
Automatic Translation of UML Sequence Diagrams into PEPA Models

Mirco Tribastone and Stephen Gilmore
The University of Edinburgh, Scotland

Abstract

The UML profile for Modeling and Analysis of Real Time
and Embedded systems (MARTE) provides a powerful, stan-
dardised framework for the specification of non-functional
properties of UML models. In this paper we present an au-
tomatic procedure to derive PEPA process algebra models
from sequence diagrams (SD) to carry out quantitative eval-
uation. PEPA has recently been enriched with a fluid-flow
semantics facilitating the analysis of models of a scale and
complexity which would defeat Markovian analysis.

1. Introduction

Over the past few years software models have emerged
as a promising approach to the design and development of
complex software systems. Particularly, they play a crucial
role in model-centric engineering methodologies, in which
systems are designed in a platform-independent domain and
executable program code is generated by automatic tools.
Because models are employed throughout the development
lifecycle, quantitative evaluation of these models has great
appeal because it can be applied at any stage of the process
to give valuable feedback for the next revision of the system.

Intimately linked to model-driven development tech-
nologies is the UML, a rich graphical language for the de-
sign of software systems (mainly object-oriented systems).
The UML consists of a number of views which allow a sys-
tem to be represented from different perspectives. The be-
havioural (or dynamic) view offers the appropriate context
for the purposes of performance evaluation because it cap-
tures how components communicate with each other and
react to events. Among the behavioural diagrams are se-
quence diagrams (SDs), in which the interaction between
objects is modelled by means of ordered exchanges of mes-
sages between them. It must be pointed out though that
the order is only relative and there is no formal way in the
standard UML to assert timing properties of messages. To
overcome this difficulty, frameworks for quantitative eval-
uation of UML models may benefit from the profile for
MARTE [10], which enriches the language with a num-

ber of extensions to define non-functional properties. How-
ever, MARTE serves only as a mechanism for annotating
diagrams with timing information and does not offer any
numerical evaluation technique. The integration of analysis
methods into the framework is left to the users of the profile.

In this paper we use the stochastic process algebra
PEPA [6] as a performance engine for MARTE. We au-
tomatically translate SDs into PEPA descriptions. Each in-
teraction lifeline is mapped onto a sequential automaton and
messages sent between these are interpreted as synchroni-
sation points (in process algebraic terms, shared actions)
between sequential components. Since UML 2.0, SDs can
express rich sequence traces, incorporating parallel frag-
ments and alternative fragments. We use distinct sequen-
tial components to model the behaviour of a lifeline in-
volved in a parallel fragment. Each component synchro-
nises over shared actions enabled when the parallel frag-
ment is entered or exited. Alternative fragments are mapped
onto probabilistic choices. This approach is based on the
classical compositional modelling paradigm of process al-
gebra. Compositionality does not necessarily imply par-
allelism; an intrinsically sequential underlying model can
be derived via a compositional translation technique. Nev-
ertheless, a compositional technique proves to be an ele-
gant way to capture parallelism in the interaction—either
implicit, by events that are not related by a chain of interme-
diate messages, or explicit, by the use of parallel constructs.

The major motivation behind the use of PEPA in the
software engineering process is that it provides a means
to address the state space explosion problem which afflicts
Markovian analysis techniques. Originally designed as a
stochastic process algebra, PEPA has been recently pro-
vided with a continuous-space fluid-flow semantics which
gives rise to a system of first-order ordinary differential
equations [7]. This represents an effective way to deal with
complex software design models of large-scale systems.
In particular, the translation procedure from UML SDs to
PEPA which is described in the present paper maps repli-
cated software resources onto arrays of sequential compo-
nents, i.e. a parallel composition of equally-behaving com-
ponents. This takes full advantage of the scalability of the
fluid-flow approach.

The remainder of this paper is organised as follows. Re-
lated work on the performance analysis of UML models is
reviewed in Section 2. Section 3 provides an overview of
PEPA and introduces some preliminaries which will be used
throughout the paper. Sequence diagrams and their timing
extensions are discussed in Section 4. Section 5 discusses
the extraction of PEPA descriptions from SDs. Finally, Sec-
tion 7 concludes the paper.

2. Related Work

Over the last decade a substantial body of research has
focussed on quantitative analysis of software models. For a
survey of this field see [1]. In particular, since the advent of
the UML, much effort has been devoted to the extraction of
performance models from the elements of the language con-
cerned with the dynamic description of software systems,
such as activity diagrams, state machine diagrams, and SDs.
A taxonomy of the research in this context may be based
on four orthogonal factors: (1) the kind of diagrams from
which the performance model is extracted; (2) the level of
automation supported by the translation; (3) the methodol-
ogy used to annotate the diagram with non-functional prop-
erties; and (4) the underlying analysis technique employed.

For instance, Layered Queueing Networks are used to
enable performance analysis of UML specifications [11].
In [8] activity diagrams are translated into Stochastic Petri
Nets. Both approaches infer the performance model from
annotations with the profile for Schedulability, Perfor-
mance, and Time.In the former the authors propose a di-
rect translation. In the latter the translation is mediated
by graph-transformation rules between the UML and the
performance meta-models which are then performed at the
XML level.

A similar approach toward the formalisation and general-
isation of transformation techniques is proposed in [15, 12]
where an intermediate representation—the Core Scenario
Model (CSM)—abstracts away the UML elements which
are not related to performance evaluation and acts as a sim-
plified input meta-model for conversion into different tar-
get performance models. In the present paper we put for-
ward a direct mapping from MARTE-annotated SDs onto
performance models, although a mediation through CSM is
possible in principle. As far as parallel and alternative frag-
ments are concerned, the underpinnings of the translation
are close to those presented in [15, 12, 13]. However, the
interpretation of the synchronicity of the messages is based
on a different approach. In our case, a synchronous message
is modelled with a pair of asynchronous messages, between
which the sender is blocked. This is complementary to the
approach presented in the aforementioned works, in which
asynchronous messages are modelled using an implicit fork
at the sender’s site.

