
A design environment for mobile applications

Stephen Gilmore Valentin Haenel Jane Hillston
Jennifer Tenzer

Laboratory for Foundations of Computer Science,
The University of Edinburgh, Scotland.

Abstract

In this paper we show how high-level UML models of
mobile computing applications can be analysed for clas-
sical performance measures such as throughput. The
approach proceeds by compiling the UML model into a
representation in the formally-defined modelling language
of PEPA nets. The compilation process and subsequent
performance analysis based on numerical solution of a
Continuous-Time Markov Chain is supported by a software
tool, the Choreographer design platform. Choreographer
interoperates with popular UML tools by reading and writ-
ing UML models in the XML Metadata Interchange format
(XMI).

1 Introduction

Mobile code and mobile computing applications pro-
vide some of the most difficult implementation challenges
for application developers today. Mobile code applica-
tions must be robust against changing execution environ-
ments and computing platforms [18] and may be expected
to work with low bandwidth, intermittently unavailable net-
work connections. Mobile computing offers further chal-
lenges because mobile computing devices are typically
weak computing devices such as PDAs and telephones. It
has additional concerns unknown in the immobile comput-
ing application area, such as the need to conserve battery
energy [12]. In this paper we consider mobility in its broad-
est sense; a mobile application is one for which the compu-
tational environment may change over a typical run of the
application. This encompasses both physical movement of
the device on which the application runs and code which
migrates between devices.

Theoretical computer science has addressed the prob-
lems of development of mobile applications by the creation
of formal languages which are used to study essential prop-
erties of mobility such as the management of names, the

acquisition of new capabilities (or loss of existing ones)
and movement of the locus of computation. Sometimes
mobility is expressed via other ideas, believed to be more
primitive and hence more fundamental, such as the name
passing and channel passing used in the π-calculus [33].
Another approach is to represent code movement with a
metaphor such as the nested named containers used to repre-
sent authorisation domains in the ambient calculus [11]. In
the PEPA nets approach [23] mobility is represented more
literally by the passing of objects with behaviour as the
tokens of a coloured Petri net. The PEPA nets language and
others such as the Stochastic π-calculus [38] have the addi-
tional benefit that they are quantified modelling languages
which can be used for performance analysis of systems in
addition to determining behavioural properties such as free-
dom from deadlock. For mobile computing the quantita-
tive information is especially relevant: small devices do not
have plentiful computing capacity so describing resource
consumption and predicting resource-related problems is
particularly helpful.

Software engineers have also responded to the challenge
of developing mobile applications. A number of design
notations which explicitly capture mobility have been intro-
duced, for example [4, 30, 17, 35, 3], many of them based
on the Unified Modelling Language.

Contribution of this paper In this paper we present a
software tool which makes rigorous quantitative analysis
of mobile application designs accessible via a high-level
design notation. Specifically we extract a PEPA net model
from a UML activity diagram, analyse the PEPA net and
report the results back as a modified activity diagram.

1.1 Related Work

One idea to connect the high-level models used by
modellers with the low-level implementations produced by
developers might be to try to interface with software devel-
opment directly by converting stochastic process models

1

1-4244-0054-6/06/$20.00 ©2006 IEEE

into programs [21], or programs into stochastic process
models.

Space limitations preclude a comprehensive treatment of
related work here so we highlight only a few works in the
related literature. Our present work builds on our earlier
work on mapping UML activity diagrams to process alge-
bras [9]. Other works have targeted different performance
analysis methods [15]. A closely related approach to ours
is taken in [37], in the UML-based performance analysis of
a Web-based micro-business service.

Other authors take the approach of modifying the UML
notation in order to express the properties of greatest inter-
est, by they mobility [3] or performance-related [27]. While
the reason for these extensions is evident and appealing, the
significant loss is that the modified UML can no longer be
processed with the UML tools. Thus, we have been able
to interoperate with standard, unaltered UML tools whereas
others cannot.

Our analysis tools operate via the numerical solution
of Markov chains, with all of the advantages and disad-
vantages which this approach entails (exact solution is an
advantage, susceptibility to state-space explosion a disad-
vantage). Simulation has quite different analysis charac-
teristics (approximate solutions require the calculation of
confidence intervals, but large state-space size is tolerated)
meaning that the approach to simulation of UML models
taken in UML-Ψ could complement ours well.

Structure of this paper: In Section 2 we present the
UML-based design notation and the PEPA net performance
modelling formalism. Section 3 describes how UML con-
structs are mapped into the constructs of the PEPA nets
modelling language. Section 4 discusses the Choreographer
design platform. Section 5 presents an example. Future
work and conclusions follow in Section 6.

2 Modelling mobility

2.1 Modelling mobility in UML

The Unified Modelling Language (UML) is a collection
of diagrammatic notations for documenting the design of
software systems. It has been widely adopted in industry
and extensively studied by software engineers. Numerous
extensions to the notations have been proposed to tailor the
technique to systems with particular characteristics. Specif-
ically, several groups have proposed extensions which aim
to capture the pertinent properties of mobile applications,
e.g. [4, 30, 35, 29, 3].

