component.

Despite the superficial similarities there are some quite strong differences between the work on PEPA
nets and that on EOS. Fundamentally, EOS are without any timing considerations, other than the relative
timing imposed by the Petri net causality relation. In PEPA nets, in addition to this implicit timing informa-
tion we have explicit time delays integrated into behaviour at both the net level and the token level. More-
over, the motivations for the works are distinct. Valk’s work is motivated by a desire to provide a funda-
mental model of object-oriented programming, and the development of EOS has been strongly influenced
by this goal. For example, two different semantics are provided to characterise the dynamic behaviour
of EOS, calledvalueandreferencesemantics, corresponding to differing approaches in object-oriented
programming languages. Our motivation has been to develop a convenient high-level modelling language
for Markov processes, for systems in which state changes can be regarded as proceeding in two ways.

As mentioned earlier, one of the domains of application envisaged for PEPA nets is the domain of
mobile computation. Several process calculi have been developed specifically for this domain, the most
notable being theπ-calculus[27] and the calculus of mobile ambients[8]. Theπ-calculus, and Priami’s
subsequent extension, the stochasticπ-calculus, have a very different style of representing systems[5],
which does not satisfy our criterion of clearly separating state changes into distinct types related, in the
case of mobile computation, to concepts of location and mobility. In this respect our formalism is closer
to the work on mobile ambients.

The calculus of mobile ambients is intended to capture notion oflocations, mobility andauthority
for movement. This is achieved by introducing the concept ofambient, i.e., a bounded place where
computation happens. An ambient is denotedn[P ], wheren is the name of the ambient andP is the
process running inside it. Ambients can be nested into other ambients and can be moved as a whole.
Mobility primitives are provided by consideringcapabilities: it is possible toenterinto another ambient,
to exit from an ambient, toopenan ambient. Processes are executed within ambients and a simple
asynchronous communication mechanism that works within a single ambient is chosen. Communication
across ambients is modelled as the movement of ‘messenger’ agents that must cross ambient boundaries.

The most pronounced differences between PEPA nets and the ambient calculus are the lack of timing
information in the ambient calculus and the ability to nest ambients which gives a hierarchical structure
to locations which cannot be matched by the places in PEPA nets. It is an area for future work to study
the differences and similarities between these formalisms more closely.
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In the performance arena our work has some resonances with earlier work by Buchholz[6,7]. In
this work Buchholz considered solution techniques for Markov processes which were specified in an
hierarchical fashion, meaning that a number of component Markov processes were connected via a
higher-level model. The higher-level model determines how entities move between lower-level models.
The lower-level models in Buchholz’s work were principally intended to be queueing networks, so that
the entities (customers) which move between lower-level models are themselves without state and have
no power to evolve independently. The primary focus of the papers[6,7] is finding efficient solution
techniques for hierarchical models. Thus it is anticipated that it will be a fruitful area for future work to
investigate how Buchholz’s framework may be modified to accommodate PEPA nets.

9. Conclusions and further work

The PEPA nets formalism is new and, as yet, relatively unproven. It is our belief that it can provide a
suitable framework for the description of performance models of systems which have distinct notions of
changes of state. Our experience with the PEPA formalism has been that the combination of a well-defined
formal semantics for the language and the availability of a range of tools to implement the language has en-
abled us and others to use it effectively in the performance modelling and analysis of systems. By following
a similar development path we would hope that the PEPA nets formalism could also prove to be useful.

The combination of a process algebra with a Petri net presents many opportunities to import develop-
ments from the Petri net community into the practices in the process algebra community. Further, it is to be
hoped that these developments can be imported more directly through the use of a Petri net with algebraic
terms as tokens than if one was to rework them and to re-apply them in the process algebra context.

We have defined a language which provides an extension to the PEPA stochastic process algebra by
allowing a number of distinct PEPA models to be arranged into a net. These models communicate via
the transfer of tokens from one place to another. We have implemented this new language and applied
it to some case studies. In the light of additional experience gained from further case studies it could be
possible that we would discover that other language constructs would be helpful to the modeller.

One possibility would be an independent evolution of the net system, akin to thetransport transitions
of EOS, where tokens are forcibly moved from one place to another without the option to refuse this
or change state in transit. We have omitted this feature at present because it seems at odds with the
process algebra notion of every component having behaviour. Additional language design decisions and
extensions remain as future work.

Other future work includes the continued development of our implementation of the PEPA Workbench
for PEPA nets. The additional of a graphical editor for PEPA nets is a likely next step with this tool.

Together with Norman and Parker[24] at Birmingham we have recently extended the PRISM proba-
bilistic symbolic model checker to support the PEPA stochastic process algebra as an additional modelling
language. An extension of that work to support PEPA nets would greatly enhance our ability to experiment
with models on a large scale.
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Appendix A. Semantics of PEPA

The semantic rules, in the structured operational style, are presented inFig. A.1; the interested reader
is referred to[20] for more details. The rules are read as follows: if the transition(s) above the inference
line can be inferred, then we can infer the transition below the line. The notationrα(E) which is used in
the third cooperation rule denotes the apparent rate ofα in E.

A.1. Definition of PEPA nets equality on alphabets

The relation=a is used in the PEPA nets semantics. Its definition is straightforward but is included
here for completeness.

P =a Q if alphP = alphQ

Fig. A.1. The operational semantics of PEPA.
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The alphabet of a PEPA nets component is the least set satisfying the following equations:

alph
(
P Q

) = ((alphP) \ L) ∪ ((alphQ) \ L) ∪ ((alphP) ∩ L ∩ (alphQ)),

alph

(
P

L

)
= (alphP) \ L, alph(P [C]) = alphP, alphI = alphS

where I
def=S, alph((α, r).S) = {α} ∪ alphS, alph(R+ S) = alphR ∪ alphS.
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