The use of PEPA as the underlying formalism for the
performance evaluation of UML models has been around
for a while. In [3] a combination of state machine dia-
grams and collaboration diagrams is used to automatically
extract PEPA models. In [2] the authors present a transla-
tion of activity diagrams into PEPA-Net models, though it
is tailored to a specific case study and does not make use
of standard performance annotation techniques. Those is-
sues are addressed in [14], where an automatic algorithm
for the derivation of PEPA models from activity diagrams is
presented. It shares similar techniques to those presented in
this paper, including the use of the MARTE profile for the
specification of the non-functional properties of the system
and the performance indices of interest.

3. Overview of PEPA

PEPA is a timed process algebra for the performance
evaluation of models described using a parsimonious gram-
mar. We consider PEPA models which can be defined using
the following two-level grammar:

S := (α, r).S | S + S | A
C := S | C ��

L
C | C/L

The first production is used to define sequential compo-
nents, whereas the second allows composition of compo-
nents. In this section an informal description of the lan-
guage is presented. The interested reader should consult [6]
for the formal definition.

Prefix (α, r).S is the most basic unit of execution of the
language. It describes a component performing an ac-
tivity of type α at rate r. When the activity completes,
the component behaves as S. An exponential distribu-
tion of the delay is assumed.

Choice P + Q indicates probabilistic choice among the ac-
tivities of the sequential components P and Q.

Constant A def
= S defines a component A which behaves as

S.

Cooperation P ��
L

Q allows composition. P and Q carry
out their activities concurrently if the type of the activ-
ity is not in the cooperation set L . If the activity’s type
is in L , they perform a shared action at a rate which
depends on the rates of the individual components in-
volved in the cooperation. A rate of a shared activ-
ity may be left as unspecified at a particular sequential
component by using the symbol >. This signifies that
the shared rate is specified by other components.

We will not use PEPA’s hiding operator in this paper.

2

We shall be concerned with PEPA descriptions consist-
ing of an arbitrary number of productions for sequential
components and only one production for the composition
of such components. Such a production shall be referred to
as the system equation. Without loss of generality, we shall
deal with PEPA descriptions which have at least two distinct
sequential components cooperating over a (possibly empty)
cooperation set. As discussed later in this paper, each life-
line of a SD will be associated to at least one sequential
component. Hence, a PEPA description with only one se-
quential component would model an interaction with one
single lifeline, which is of little practical interest. System
equations with at least two sequential components are bi-
nary trees, whose internal nodes are cooperation operators,
labelled by their cooperation sets. The external nodes repre-
sent sequential components, hence they may represent pre-
fixes, choices, or component names (constants). However,
the algorithm that performs the automatic translation of SDs
will create trees with leaves which contain only component
names. The interpretation of a cooperation as a binary tree
will be used later to describe how a model description is ma-
nipulated during the traversal of the SD’s interaction frag-
ments.

In the Markovian semantics [6], PEPA descriptions are
interpreted against an operational semantics which results
in a labelled transition system whose states are PEPA com-
ponents and transition labels are the (type, rate) pairs of the
activities enabled by that state. A Continuous Time Markov
Chain (CTMC) can be derived from the labelled transition
system by associating each state of the system with a state of
the Markov process. The generator matrix is extracted from
the rates in the transition labels. The solution of this under-
lying CTMC ultimately allows for the performance eval-
uation of the system. Analysis techniques available in this
context include transient analysis, steady-state analysis, and
model checking.

As for the fluid-flow approximation [7], an algorithm is
provided to automatically generate a system of ODEs from
a PEPA model. The cost of the algorithm is low, as it tra-
verses the model description statically, i.e. without gener-
ating the state space of the Markov chain. The comparison
between the execution times of Markovian and time-series
analyses presented in the paper has motivated us to exploit
this computationally inexpensive technique in the software
performance engineering context. Nonetheless, the use of
PEPA serves other important purposes. Small or medium-
sized performance models may still be suitable for Marko-
vian analysis, providing software engineers with a wider
range of analysis techniques at their disposal. PEPA plays
a crucial role as an intermediate language here by making
a wide range of mathematical tools available without im-
pacting on the methodology for the extraction of the perfor-
mance model from the design model. In addition, the formal

semantics of the PEPA language makes it possible to reason
about the model prior to the execution of the quantitative
analysis. For instance, static analysis has been developed to
check for freedom from deadlock and the absence of tran-
sient states or absorbing states.

4. Sequence Diagrams

A SD is the graphical representation of an interaction
between a set of participants, i.e. lifelines, with emphasis
on the sequence of messages exchanged. In this section are
discussed the elements of interest in the performance eval-
uation context. For each element, the relevant performance
annotations are discussed. For a complete and formal spec-
ification of UML Interaction, the reader is referred to [9].