We follow the approach to the representation of mobil-
ity developed by Baumeister et al. within the AGILE
project [3, 2]. This approach is focussed on activity dia-
grams. As the name suggests, the main objective of an

activity diagram is to capture the activities which are under-
taken within the system, recording the temporal and causal
relationships between them. Thus activities are connected
to each other via control transitions. In addition, an object,
with state, may be related to an activity, indicating that the
given object is required for the successful completion of the
activity. Moreover, an activity may be related to a stateful
object, indicating that the object is in the given the state as
a result of the activity.

In the approach of Baumeister et al. state changes that
are a change of location are distinguished: activities which
result in an object changing location are decorated with the
stereotype 〈〈move〉〉. Furthermore, each object box is dec-
orated with the tag 〈〈atLoc = ·〉〉, which indicates the loca-
tion of the object at that point within the sequence of activ-
ities.

We illustrate the notation with a simple example. Con-
sider a text file and the activities associated with it. Figure 1
shows an activity diagram representing these activities. The
file may either be opened for reading or for writing. This
choice may be represented explicitly by a decision diamond
(as here) or implicitly by having two alternative transitions
emanating from the previous activity (which would be the
start marker in this case). Once the file is opened appro-
priately, the corresponding operation can take place. That
operation must be completed before the file is closed. The
file object is required for each of the activities depicted in
the diagram. Moreover we would expect the state of the file
to be changed by all of the activities except read.

start
marker

decision
diamond

f: FILE

f’: FILE

f’: FILE

f’’: FILE

f: FILE

f*: FILE

f**: FILE

f***: FILE

openRead

read

close

openWrite

write

close

activity

object

Figure 1. Activity diagram (without mobility)
showing the activities available on a file

To see the additional notation introduced by Baumeis-
ter et al. we consider a variation on this activity diagram in
which the file considered is a SMS or instant message. In
this case the file must be first written, then transmitted to a

new location, before being read. The corresponding activ-
ity diagram is shown in Figure 2. The transmit activity is
clearly distinguished as the one which causes a movement,
and this is reflected in the location of the file before and
after the activity.

start
marker

openWrite

write

<<move>>
transmit

openRead

read

f: FILE
<<atLoc=P1>>

close

close

f*: FILE
<<atLoc=P1>>

f**: FILE
<<atLoc=P1>>

f***: FILE
<<atLoc=P1>>

f: FILE
<<atLoc=P2>>

f’: FILE
<<atLoc=P2>>

f’: FILE
<<atLoc=P2>>

f’’: FILE
<<atLoc=P2>>

activity

movement
activity

object recording location

Figure 2. Activity diagram showing the activ-
ities available on an instant message file

2.2 Performance modelling of mobility

In this section we provide a brief overview of PEPA nets
and the PEPA stochastic process algebra. A fuller descrip-
tion is available in [23] and [26].

The tokens of a PEPA net are terms of the PEPA stochas-
tic process algebra which define the behaviour of compo-
nents via the activities they undertake and their interactions.
One example of a PEPA component would be a File object
which can be opened for reading or writing, have data read
(or written) and closed. Such an object would understand
the methods openRead(), openWrite(), read(), write() and
close().

File def= (openRead, ro).InStream

+ (openWrite, ro).OutStream

InStream def= (read, rr).InStream + (close, rc).File

OutStream def= (write, rw).OutStream + (close, rc).File

This PEPA model documents a high-level protocol for using
File objects, from which it is possible to derive properties
such as “it is not possible to write to a closed file” and “read

and write operations cannot be interleaved: the file must be
closed and re-opened first”.

Every activity incurs an execution cost which is quanti-
fied by an estimate of the (exponentially-distributed) rate
at which it can occur (ro, rr, rw, rc). Activities may be
passive, i.e. they can be executed only in cooperation with
corresponding active ones. The rate of a passive activity is
denoted by �.

A PEPA net is made up of PEPA contexts, one at each
place in the net. A context consists of a number of static
components (possibly zero) and a number of cells (at least
one). Like a memory location in an imperative program, a
cell is a storage area to be filled by a datum of a particular
type. In particular in a PEPA net, a cell is a storage area
dedicated to storing a PEPA component, such as the File
object described above. The components which fill cells
can circulate as the tokens of the net. In contrast, the static
components cannot move. A typical place might be the fol-
lowing:

File[] ��
L

FileReader

where the synchronisation set L in this case is �A(File),
the complete action type set of the component, (openRead,
openWrite, . . .). This place has a File-type cell and a static
component, FileReader, which can process the file when it
arrives.

A PEPA net differentiates between two types of change
of state. We refer to these as firings of the net and transi-
tions of PEPA components. Each are special cases of PEPA
activities. Transitions of PEPA components will typically
be used to model small-scale (or local) changes of state as
components undertake activities. Firings of the net will typ-
ically be used to model macro-step (or global) changes of
state such as context switches, breakdowns and repairs, one
thread yielding to another, or a mobile software agent mov-
ing from one network host to another. The set of all fir-
ings is denoted by Af , the set of all transitions by At. We
distinguish firings syntactically by printing their names in
boldface.

Continuing our example, we introduce an instant mes-
sage as a type of transmissible file.

InstantMessage def= (transmit, rt).File

Part of a definition of a PEPA net which models the passage
of instant messages is shown below. An instant message IM
can be moved from the input place on the left to the output
place on the right by the transmit firing1. In doing so it
changes state to evolve to a File derivative, which can be

1Unconventionally our places are depicted by rectangles in this exam-
ple for ease of including the token, cell and static component associated
with the places.

read by the FileReader.

InstantMessage[IM]

(transmit,rt)

−−−→ −−−→ File[] ��
L

FileReader

The syntax of PEPA nets is given in Figure 3. S denotes
a sequential component and P a concurrent component
which executes in parallel. I stands for a constant denot-
ing either a sequential or a concurrent component, as bound
by a definition.

N ::= D+M (net)

M ::= (MP, . . .) (marking)
MP ::= P[C, . . .] (place marking)

D ::= I
def
= S (component defn)

| P[C]
def
= P [C] (place defn)

| P[C, . . .]
def
= P [C] ��

L
P (place defn)

P ::= P ��
L

P (cooperation)
| P/L (hiding)
| P [C] (cell)
| I (identifier)

C ::= ‘ ’ (empty)
| S (full)

S ::= (α, r).S (prefix)
| S + S (choice)
| I (identifier)

Figure 3. The syntax of PEPA nets

Definition 1 (PEPA net) A PEPA net N is a tuple N =
(P ,T , I , O, �, π, C, D, M0) such that

• P is a finite set of places;

• T is a finite set of net transitions;

• I : T → P is the input function;

• O : T → P is the output function;

• � : T → (Af , R+ ∪ {�}) is the labelling func-
tion, which assigns a PEPA activity ((type, rate) pair)
to each transition. The rate determines the negative
exponential distribution governing the delay associ-
ated with the transition;

• π : Af → N is the priority function which assigns
priorities (represented by natural numbers) to firing
action types;

• C : P → P is the place definition function which
assigns a PEPA context, containing at least one cell,
to each place;

• D is the set of token component definitions;

• M0 is the initial marking of the net.

The structured operational semantics, defined in [23],
give a precise definition of the possible evolution of a PEPA
net, and shows how a CTMC can be derived, treating each
marking as a distinct state.

We define the firing rule of PEPA nets to respect the net
structure in the usual way (one token from each input place,
one token to each output place) but also to take into con-
sideration the ability of tokens to participate in the firing
(can they perform an activity of the correct type?), and the
availability of vacant cells of the appropriate type in the out-
put places. Note that we require that the net is balanced in
the sense that, for each transition, the number of input cells
is equal to the number of output cells. In classical Petri
nets tokens are identitiless, and can be viewed as being con-
sumed from input places and created into output places for
each firing. In contrast, in PEPA nets our tokens have state
and identity, and we view them as passing through net-level
transitions. For each firing there must be as many output
tokens as there were input tokens.

Definition 2 (Enabling) An enabling is a mapping of
places to tokens. A net level transition t has an enabling
of firing type α, E(t, α), if for each input place Pi of t there
is a token T in the current marking of Pi, which has a one-
step α-derivative, T ′.

Note that there may be several enablings for a given
transition firing in any particular marking, as the enabling
selects one token to fire from each input place, and there
may be more than one eligible token at each input place.

Since it is important that each fired token has a vacant
cell to go into after the firing, we define a corresponding
notion of output. A transition has an output if, in the cur-
rent marking, there is at least one vacant cell in each output
place.

Definition 3 (Output) For any net level transition t, an
output, denoted O(t), is a mapping from the output places
of t to vacant cells in the current marking.

Since each token passes through a net level transition
when it fires, such a transition is enabled only when there
is a bijective function between the chosen enabling and an
output.

Definition 4 (Concession) A net level transition t has con-
cession for a firing of type α if there is an enabling E(t, α)
such that there is a bijective mapping φ from E(t, α) to an
output O(t), which preserves the types of tokens.

As with classical Petri nets with priority, having con-
cession identifies those transitions which could legally fire

according to the net structure and the current marking. The
set of transitions which can fire is determined by the priori-
ties.

Definition 5 (Enabling Rule) A net level transition t will
be enabled for a firing of type α if there is no other net
transition of higher priority with concession in the current
marking.

Definition 6 (Firing Rule) When a net level transition t
fires with type α on the basis of the enabling E(t, α), and
concession φ then for each (Pi, T,) in E(t, α), T [T] is
replaced by T [] in the marking of Pi, and the current
marking of each output place is updated according to φ.

We assume that when there is more than one mapping φ
from an enabling to an output, then they have equal proba-
bility and one is selected randomly. The rate of the enabled
firing is determined using apparent rates, and the notion of
bounded capacity, as usual for PEPA. We refer the reader to
[22] for more details.