Sequence Diagram A SD representing the behaviour to
be analysed is stereotyped with GaScenario. Among its
properties, cause references the applied workload, which
is stereotyped with GaWorkloadEvent. Although MARTE
supports the specification of various kinds of workload pat-
terns, in this paper we shall be concerned with closed pat-
terns. A closed pattern consists of a population of users
which cyclically execute the behaviour. A delay, which
we refer to as thinking time, is observed between succes-
sive requests. Adhering to a common practise for work-
load event annotation, we shall deal with SDs whose first
message is stereotyped with GaWorkloadEvent. Let W =

{ω1, ω2, . . . , ωn} be the set of actions enabled by the PEPA
component underlying the first interaction fragment, and
NW and r the values of the properties population and extDe-
lay, respectively. The corresponding PEPA process is as
follows:

Thinking def
= (think, r).Requesting

Requesting def
= (ω1, >).Thinking
+ (ω2, >).Thinking
+ . . .
+ (ωn, >).Thinking

(1)

Let Interaction be the PEPA process modelling the entire
interaction. The workload is composed with Interaction as
follows:

Thinking[NW] ��
W

Interaction (2)

For a sequential component P, we use the notation P[N]—
which we refer to as an array of components—to indicate a
parallel composition of N copies of the component P. The
parameter N may have a significant impact on the compu-
tational cost of the quantitative evaluation. If Markovian
analysis is to be carried out, the state space size grows com-
binatorially with N , although there exists an efficient algo-
rithm [5] based on an equivalence relation called isomor-
phism which results in a smaller Markov process. Con-

3

versely, its influence is almost negligible if fluid-flow ap-
proximation is used, since it is an invariant with respect to
the structure of the system of ODEs underlying the PEPA
description.

Lifelines A lifeline is a participant in an interaction. As
in [10]1 we consider lifelines annotated with the PaRunTIn-
stance, representing a run-time instance of a process. In the
remainder of this paper we shall be concerned with models
where deployment information is missing, a situation which
may be encountered during early stages of the development
lifecycle. In such a case, resource contention reduces to
pure delay, as it is assumed that there exists an infinite pool
of processors onto which processes are executed. (This as-
sumption is discussed in [15]. A similar approach is taken
in [8, 14].)

Of particular relevance is the property poolSize, an inte-
ger denoting the number of threads of the process. In the
performance model it indicates the size of the array of the
sequential components modelling the lifeline. As with the
population size of the workload, the same arguments about
the scalability of the fluid-flow approach hold for the thread
pool size.

Messages A message models a communication in an in-
teraction. The UML offers a rich semantics for messages,
though for the purposes of quantitative analysis some of the
differences between the kind of messages can be abstracted
away. In particular, a message models either an Operation
call or a Signal, though essentially they both represent a
means of passing information. The nature of the message
is not distinguished at the level of the performance model.
The two attributes of a Message are messageKind and mes-
sageSort. As for the former, we consider complete mes-
sages, i.e. messages in which sendEvent and receiveEvent
are present. Traversing the model through those properties
allows the identification of the sender and the receiving life-
lines. These are indeed the kind of messages that are used,
for instance, in [10, 15, 12]. The latter property conveys the
information about the synchronicity of the message, and it
clearly has a profound impact on the performance model.
Although return messages from synchronous calls may be
omitted to reduce clutter, it is a conventional practise to
show returns. In the remainder of this paper we assume
that diagrams have return messages. We would like to point
out that this is a very mild limitation, as the end of a call can
be determined by inspection of its activation region should
the return be omitted.

Unlike [10] we adopt a slightly different interpretation
of the stereotypes applied to messages. In the formal spec-
ification of MARTE, a PaStep on the message denotes the

1See, for instance, the examples in Sect. 17.4.

demand on the receiving lifeline up until the end of the ex-
ecution specification. If the lifeline is involved in nested
operations, their demands are added in order to determine
the overall duration of the operation. To indicate a duration
of the message, the stereotype PaCommStep is used instead.
We denote such a duration with PaStep; this stereotype ap-
plication is required on all messages, as it is modelled as a
timed shared action in PEPA. To indicate an exponentially
distributed duration of a message with mean rate r times
per second, the PaStep would have its hostDemand prop-
erty set to (exp(1/r),s). Notice that if the performance
model is interpreted against the ODE-based semantics, then
the mean duration is considered.

ExecutionSpecification For the purposes of performance
modelling, no distinction is made between ActionExe-
cutionSpecification and BehaviorExecutionSpecification as
they are both regarded as opaque units of execution. We
shall refer to either with their shared interface, Execution-
Specification. To indicate the duration of an Execution-
Specification, we directly apply PaStep to it. However, such
applications may be omitted to model an operation whose
demand is negligible with respect to the other durations in-
volved in the interaction. This is an alternative representa-
tion for message annotated with MARTE, though the pro-
cedure for the automatic translation may seamlessly accom-
modate different interpretations.

Combined Fragments Combined fragments were intro-
duced in UML 2.0 to add more expressiveness to Interac-
tions by means of constructs for capturing flow-of-control.
The notation for a fragment is a rectangle with a keyword
in the top-left corner indicating the kind of construct that it
represents. We support alt, loop, and par combined frag-
ments. It is required that each supported combined fragment
have a PaStep applied.

The keyword alt indicates an alternative between two or
more choices, indicated as sub-fragments separated by hor-
izontal lines. Alternative paths will be modelled as PEPA
choices. The annotation indicates the delay for the decision
of following one path (through the hostDemand property).
Each operand must be annotated with a PaStep to denote the
probability with which the path is taken (prob property).

The keyword loop designates an iteration over its
operand. The number of iterations is obtained through the
rep property of its operand.

Finally, par indicates a parallel behaviour between its
operands. The parallel sequences implicitly synchronise
over two events—they are started when the fragment is ex-
ecuted, and they are stopped when the fragment is exited.
The value of hostDemand characterises the duration of the
synchronisation.

4

Figure 1. Sample SD supported by the auto-
matic procedure.