3 Mapping

In this section we give describe the mapping from mobil-
ity UML activity diagrams developed by Baumeisteret al. to
PEPA nets. As we have seen in the PEPA net the places of
the Petri net correspond to the different locations or compu-
tational contexts present in the system, while the transitions
correspond to state changes which result in a different dis-
tribution of computational elements across contexts.

The UML activity diagrams which we consider clearly
exhibit both locations and movements — these correspond
to places and transitions at the net level of the PEPA net.
Therefore the first step of our mapping is to create a net in
which there is one place for each location which appears
on the right hand side of an 〈〈atLoc = ·〉〉 tag in the activ-
ity diagram. Second, we create a net level transition corre-
sponding to each 〈〈move〉〉. Such a transition will have an
input arc corresponding to each object flow into the activity
and an output arc for each object flow out of the activity.
Moreover the places connected to these arcs are determined
by the locations of the corresponding objects. This com-
pletes the net level definition of the PEPA net, but it remains
to instantiate the PEPA equations which define the tokens
of the PEPA nets and the static components specifying the
contexts associated with each place.

The tokens of the PEPA net correspond to the objects of
the activity diagram: we define one token for each object.
The activities which the token undertakes are defined by
the structure of the activity diagram, disregarding activities
which do not involve this object, i.e. which do not have an
association with this object. Each activity in the activity
diagram is mapped to an activity in the PEPA definition.

In the diagrams we consider there are only two possibili-
ties for the associations between the activities of an object.
They may be sequentially ordered which corresponds to the
prefix operation in the PEPA definitions. Otherwise they
may be alternative behaviours, represented either with an
explicit decision diamond, or implicitly by having two out-
going associations from an activity. In either case this situ-
ation is captured by a choice in the PEPA component, with
the two activities as the alternatives.

It remains to define any static components which may be
required in the model. A static component is only required
if there is an activity which does not have an associated
object flow. In this case the activity will not be defined
within any of the tokens of the PEPA net but must still nev-
ertheless have a representation in the PEPA net. In this case
the activity is mapped to the activity of a static component
associated with one of the places of the PEPA net; which
place is determined by considering the last location to which
a move was made. The static component is then defined to
have each of the non-move activities which are associated
with that location ordered by prefix and choice as explained
above.

The final step is to define the initial marking of the PEPA
net and the context of each place. The capacity of a place to
host a token is denoted by a cell or slot of appropriate type.
Thus each place is given a cell corresponding to each object
which exhibits that location in the activity diagram. There is
a cooperation between the cells if the corresponding objects
share an activity. Additionally, if there are activities at a
location which do not have an associated object/token the
corresponding static component must be included in the
definition of the place. Such a component will cooperate
with the cells at that place on any shared activities.

The complete translation is summarised in the table
below:

Activity diagram PEPA net
location net-level place
〈〈move〉〉 activity net-level transition
object PEPA token
activity with associated

object
activity of the corresponding

token
activity without associated

object
activity of appropriate static

component
first recorded location of

object
place of the token in initial

marking
location of object-less

activity
place of the static component

This translation has been realised in the Choreographer tool
which we describe in some detail in the following section.

4 Implementation

We have implemented software tools to realise the
above-described mapping of UML activity diagrams to
PEPA nets, in addition to providing an implementation of
the PEPA nets modelling language in the PEPA Workbench
for PEPA nets [23], an extension of our existing PEPA
Workbench [20]. The solvers and analysers are connected
to the UML drawing tools by software connectors known
as extractors (for input) and reflectors (for output). The
solvers, analysers, extractors and reflectors are federated
into an integrated design environment called Choreogra-
pher.

The Choreographer design platform contains analysers
for security and performance analysis. The security analysis
is routed via the LySa [8] process calculus, implemented on
top of the Succinct Solver suite [36], a state-of-the-art static
analysis tool. This aspect of the use of Choreographer is
not discussed further here. The interested reader is referred
to [19, 6] for further details.

Choreographer contains dynamic analysers for
PEPA [26] models and PEPA nets [23]. It uses the
Java edition of the PEPA Workbench to solve the CTMC
representations which are generated by the PEPA Work-
bench for PEPA nets.

The other extractors for PEPA and Lysa in Choreogra-
pher [10, 7] both use a DOM [16] tree as internal repre-
sentation of the UML model. For the PEPA Net Extrac-
tor/Reflector a different approach has been chosen and the
UML model is stored in the Metadata Repository (MDR)
by NetBeans [32].

The MDR project is aimed at persistent storage and
manipulation of metadata. It is based on the Meta Object
Facility (MOF) standard [34]. A MOF metamodel can be
imported into MDR in form of an XMI document. On
the basis of the metamodel MDR generates Java interfaces
which are compliant with the Java Metadata Interface (JMI)
standard [28].

Once a metamodel is present in the repository it can be
instantiated. A metamodel instance can be “filled” by a
model in XMI format which conforms to the metamodel
specification. The model can be manipulated via the Java
interfaces that have been generated for the metamodel or by
MDR’s reflective API which is independent of the meta-
model. MDR also supports the export of models in the
repository back to XMI.

In order to process a UML model with MDR, an XMI
file containing the UML metamodel must be imported into
MDR. For the Extractor/Reflector we have chosen the UML
metamodel version 1.4 [39], because it is the basis of the
Poseidon UML tool which is used in the DEGAS project.
After the import a new instance of the metaclass “Uml-
Package” is created. Any UML model that conforms to the

postprocessor Reflector
(MDR)

PEPA Net

Extractor
(MDR)

PEPA Net

PEPA Workbench
for PEPA Nets

Poseidon

Poseidon
prepocessor

(DOM)

(DOM)

Removes Poseidon specific tags from UML model

Adds Poseidon specific tags from original model

Produces PEPA Net and model rates

.pepanet

.rates

.xmltable

Analyses PEPA Net

Reflects results into UML model

UML metamodel

UML metamodel

reflected .xmi
Poseidon

.zuml or .xmi

reflected

.zuml or .xmi
Poseidon .xmi compliant with

.resultscompliant with

Figure 4. Extraction and reflection

imported UML metamodel can now be read into this new
instance.

The solution based on MDR has two main advantages
in comparison to the DOM approach. First, different UML
tools can be supported because MDR is not bound to a par-
ticular XMI version or tool-specific saving format. The
XMI output of any UML tool that is compliant with the
UML metamodel can be read into MDR. Second, MDR’s
interfaces for accessing and manipulating the UML model
reduce the amount of code that has to be written.

The drawback of the MDR approach is that graphic and
structural aspects of the UML model have to be treated sep-
arately. The UML metamodel only specifies the structure of
UML models and does not contain any elements that allow
storage of the diagram layout. So far UML tool vendors
have to find their own solutions for saving this information.

The Poseidon tool stores layout data in additional ele-
ments of the XMI file. MDR does not recognise these addi-
tional elements because they do not appear in the UML
metamodel. In order to extract from a Poseidon project, the
part of the UML model which conforms to the UML meta-
model first has to be separated from the rest. In the Extrac-
tor/Reflector module the critical elements are removed by a
Poseidon preprocessor. After a successful reflection of the
results from the PEPA Workbench for PEPA Nets the lay-
out information is added again to the modified model by a
Poseidon postprocessor. An overview of this process and
the intermediate outputs are shown in Figure 4. Other UML
tools which save the layout data in a different way require
their own pre- and postprocessors.

Poseidon provides support for saving the UML model
without diagram data which is similar to our preprocessor.
We have decided not to use this functionality because we
want to reuse the layout data of the original model for the
reflected UML model where possible. If the layout data
from Poseidon is not saved at all, the layout of the UML dia-
grams is lost. As shown in Figure 4 the Poseidon postpro-
cessor requires the reflected .xmi file and the original Posei-
don project as input. It merges the new structural informa-
tion of the .xmi with the old layout data from Poseidon.

5 Example

In this section we present an example use of the Chore-
ographer design platform to investigate the throughput of
activities in a UML activity diagram. The example which
we model represents both physical and logical mobility.
The scenario is of a PDA user on board a moving train
connecting to a remote Web site and loading pages of
dynamically-generated HTML content. As the train moves
the connection to a (stationary) transmitter must be handed
over to the next transmitter which is in range. The activities
of the model are depicted in Figure 5.

Initial_State_1

download file

<< atLoc=Transmitter_1 >>

p:PDA

detect weak signal

search for other transmitters

handover
<< move >>

continue downloadabort download

<< atLoc=Transmitter_1 >>

p:PDA

<< atLoc=Transmitter_1 >>

p:PDA

<< atLoc=Transmitter_2 >>

p:PDA

<< atLoc=Transmitter_2 >>

p:PDA

<< atLoc=Transmitter_2 >>

p:PDA

<< atLoc=Transmitter_1 >>

p:PDA

Figure 5. Activity diagram showing the move-
ment and state changes in the model of a
PDA user

The activities which lead up to the handover event are
downloading a file, detecting a weak signal and searching
for other transmitters. The handover activity is a movement
activity, as marked by the stereotype 〈〈move〉〉.

The handover must happen (because the train is moving)
but it is not certain to succeed. We model two possible out-
comes of the handover: either the handover succeeds (and
the file download continues) or it fails (and the download
is aborted). We set the relative probabilities of these two
events to be the same: it is as likely that the connection will
be dropped as it is that it will survive. In either case, the
movement of the train has brought the device into range of
the second transmitter.

The analysis process implemented by Choreographer
extracts a PEPA net model from the input UML activity dia-
gram and analyses this with the PEPA Workbench for PEPA
nets [20, 23]. The results are then reflected back to the UML
level, as shown in Figure 6.

Figure 6. Reflecting the analysed PEPA net
model back to an activity diagram represen-
tation using the Choreographer design plat-
form

When the results are viewed in the Poseidon for UML
tool the activities described by the modeller are now anno-
tated with the throughput information computed by the
PEPA Workbench, as shown in Figure 7.