4.1. Example

Figure 1 shows a sample SD amenable to automatic
translation into a PEPA model. According to the standard
UML notation, asynchronous messages are drawn with an
open arrowhead, whereas synchronous messages use a filled
arrowhead. To reduce clutter, the labels for the replies to the
synchronous calls (i.e., m1, m2, m3, and m6) are not shown.
Let m′

i be the label of the reply to call mi . Let reqmi be
the rate of synchronous calls and asynchronous calls with
label mi , and repmi be the rate of the synchronous reply to
message mi . All the message are assumed to have MARTE
annotations, not shown here for the sake of readability. The
annotation for lifeline A is similar to that of lifeline B (the
poolSize property is set to NA). Unless explicitly anno-
tated in the diagram, execution specifications take no time.
The diagrams shows a number of comments with the key-
word PEPA attached to the interaction’s fragments. Such
comments provide a visual mapping between representa-
tive UML elements and their corresponding terms in the
performance model, and they will be discussed throughout
the description of the translation procedure in Sect. 5. Due
to space constraints, the interaction shows only two life-
lines. However, the algorithm is general and supports an
arbritary number of lifelines. We would like to note that

the algorithm also allows nesting of combined fragments.
However, to avoid unnecessary intricacies during its walk-
through, nested fragments are not presented in the example.

5. Automatic Extraction of the PEPA Model

The rationale behind the translation algorithm is to
model each participating lifeline as one sequential compo-
nent. If the lifeline is involved in a par fragment, a se-
quential component is used for each lifeline and for each
operand. All the sequential components of a par fragment
synchronise over shared actions, in order to make them start
when the parallel fragment is entered, and stop when they
finish their execution.

An alt fragment is interpreted stochastically—a timed
decision-making activity is assigned to the fragment, and
each operand has an execution probability. In PEPA, this
is modelled with the choice operator. A similar treatment
is given to a loop fragment, the ratio between executing an
iteration and exiting the loop is governed by the annotated
number of iterations, normalised by the rate associated to
the fragment. For instance, a loop with N iterations may be
modelled by unrolling the process definitions of the loop N
times. Alternative options for loop are not further discussed
in this paper.

A MessageOccurrenceSpecification is used to create a
shared action type between the communicating lifelines. In
PEPA, the individual rates involved in a shared activity may
be either active or passive—at least one rate must be active,
however. In this context, a shared activity for a message will
always involve two components. We assign the active rate
to the sequential component of the sending lifeline, whereas
the component of the receiving lifeline is made passive.
This is just a convention—an equivalent performance model
would be obtained if the rates were swapped because the
composition of the two components would evolve with the
same overall rate.

5.1. Methodology

In the UML meta-model an interaction is defined in
terms of interaction fragments. Fragments are defined re-
cursively, i.e. multiple levels of nesting are allowed. The
strategy for the visit of a SD is a depth-first traversal of
an interaction fragment. The operands of a combined frag-
ment are visited in the same order as they are drawn in the
diagram. There are fragments, such as InteractionOperand,
with a list-valued attribute of ordered fragments. When such
a fragment is encountered, the elements of the list are vis-
ited in reverse order. As a result, if two message occurrence
specifications are connected by a chain of events (e.g., one
is the send event and the other is the receive event of the
same message) the successor is traversed first. This visit

5

strategy is recursive, and the termination condition is rep-
resented by the visit of basic fragments such as instances
of ExecutionSpecification, MessageOccurrenceSpecifica-
tion, or ExecutionOccurrenceSpecification. Whilst the first
two convey performance-related information, as discussed
above, an ExecutionOccurrenceSpecification is not signifi-
cant here, and its visit does not alter the performance model.
The SD in Fig. 1 has two instances of such a fragment, cor-
responding to the finish events of the behaviour execution
specifications of m4 and m5.

The construction of the performance model is incremen-
tal, i.e. during the visit of a fragment some manipulations
are carried out on the PEPA description. In the remainder of
this section an algorithm is presented for each supported in-
teraction fragment. All the algorithms take as input an array
of PEPA constants. Each element of the array is a derivative
of the sequential component of the lifeline, and it indicates
the PEPA behaviour of the lifeline that comes after the vis-
ited fragment. This array will be referred to as the variable
targets in the pseudo-code descriptions. We assume that the
lifelines are indexed over integers 1 . . . L . A target of a life-
line can be accessed by a pointer to the lifeline or by the
lifeline index, interchangeably. Finally, each algorithm will
return an array of constants. Each constant refers to the be-
haviour of a lifeline when the visited fragment is executed.

5.2. Notation

In the pseudo-code which describes the translation pro-
cedure for each supported element, the variable self will be
referred to as a pointer to the currently visited interaction
fragment. We also assume that the tagged values of inter-
est are accessible as fields of self. For instance, self.rate
denotes the rate associated with the interaction fragment.
Likewise, the navigation of the UML model is achieved
through fields. For instance, in a message occurrence speci-
fication, self.lifeline will be the pointer to the lifeline which
covers that occurrence specification. Finally, a number of
helper functions will be used during the traversal. Details
on their implementation are straightforward and are omit-
ted due to lack of space.

addComponent(Constant[N]) Adds an array of sequen-
tial compoentns to the system equation of the PEPA
model and composes it with the existing system equa-
tion. The set of the new cooperation is empty. The ar-
ray represents a sub-tree of the system equation, whose
root is added to a set denoted by P .

createAction(InteractionFragment) Creates a PEPA ac-
tion type uniquely associated with the given interaction
fragment. It accepts instances of MessageOccurrence-
Specification and ExecutionSpecification.

createConstant(OccurrenceSpecification) Returns a new
PEPA constant which uniquely identifies the behaviour
of the occurrence specification.

isCovering(int, InteractionFragment) Returns true if the
lifeline index by the integer is covering the interaction
fragment.

participant(MessageOccurrenceSpecification) Returns
the other lifeline involved in the communication
related to the message occurrence specification.

update(Constant[], Lifeline, Constant) Replaces the cur-
rent target of the lifeline with the constant supplied.

visitList(List, Constant[]) Visits an ordered list of Inter-
actionFragments, according to Sect. 5.1.