With an activity diagram the modelling focus is on activ-
ities, and so the performance results which are written back
to the diagram also centre on activities, recording through-
put. However, a UML project will typically contain dia-
grams of several different types, each modelling an aspect
of the whole system under consideration. State diagrams, a
variant on Harel’s statecharts [25], would be used to provide
a separate record of the behaviour of objects of each of the
classes which are being modelled. The purpose of a state
diagram is to expose the states of interest in the description
of the behaviour of a class and here a different performance
measure is more appropriate, namely the steady-state prob-
abilities of the states.

We discuss this aspect of the functionality of Choreog-
rapher by considering another part of the mobile PDA user
model, simply the request/response view of a client con-
necting with a Web server. The client and server models are
shown in Figures 8 and 9. States in the state diagram nota-
tion are represented by boxes with rounded edges. Transi-
tions between states are labelled by the name of the activity
which causes the transition. A rate (not shown) is associated
with every activity.

The client is modelled at a very high level of abstraction,
simply stating that it generates HTTP requests, waits for a
response from the server, and then engages in local process-
ing before generating the next request.

Figure 7. The activity diagram annotated with
throughput results viewed in the Poseidon
for UML modelling tool

Initial_State_2

GenerateRequest

WaitForResponse

request /
ProcessResponse

response /

offlineProcessing /

Figure 8. Client state diagram showing the
generation of HTTP requests and the local
processing of responses

The model of the server commits more detail about how
the server is implemented. The model represents a Tom-
cat web server [1] which accepts requests for JSP pages,
locates the JSP source, translates the page into Java source
code, compiles the Java source to Java servlets, and exe-
cutes the servlet which dynamically generates an HTML
page which is sent back to the client as the response to their
request. The Tomcat web server includes a simple, but very
profitable, optimisation. After the initial locate-translate-
compile-execute cycle has completed, the servlet remains
resident in memory in the Web container, ready for subse-
quent invocations. The second and subsequent requests for
this JSP page are directed to the pre-loaded servlet, bypass-
ing the lengthy translate and compile activities.

We estimated the parameters to the Tomcat model by
timing a range of JSP pages running on our Tomcat server,
and solved the model with and without the locate servlet

optimisation. This quantified the optimisation from the
user’s point of view in terms of the reduction in the delay
spent waiting for the response from the server.

Initial_State_1

ServerIdle ProcessRequest

AccessJSPFile

GeneratedJavaCodeCompiledJavaCode

SendHTTPResponse

request /

locateJSP /

translate /

compile /

execute /

response /

Figure 9. Server state diagram modelling
the JSP translate-compile-execute lifecycle
before the addition of direct servlet lookup

6 Conclusions

The activity diagrams which are covered by the current
version of the PEPA net Extractor/Reflector module have
to follow some restrictions. Future versions of the mod-
ule should try to weaken these restrictions and extend the
set of activity diagrams that are extractable without man-
ual modification by the user. For example, advanced UML
activity diagram features such as merge, decision, join and
fork nodes could be considered.

Another possibility for extending the PEPA Net Extrac-
tor is to use more information of the UML model in order
to specify the resulting PEPA net more precisely. In activ-
ity diagrams tags that define which action is performed by
which static component could be introduced to the UML
model. It may also be useful to base the extraction on
more than one UML diagram type. Interaction diagrams,
for instance, would permit explicit definition of which com-
ponents cooperate with each other. This becomes particu-
larly important if several mobile and static components are
considered at one place, which is not possible in the current
version of the module.

The value of using the PEPA modelling language as
an intermediate language on the route to automated per-
formance analysis of UML models by numerical solution
of continuous-time Markov chains has not yet been fully
exploited. PEPA is supported by a suite of performance

analysis tools including the PRISM probabilistic model-
checker [31], the Imperial PEPA Compiler (ipc) [5] and
the Möbius multi-paradigm, multi-formalism performance
modelling platform [13, 14]. The availability of well-
engineered, sophisticated analysis tools such as these is
the primary reason why we were not tempted to imple-
ment UML performance analysis tools directly, but rather
go through the intermediate PEPA representation.

We have previously connected our extractors and reflec-
tors for the PEPA stochastic process algebra [10] to the
PRISM model-checker and applied this to a real-world anal-
ysis problem from the domain of mobile telephony [24].
We have previously analysed PEPA net models using
PRISM [22]. However, much more could be done to have
tighter integration with tools such as Möbius, PRISM and
ipc accessible to the Choreographer design platform.

The most direct way in which design environments can
assist developers of complex applications is by providing
a representation language with linguistic constructs at the
right level of expressivity, together with analysis procedures
to check properties of the design. Used together with a
UML modelling tool such as Poseidon for UML, the Chore-
ographer design platform meets these needs for developers
of mobile code and mobile computing applications. With
little overhead the modelling language allows the modeller
to precisely record the mobile and immobile components of
the system and to distinguish location-changing events from
changes of computational state. The extractor-workbench-
reflector tool chain powers the performance analysis of
high-level model descriptions, returning results in the lan-
guage in which they were submitted.