5.3. Algorithms

We now describe the automatic translation procedure
by means of pseudo-code descriptions. The procedure has
three steps. The first step consists of a preliminary set-up of
auxiliary data structures. Then, the UML Interaction rep-
resenting the SD is traversed. During this step new defini-
tions are added to the PEPA model and nodes are added to
the system equation. Finally, the third step visits the sys-
tem equation and manipulates its cooperation sets to enable
synchronisation between the sequential components.

5.3.1 Initialisation

This phase will set up a skeletal system equation of the
performance model by associating an array of components
with each lifeline. The size of the array is extracted from
the poolSize property of the lifeline. Initially, such arrays
will be composed with empty action sets. As the diagram
is visited, new sequential components are added to the sys-
tem equation to reflect the presence of par fragments. The
pseudo-code is shown in Algorithm 1. Line 8 starts off the
translation by visiting the fragments of the interaction.

Algorithm 1 Initialisation
1: System ⇐ ∅

2: initTgt ⇐ new Constant[L]
3: for i = 1 to L do
4: Const ⇐ createConstant(lifelinei)
5: addComponent(Const[lifelinei.poolSize])
6: initTgt[i] ⇐ Const
7: end for
8: sdTgt ⇐ visitList(interaction.fragments, initTgt)
9: for i = 1 to L do

10: initTgt[i] def
= sdTgt[i]

11: end for

6

5.3.2 MessageOccurrenceSpecification

The translation for a MessageOccurrenceSpecification is
shown in Algorithm 2. Notice that this algorithm is also
applied for messages whose occurrence specifications are
on the same lifeline. However, in this case the delay may
be omitted (line 4). If present, it is modelled as an unshared
(individual) action.

Algorithm 2 MessageOccurrenceSpecification
1: action ⇐ createAction(self)
2: rate ⇐ self.rate
3: if partner = self then
4: if rate = null then
5: return targets
6: end if
7: else
8: if self.event is a receive event then
9: rate ⇐ >

10: end if
11: end if
12: LocalState ⇐ createConstant(self)
13: LocalState def

= (action, rate).targets[self .lifeline]
14: return update(targets, self.lifeline, LocalState)

5.3.3 ExecutionSpecification

Algorithm 3 shows the translation of an execution specifica-
tion into an independent activity performed by the sequen-
tial component of the involved lifeline. Performance anno-
tation of execution specifications is not mandatory (line 1).

Algorithm 3 ExecutionSpecification
1: if self.rate = null then
2: return targets
3: end if
4: LocalState ⇐ createConstant(self)
5: action ⇐ createAction(self)
6: LocalState def

= (action, self.rate).targets[self .lifeline]
7: return update(targets, self.lifeline, LocalState)

5.3.4 Combined Fragments

The pseudo-code for the translation of a par fragment is
shown in Algorithm 4. The visit of each operand will re-
turn the initial local states of the lifelines when that parallel
branch is executed (line 15). Such states are prefixed with
a start activity for them to synchronise when the parallel
fragment is entered (line 18). According to the semantics of
SDs, all the executions within a parallel fragment must be

Algorithm 4 Parallel Fragment (par)
1: parTgt ⇐ targets
2: for operand in self.operands do
3: opTgt ⇐ new Constant[L]
4: for i = 1 to L do
5: if isCovering(i, self) then
6: opTgt[i] = new Constanti,self
7: if first operand then
8: opTgt[i] def

= (stopself , self.rate).targets[i]
9: parTgt[i] = opTgt[i]

10: end if
11: else
12: opTgt[i] = targets[i]
13: end if
14: end for
15: opTgt ⇐ visitList(operand.fragments, opTgt)
16: for j = 1 to L do
17: if isCovering(j, self) then
18: Starterj,self

def
= (startself , self.rate).opTgt[j]

19: if not first operand then
20: opTgt[j] def

= (stopself , self.rate).Starterj,self
21: NC ⇐ lifeline j .poolSize
22: addComponent(Starterj,self [NC])
23: end if
24: opTgt[j] ⇐ Starterj,self
25: end if
26: end for
27: end for
28: return parTgt

finished before the fragment’s successor can start its execu-
tion. Here, a shared stop activity serves as a synchronisa-
tion point for all the parallel branches (lines 8,20). Here we
assume symmetric synchronisation delays, although alter-
native situations can be captured through proper stereotype
annotations.

A loop fragment is translated into PEPA as shown in Al-
gorithm 5.

Algorithm 6 shows the pseudocode to translate an alt
fragment into a nondeterministic choice between the alter-
native operands. The visit of one operand will return the
initial local states of the PEPA components when that path
is taken (opTgt, line 4). Hence, after all the operands are
visited, for each lifeline there is a list of all its alternative be-
haviours. The elements of such a list are composed through
the PEPA choice operator, for each lifeline (choices, line 2).
To model the decision-taking process at the alt fragment,
each element is prefixed with an activity (line 14) whose
duration reflects the probability with which that path is cho-
sen.

7

Algorithm 5 Loop fragment (loop)
1: loopTgt ⇐ new Constant[L]
2: for i = 1 to L do
3: if isCovering(i, self) then
4: loopTgt[i] ⇐ Loopself ,i
5: else
6: loopTgt[i] ⇐ targets[i]
7: end if
8: end for
9: opTgt ⇐ visitList(self.operand.fragments, loopTgt)

10: firstLifeline ⇐ true
11: rep ⇐ self.operand.rep
12: for i = 1 to L do
13: if isCovering(i, self) then
14: if firstLifeline then
15: loopRate =

rep
rep+1 · self.rate

16: exitRate =
1

rep+1 · self.rate
17: firstLifeline ⇐ false
18: else
19: loopRate = exitRate = >

20: end if
21: Loopself ,i

def
= (loopself , loopRate).opTgt[i] +

(exitself , exitRate).targets[i]
22: end if
23: end for
24: return loopTgt

5.3.5 Post-visit

Algorithm 7 is applied to update the cooperation sets of the
system equation. For each visited node, it adds to the coop-
eration set all the actions that are enabled by both children.
Here,

−→
A (C) the set of all the actions enabled by C and its

derivatives [6]. The algorithm is defined recursively and is
started by update(System). The recursion terminates with
the visit of an array of sequential components in P .

5.4. Walkthrough Example

As a practical application, let us consider the construc-
tion of the performance model of the SD in Fig. 1. Let
[A0, B0] the initial array of targets as computed upon initial-
isation. Let System be the constant that defines the system
equation.

System def
= A0[NA] ‖ B0[NB] (3)

The order of the traversal of the interaction is: 1) m′

6@B; 2)
m′

6@A; 3) behm6 ; 4) m6@A; 5) m6@B; 6) par fragment;
5) loop fragment; 6) alt fragment. Each top-level fragment
is examined in a separate paragraph. For ease of reference,
the values of the array of targets are also shown.

m′
6@B, targets = [A0, B0] By Algorithm 2 the new process

Algorithm 6 Alternative Fragment (alt)
1: choiceTgt ⇐ new Constant[L]
2: choices ⇐ new Choice[L]
3: for operand in self.operands do
4: opTgt ⇐ visitList(operand.fragments, targets)
5: firstLifeline ⇐ true
6: for i = 1 to L do
7: if isCovering(i , self) then
8: if firstLifeline then
9: rate = operand.prob · self.rate

10: firstLifeline ⇐ false
11: else
12: rate ⇐ >

13: end if
14: prefix ⇐ (pathself ,operand, rate).opTgt[i]
15: choices[i].addOperand(prefix)
16: end if
17: end for
18: end for
19: for i = 1 to N do
20: if isCovering(i, self) then
21: Choicei,self

def
= choices[i]

22: choiceTgt[i] ⇐ Choicei,self
23: else
24: choiceTgt[i] ⇐ targets[i]
25: end if
26: end for
27: return choiceTgt

definition B1
def
= (m′

6, >).B0 is added.

m′
6@A, targets = [A0, B1] We create A1

def
= (m′

6, repm6).A0.
The rate is active because A is sending the message.

behm6 , targets = [A1, B1] This behaviour specification is not
stereotyped. Hence, the visit simply returns the targets that
were supplied as input.

m6, targets = [A1, B1] With similar arguments to m′

6, we add

A2
def
= (m6, >).A1 and B2

def
= (m6, reqm6).B1.

par fragment, targets = [A2, B2] Let start1, stop1 be the syn-
chronisation actions of the behaviour, both performed with
rates rsync. Before visiting the operands, the targets to be

Algorithm 7 Function update(n)

1: if n 6∈ P then
2:

−→
A l ⇐ update(n.left)

3:
−→
A r ⇐ update(n.right)

4: n.set ⇐
−→
A l ∩

−→
A r

5: end if
6: return

−→
A (n)

8

passed are prepared (lines 2–14). If a lifeline does not cover
the fragment, there is no manipulation of targets. Else, new
constants are created. For the first operand, the targets are
[A3, B3], A3

def
= (stop1, rsync).A2, B3

def
= (stop1, rsynch).B2.

The visit of the first operand generates one process def-
inition for lifeline A, A4

def
= (m4, reqm4).A3. Two defini-

tions are generated for lifeline B: B4
def
= (behm4 , rbehm4

).B3

and B5
def
= (m4, >).B4. (Here, the behaviour specifica-

tion is translated into an independent activity because it is
stereotyped.) The targets returned by the first operand are
[A4, B5]. The start activity is now prefixed to those targets
(line 21): StarterA,1

def
= (start1, rsync).A4 and StarterB,1

def
=

(start1, rsync).B5.
The second operand is passed placeholder targets

[A5, B6], which will be defined after the operand is vis-
ited. Similarly to the first operand, the visit of the fragments
will result in following two new definitions for lifeline B
and one for lifeline A: B7

def
= (behm5 , rbehm5

).B6, B8
def
=

(m5, >).B7; A6
def
= (m5, reqm5).A5. Thus, the array returned

by the second operand is [A6, B8]. Now, the start activity
is prefixed to such targets: StarterA,2

def
= (start1, rsync).A6,

StarterB,2
def
= (start1, rsync).B8. Then, the placeholder tar-

gets are defined: A5
def
= (stop1, rsync).StarterA,2, B6

def
=

(stop1, rsync).StarterB,2. The system is updated thus:

System def
=

((
A0[NA] ��

L
B0[NB]

)
��
M

StarterA,2[NA]
)

��
K

StarterB,2
(4)

The visit returns the targets of the first operand
[StarterA,1, StarterB,1].

loop fragment, targets = [StarterA,1, StarterB,1] Both life-
lines are involved in the loop, hence lt = [Loop1, Loop2]
(line 1–8). Line 9 adds two definitions for each life-
line: A7

def
= (m′

3, >).Loop1, A8
def
= (m3, reqm3).A7; B9

def
=

(m′

3, repm3).Loop2, B10
def
= (m3, >).B9. The targets returned

are [A8, B10]. Lines 12–22 define the Loop processes:
Loop1

def
= (loop, i

i+1 rloop).A8 + (exit, 1
i+1 rloop).StarterA,1;

for the second lifeline, rates are passive, i.e.
Loop2

def
= (loop, >).B10 + (exit, >).StarterB,1.

alt fragment, targets = [Loop1, Loop2] The visit of

the first operand generates: A9
def
= (m′

1, >).Loop1,
A10

def
= (m1, reqm1).A9; B11

def
= (m′

1, repm1).Loop2,
B12

def
= (m1, >).B11; The array returned is [A10, B12]. Let

ChoiceA be the choice operator for lifeline A. Its temporary
definition is: ChoiceA

def
= (path1, p1ralt).A10. Similarly,

ChoiceB
def
= (path1, >).B12. The visit of the first operand

generates: A11
def
= (m′

2, >).Loop1, A12
def
= (m2, reqm2).A11;

B13
def
= (m′

2, repm2).Loop2, B14
def
= (m2, >).B13. The array

returned is [A12, B14]. ChoiceA is added a new operand
for the second path, i.e. (path2, (1 − p1)ralt).A12. Simi-
larly, (path2, >).B14 is added to ChoiceB. This fragment
returns [ChoiceA, ChoiceB]. Finally, the visit of the SD is
completed with A0

def
= ChoiceA and B0

def
= ChoiceB.