Even with such features, a design environment would be
unsuitable to use if the encoding of a diagram into a net
was sufficiently complex that its implementation would be
likely to have significant flaws. Fortunately the mapping of
our mobility-aware diagrams into PEPA nets is sufficiently
clean that this problem does not arise. In the implementa-
tion of the extractor software also we followed a principled
implementation plan, utilising fully the metadata repository
which was available to us, with the added benefits from this
increasing our confidence in the realisation of the mapping
in software.

Acknowledgements: Stephen Gilmore and Jane Hillston
are supported by the SENSORIA project (EU FET-IST
Global Computing 2 project 016004). Perdita Stevens pro-
vided helpful comments on earlier drafts of this paper. The
UML diagrams in the paper were created with Poseidon for
UML Community Edition. The Choreographer design plat-
form is available for download from http://groups.
inf.ed.ac.uk/choreographer/.

References

[1] Apache Jakarta Tomcat. Web site available at http://
jakarta.apache.org/tomcat/.

[2] L. Andrade, P. Baldan, H. Baumeister, R. Bruni, A. Corra-
dini, R. D. Nicola, J. L. Fiadeiro, F. Gadducci, S. Gnesi,
P. Hoffman, N. Koch, P. Kosiuczenko, A. Lapadula,
D. Latella, A. Lopes, M. Loreti, M. Massink, F. Maz-
zanti, U. Montanari, C. Oliveira, R. Pugliese, A. Tarlecki,
M. Wermelinger, M. Wirsing, and A. Zawlocki. AGILE:
Software architecture for mobility. In D. P. Martin Wirs-
ing and R. Hennicker, editors, Recent Trends in Alge-
braic Develeopment Techniques–16th International Work-
shop, WADT 2002, volume 2755 of LNCS, Frauenchiemsee,
Germany, Sept. 2002. Springer.

[3] H. Baumeister, N. Koch, P. Kosiuczenko, P. Stevens, and
M. Wirsing. UML for global computing. In Global Com-
puting: Programming Environments, Languages, Security,
and Analysis of Systems, IST/FET International Workshop,
GC 2003, pages 1–24, Rovereto, Italy, Feb. 2003.

[4] E. Belloni and C. Marcos. MAM-UML: A UML profile
for the modeling of mobile-agent applications. In Proc. of
XXIV Int. Conf. of the Chilean Computer Science Society
(SCCC’04). IEEE Computer Society Press, 2004.

[5] J. Bradley, N. Dingle, S. Gilmore, and W. Knottenbelt.
Derivation of passage-time densities in PEPA models using
IPC: The Imperial PEPA Compiler. In G. Kotsis, editor,
Proceedings of the 11th IEEE/ACM International Sympo-
sium on Modeling, Analysis and Simulation of Computer
and Telecommunications Systems, pages 344–351, Univer-
sity of Central Florida, Oct. 2003. IEEE Computer Society
Press.

[6] M. Buchholtz, S. Gilmore, V. Haenel, and C. Montangero.
End-to-end integrated security and performance analysis on
the DEGAS Choreographer platform. To appear in the pro-
ceedings of Formal Methods 2005. Editors: John Fitzgerald,
Ian Hayes and Andrzej Tarlecki, Jan. 2005.

[7] M. Buchholtz, C. Montangero, L. Perrone, and S. Semprini.
For-LySa: UML for authentication analysis. In C. Priami
and P. Quaglia, editors, Proceedings of the second work-
shop on Global Computing, volume 3267 of Lecture Notes
in Computer Science, pages 92–105. Springer Verlag, 2004.

[8] M. Buchholtz, H. R. Nielson, and F. Nielson. A calculus
for control flow analysis of security protocols. International
Journal of Information Security, 2(3–4):145–167, 2004.

[9] C. Canevet, S. Gilmore, J. Hillston, L. Kloul, and P. Stevens.
Analysing UML 2.0 activity diagrams in the software per-
formance engineering process. In Proceedings of the
Fourth International Workshop on Software and Perfor-
mance, pages 74–78, Redwood Shores, California, USA,
Jan. 2004. ACM Press.

[10] C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and
P. Stevens. Performance modelling with UML and stochastic
process algebras. IEE Proceedings: Computers and Digital
Techniques, 150(2):107–120, Mar. 2003.

[11] L. Cardelli and A. Gordon. Mobile ambients. Theoretical
Computer Science, 240:177–213, 2000.

[12] G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J.
Irwin, and M. Wolczko. Tuning garbage collection for
reducing memory system energy in an embedded Java envi-
ronment. ACM Transactions on Embedded Computing Sys-
tems, 1(1):27–55, 2002.

[13] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi,
J. M. Doyle, W. H. Sanders, and P. Webster. The Möbius
modeling tool. In Proceedings of the 9th International Work-
shop on Petri Nets and Performance Models, pages 241–
250, Aachen, Germany, Sept. 2001.