Post-visit and workload The cooperation sets
(cfr. Eq. 4) are modified as follows: L =

{path1, path2, loop, exit, start1, stop1, m4} ∪
{
mi, m′

i :
i ∈ {1, 2, 3, 6}

}
; M = K = {start1, m5, stop1}. System is

composed with the workload overW = {path1, path2} (cfr.
Eq. 1). The complete model is presented in Appendix A.

6. Numerical Results

In this section we illustrate a typical workflow to which
a PEPA model of a SD may be subjected to carry out quan-
titative analysis. We consider the model from Figure 1 with
the parameter set below.

Rates and probabilities Population sizes
p1 0.9 NW 100
i 3 NA 100
r 0.2 NB 100
reqm1 10.0
reqm2 2.0

The parameters not shown in the table were set to 1.0. The
table below shows the exponential growth of the state space
size of the aggregated Markov chain with different settings
for the number of copies of the system’s processes. Clearly,
Markovian analysis would not be viable with the parameter
set shown above.

NW NA NB Size
1 1 1 40
4 1 1 100
4 2 2 1005
5 4 4 43656

Conversely, the interpretation against the fluid-flow se-
mantics produces a system of 37 ODEs regardless of the
population sizes. Such a system can be integrated numer-
ically, resulting in a time series of a (continuous) popula-
tion level for each model component. This has a clear in-
terpretation with regard to the original UML model, as a
PEPA component represents a particular occurrence on a
sequence diagram’s lifeline. Thus, at each point, the time
series shows the mean number of elements of the thread
pool that are witnessing a particular event.

ODEs provide a scalable means to sensitivity analysis,
i.e. the study of the impact of a parameter on the overall sys-
tem performance. For instance, the local state Requesting of
the workload component is interpreted as the state in which

9

(a) (b)

Figure 2. Sensitivity analysis.

users are waiting for service. Thus, the higher this number,
the less responsive the system is perceived to be.

Figure 2(a) shows how the performance is affected by
changes in the users’ thinking time. This analysis gives in-
sights into the transient as well as steady-state behaviour of
the system. For instance, the curve for r = 0.2 starts to
rise at t ∼ 5 s. A slow start may also be noticed in the
other curves, although less noticeably. This is due to how
the workload is modelled: At t = 0, all the users start off by
executing the think action, hence the system is idle. This is
followed by a sharp increase, when the users trigger the ex-
ecution of the sequence. In the steady-steady, the utilisation
of the system clearly increases with faster thinking times.

Another class of parameters of interest is the thread pool
size of the system’s processes. In real-world situations it
is usually necessary to make trade-offs between the cost of
deploying concurrent resources (in terms of CPU or mem-
ory, for instance) and the relative gain from doing so. The
diagram in this paper exhibits a high degree of cooperation
between the two participating lifelines. Thus, the system
cannot behave satisfactorily if the thread pool sizes of the
two components are not well balanced. Figure 2(b) shows
sensitivity analysis performed by varying the thread pool
size of lifeline A. As expected the performance deteriorates
as NA decreases.

7. Conclusion

In this paper we presented an automatic procedure to
map UML sequence diagrams into PEPA. We exploit the
capability of the calculus to be interpreted against both
a Markovian semantics and a continuous-state semantics
which leads to a system of ODEs. The procedure gen-
erates PEPA models which can take full advantage of
the latter, though symmetries can also be exploited by
aggregation techniques to produce a smaller underlying
Markov process. The algorithm, here illustrated by means
of a running example, has a proof-of-concept implemen-
tation available at http://homepages.inf.ed.ac.
uk/mtribast/uml.

References

[1] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni.
Model-based performance prediction in software develop-
ment: A survey. IEEE Trans. Software Eng., 30(5):295–310,
2004.

[2] C. Canevet, S. Gilmore, J. Hillston, L. Kloul, and P. Stevens.
Analysing UML 2.0 Activity Diagrams in the Software Per-
formance Engineering Process. In Dujmovic et al. [4], pages
74–78.

[3] C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and
P. Stevens. Performance Modelling with UML and Stochas-
tic Process Algebras. IEE Proceedings: Computers and Dig-
ital Techniques, 150(2):107–120, Mar. 2003.

[4] J. J. Dujmovic, V. A. F. Almeida, and D. Lea, editors. Pro-
ceedings of the Fourth International Workshop on Software
and Performance, WOSP 2004, Redwood Shores, Califor-
nia, USA, January 14-16, 2004. ACM, 2004.

[5] S. Gilmore, J. Hillston, and M. Ribaudo. An efficient algo-
rithm for aggregating PEPA models. IEEE Transactions on
Software Engineering, 27(5):449–464, May 2001.

[6] J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[7] J. Hillston. Fluid flow approximation of PEPA models. In
Proceedings of the Second International Conference on the
Quantitative Evaluation of Systems, pages 33–43, Torino,
Italy, Sept. 2005. IEEE Computer Society Press.

[8] J. López-Grao, J. Merseguer, and J. Campos. From UML ac-
tivity diagrams to Stochastic Petri nets: application to soft-
ware performance engineering. In Dujmovic et al. [4], pages
25–36.

[9] Object Management Group. UML 2.2.1 Superstructure
Specification. OMG, 2007. OMG document number
formal/05-07-04.

[10] Object Management Group. UML Profile for Modeling and
Analysis of Real-Time and Embedded Systems (MARTE).
Beta 1. OMG, 2007. OMG document number ptc/07-08-
04.

[11] D. Petriu and H. Shen. Applying the UML performance
profile: Graph grammar-based derivation of LQN models
from UML specifications. In TOOLS’02, volume 2324 of
LNCS, pages 159–177. Springer, 2002.

[12] D. Petriu and C. Woodside. An intermediate metamodel
with scenarios and resources for generating performance
models from UML designs. Softw. Syst. Model., 6:163–184,
2007.

[13] D. Petriu, C. M. Woodside, D. Petriu, J. Xu, T. Israr,
G. Georg, R. France, J. Bieman, S. Houmb, and J. Jurens.
Performance Analysis of Security Aspects in UML Models.
In V. Cortellessa, S. Uchitel, and D. Yankelevich, editors,
WOSP, pages 78–89. ACM, 2007.

[14] M. Tribastone and S. Gilmore. Automatic Extraction of
PEPA Performance Models from UML Activity Diagrams
Annotated with the MARTE Profile. 2008. To appear in
WOSP’08.

[15] C. Woodside, D. Petriu, D. Petriu, H. Shen, T. Israr, and
J. Merseguer. Performance by unified model analysis
(PUMA). In WOSP, pages 1–12. ACM, 2005.

10

A. The Complete PEPA Model

This appendix is included for the benefit of the review-
ers and will be removed if the paper is accepted. We show
here the complete PEPA model derived from this example
sequence diagram, shown earlier.

A.1. Sequential Components

A.1.1. Sequential Component A0

A0
def
= ChoiceA

ChoiceA
def
= (path1, p1ralt).A10
+ (path2, (1 − p1)ralt).A12

A10
def
= (m1, reqm1).A9

A9
def
= (m′

1, >).Loop1

A12
def
= (m2, reqm2).A11

A11
def
= (m′

2, >).Loop1

Loop1
def
= (loop, i

i+1 rloop).A8

+ (exit, 1
i+1 rloop).StarterA,1

A8
def
= (m3, reqm3).A7

A7
def
= (m′

3, >).Loop1

StarterA,1
def
= (start1, rsync).A4

A4
def
= (m4, reqm4).A3

A3
def
= (stop1, rsync).A2

A2
def
= (m6, >).A1

A1
def
= (m′

6, repm6).A0

This component follows A’s lifeline through the alt, loop
and par fragments to the final message m6. It follows A’s
lifeline through the upper part of the par fragment, incor-
porating message m4.

A.1.2. Sequential Component StarterA,2 This compo-
nent follows A’s lifeline through the lower half of the par
fragment, incorporating message m5.

StarterA,2
def
= (start1, rsync).A6

A6
def
= (m5, reqm5).A5

A5
def
= (stop1, rsync).StarterA,2

The start1 and stop1 activities ensure that the m5 activity
cannot be executed too early.

A.1.3. Sequential Component B0 Analogously to the
component A0 shown above, this component follows B’s
lifeline through the alt, loop and par fragments to the final
message m6. It follows B’s lifeline through the upper part
of the par fragment, incorporating message m4.

B0
def
= ChoiceB

ChoiceB
def
= (path1, >).B12
+ (path2, >).B14

B12
def
= (m1, >).B11

B11
def
= (m′

1, repm1).Loop2

B14
def
= (m2, >).B13

B13
def
= (m′

2, repm2).Loop2

Loop2
def
= (loop, >).B10
+ (exit, >).StarterB,1

B10
def
= (m3, >).B9

B9
def
= (m′

3, repm3).Loop2

StarterB,1
def
= (start1, rsync).B5

B5
def
= (m4, >).B4

B4
def
= (behm4 , rbehm4

).B3

B3
def
= (stop1, rsynch).B2

B2
def
= (m6, reqm6).B1

B1
def
= (m′

6, >).B0

A.1.4. Sequential Component StarterB,2 This compo-
nent follows B’s lifeline through the lower half of the par
fragment, incorporating message m5.

StarterB,2
def
= (start1, rsync).B8

B8
def
= (m5, >).B7

B7
def
= (behm5 , rbehm5

).B6

B6
def
= (stop1, rsync).StarterB,2

As before, the start1 and stop1 activities introduce synchro-
nisation points which ensure that the m5 activity cannot be
executed too early.

11

A.1.5. Sequential Component Thinking This component
models the workload and requests either path1 or path2 in
the alt fragment.

Thinking def
= (think, r).Requesting

Requesting def
= (path1, >).Thinking
+ (path2, >).Thinking

A.2. System Equation

A PEPA model is formed by composing sequential com-
ponents. The system equation defines the number of repli-
cations of each sequential components (e.g. NW copies of
Thinking are requested using Thinking[NW]). In addition it
configures the sequential components by defining the coop-
eration sets which they must operate under. For example,
below NA copies of the sequential component initiated in
state A0 are required to cooperate with NB copies of the se-
quential component initiated in state B0 over the activities
in the set L.

System def
= Thinking[NW] ��

W(((
A0[NA] ��

L
B0[NB]

)
��
M

StarterA,2[NA]
)

��
K

StarterB,2[NB]
)

W = {path1, path2}

L = {path1, path2, loop, exit, start1, stop1, m4}∪{
mi, m′

i : i ∈ {1, 2, 3, 6}
}

M = {start1, stop1, m5}

K = M

12