[14] G. Clark and W. Sanders. Implementing a stochastic pro-
cess algebra within the Möbius modeling framework. In
L. de Alfaro and S. Gilmore, editors, Proceedings of the first
joint PAPM-PROBMIV Workshop, volume 2165 of Lecture
Notes in Computer Science, pages 200–215, Aachen, Ger-
many, Sept. 2001. Springer-Verlag.

[15] V. Cortellessa and R. Mirandola. Deriving a queueing net-
work based performance model from UML diagrams. In
WOSP ’00: Proceedings of the second international work-
shop on Software and performance, pages 58–70, New York,
NY, USA, 2000. ACM Press.

[16] Document Object Model (DOM) Specification. Available
from the W3C at http://www.w3.org/DOM/.

[17] E. Dubois, P. Gray, and L. Nigay. ASUR++: a design nota-
tion for mobile mixed systems. Interacting with Computers,
15:497–520, 2003.

[18] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code
mobility. IEEE Trans. Softw. Eng., 24(5):342–361, 1998.

[19] S. Gilmore, V. Haenel, L. Kloul, and M. Maidl. Chore-
ographing security and performance analysis. In K. Bravetti
and Zavattaro, editors, Proc. WS-FM’05, volume 3670 of
LNCS, pages 200–214. Springer-Verlag, 2005.

[20] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool
to Support a Process Algebra-based Approach to Perfor-
mance Modelling. In Proceedings of the Seventh Interna-
tional Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, number 794 in Lecture
Notes in Computer Science, pages 353–368, Vienna, May
1994. Springer-Verlag.

[21] S. Gilmore, J. Hillston, and D. Holton. From SPA mod-
els to programs. In M. Ribaudo, editor, Proceedings of the
Fourth Annual Workshop on Process Algebra and Perfor-
mance Modelling, pages 179–198. Dipartimento di Infor-
matica, Università di Torino, CLUT, July 1996.

[22] S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. Software
performance modelling using PEPA nets. In Proceedings
of the Fourth International Workshop on Software and Per-
formance, pages 13–24, Redwood Shores, California, USA,
Jan. 2004. ACM Press.

[23] S. Gilmore, J. Hillston, M. Ribaudo, and L. Kloul. PEPA
nets: A structured performance modelling formalism. Per-
formance Evaluation, 54(2):79–104, Oct. 2003.

[24] S. Gilmore and L. Kloul. A unified tool for performance
modelling and prediction. Reliability Engineering and Sys-
tem Safety, 89(1):17–32, July 2005.

[25] D. Harel. Statecharts: a visual approach to complex systems.
Science of Computer Programming, 8:231–274, 1987.

[26] J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[27] D. N. Jansen and H. Hermanns. QoS modelling and analysis
with UML-statecharts: the StoCharts approach. SIGMET-
RICS Perform. Eval. Rev., 32(4):28–33, 2005.

[28] Java Metadata Interface (JMI) Specification, JSR 40. Avail-
able from the Java Community Process at http://www.
jcp.org/.

[29] M. Kang, L. Wang, and K. Taguchi. Modelling mobile agent
applications in UML2.0 activity diagrams. http://www.
auml.org/auml/supplements/UML2-AD.pdf,
April 2004.

[30] C. Klein, A. Rausch, M. Sihling, and Z. Wen. UML. Systems
Analysis, Design and Development Issues, chapter Exten-
sions of the UML for mobile agents. Idea Group Publishing,
2001.

[31] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic
symbolic model checking with PRISM: A hybrid approach.
In J.-P. Katoen and P. Stevens, editors, Proc. 8th Interna-
tional Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’02), volume 2280 of
LNCS, pages 52–66. Springer, April 2002.

[32] NetBeans Metadata Repository (MDR). Website at http:
//mdr.netbeans.org/.

[33] R. Milner. Communicating and Mobile Systems: the π-
Calculus. Cambridge University Press, 1999.

[34] Meta-Object Facility (MOF). Available from the OMG at
http://www.omg.org.

[35] H. Mouratidis, J. Odell, and G. Manson. Extending the Uni-
fied Modelling Language to model mobile agents. In Work-
shop on Agent-Oriented Methodologies, (OOPSLA), Seattle,
USA, 2002.

[36] F. Nielson, H. R. Nielson, H. Sun, M. Buchholtz, R. R.
Hansen, H. Pilegaard, and H. Seidl. The Succinct Solver
Suite. In K. Jensen and A. Podelski, editors, Proc.
TACAS’04, volume 2988 of Lecture Notes in Computer Sci-
ence, pages 251–265. Springer-Verlag, 2004.

[37] K. Pokozy-Korenblat, C. Priami, and P. Quaglia. Perfor-
mance analysis of a UML micro-business case study. In
C. Priami and P. Quaglia, editors, Global Computing, vol-
ume 3267 of Lecture Notes in Computer Science, pages 107–
126. Springer, 2004.

[38] C. Priami. Stochastic π-calculus. Computer Journal,
38(7):578–589, 1995.

[39] OMG Unified Modeling Specification, version 1.4, septem-
ber 2001. Available from the OMG at http://www.omg.
org.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

