
Applying Quasi-Separability to Markovian Process AlgebraNigel Thomas Stephen GilmoreDepartment of Computer ScienceThe University of Edinburghfnat,stgg@dcs.ed.ac.ukAbstractStochastic process algebras have become an accepted part of performance modelling over recent years.Because of the advantages of compositionality and 
exibility they are increasingly being used to modellarger and more complex systems. Therefore tools which support the evaluation of models expressedusing stochastic process algebra must be able to utilise the full range of decomposition and solutiontechniques available. In this paper we study a class of models which do not give rise to a product formsolution but can nevertheless be decomposed into their components without loss of generality. We alsoexemplify the use of the Markovian process algebra PEPA with the spectral expansion technique whichenables a class of PEPA models with in�nite state space to be solved numerically.1 IntroductionThe advantages of using a stochastic process algebra to specify performance models are well documented(see Hillston [9] for example). In brief, a process algebra allows models to be compared e.g. for equivalence;to be analysed e.g. to reveal deadlocks or reducible structures; to be constructed at a higher level ofabstraction, possibly by designers, rather than performance modellers; and in some cases to be solvedautomatically, either exactly or through the construction of approximations. The study of stochasticprocess algebra has now reached a stage whereby we now wish to consider not only how systems are tobe speci�ed, but also how complex systems can be simpli�ed and solved automatically. One part of thisresearch has been the study of process algebra models that give rise to product form solutions [6, 10, 17].However, the class of performance models exhibiting product form is limited. In addition it is not alwaysnecessary to derive a full product form decomposition.Some stochastic process algebra work on product form has been based on widely known cases ofproduct form solution in queueing network models [6, 11]. In this paper we consider an alternativemethod of model decomposition which can be found in the queueing network literature, quasi-separability.This technique has been used in the study of systems which su�er breakdowns. Very little work has beendone involving breakdowns a�ecting more than one queue. Notable exceptions to this are Mitrani et al[16, 20] and Mikou et al [12, 13], none of which give rise to product form solutions. However, in [16] and[20] the models were shown to be quasi-separable. Because of that property, one can determine exactlythe performance measures in models with many large elements. An individual element can be analysedin isolation from others, provided that a full description of the in
uence of other elements of the systemis included as a state variable.We illustrate this approach using a model of parallel fault-protected gateways to a network. Messagesare generated by users requesting access to the network and are routed through one of the parallelgateways. The gateways are subject to failures that interrupt access to the network for random periodsof time. Messages may be directed away from gateways that are known to be faulty, but messages alreadyawaiting access at a faulty gateway are held until repair is complete. No messages are lost. In generalthe gateways are subject to failures and repairs of di�erent rates. In addition messages are processed atdi�erent rates at di�erent gateways, but the service they receive is functionally equivalent. This systemis modelled as a system of M/M/1 queues in parallel.A common misconception is that a process algebra is not a good way to specify queueing problems.One reason for this is that it is very easy to informally specify queueing problems using a common1



understanding amongst queueing theorists. However, stochastic process algebras provide and \easy touse" interface [15] as well as a formal basis for the analysis and solution of complex stochastic systems.Many examples appear in the literature of queues speci�ed using stochastic process algebras. For the mostpart these are very simple queueing systems used to illustrate some properties of the process algebra.However, a few papers do exist that use stochastic process algebra to study more complex queueingsystems, amongst these are Herzog and Mertsiotakis [7], Bernardo et al [1] and Thomas and Hillston[18, 19].In the following sections we will give a brief overview of the Markovian process algebra PEPA,introduce the concept of quasi-separability, de�ne the model we wish to study using PEPA and showhow it can be solved directly from the PEPA speci�cation using the spectral expansion method.2 PEPAPEPA, being a Markovian Process Algebra, only supports actions that occur with rates that are negativeexponentially distributed.Speci�cations written in PEPA represent Markov processes and can be mapped to a continuoustime Markov chain (CTMC) for analytic or numerical solution. In PEPA systems are modelled asan interaction of components and activities, corresponding to states and transitions in the underlyingMarkov process. Each activity has an action type (or simply type). The duration of each activity isrepresented by the parameter of the associated exponential distribution: the activity rate (or simplyrate) of the activity. This parameter may be any positive real number, or the distinguished symbol >(read as unspeci�ed).2.1 Syntax and informal semanticsPEPA provides a small set of combinators. These combinators, together with their names and interpre-tations, are presented informally below. A much fuller explanation and a speci�cation of the operationalsemantics of PEPA is given in [9].Pre�x: (�; r):P Pre�x is the basic mechanism by which the behaviours of components are con-structed. The component carries out activity (�; r) and subsequently behaves as component P .Constant: A def= P Constants are components whose meaning is given by a de�ning equation; A def= Pgives the constant A the behaviour of the component P . This is how we assign names to components(behaviours). There is no explicit recursion operator but components of in�nite behaviour may be readilydescribed using sets of mutually recursive de�ning equations.Choice: P+Q The component represents a system which may behave either as component P or as Q:all the current activities of both components are enabled. The �rst activity to complete, determined bya race condition, distinguishes one component, the other is discarded. The choice combinator representscompetition between components.Hiding: PnL The component behaves as P except that any activities of types within the set L arehidden, i.e. such an activity exhibits the unknown type > and the activity can be regarded as an internaldelay by the component.Cooperation: P ��L Q The components proceed independently with any activities whose types donot occur in the cooperation set L. The activities not in L are individual activities. However, activitieswith action types in the set L require the simultaneous involvement of both components (shared activities).These activities are only enabled in P ��L Q when they are enabled in both P and Q.The published MPAs di�er on how the rate of shared activities are de�ned [8]. In PEPA the sharedactivity occurs at the rate of the slowest participant. If an activity has an unspeci�ed rate in a component,the component is passive with respect to that action type. This means that the component does notin
uence the rate at which any shared activity occurs. The cooperation combinator associates to the leftbut brackets may also be used to clarify the meaning. The parallel combinator k is used as shorthand todenote synchronisation with no shared activities, i.e. PkQ � P ��; Q.2.2 Execution strategyA race condition governs the dynamic behaviour of a model whenever more than one activity is en-abled. This has the e�ect of replacing the non-deterministic branching of classical process algebra withprobabilistic branching. The probability that a particular activity completes is given by the ratio of the2



activity rate to the sum of the activity rates of all the enabled activities. Any other activities whichwere simultaneously enabled will be interrupted or aborted. The memoryless property of the exponentialdistribution makes it unnecessary to record the remaining lifetime in either case.3 Quasi-SeparabilityConsider a system which consists of N separate components where the state of each component i can bedescribed by the pair (Xi; Yi). The state of the whole system therefore can be described by the pair ofvectors (X;Y), where X = (X1; X2; : : : ; XN ) and Y = (Y1; Y2; : : : ; YN). If it is possible to analyse thebehaviour of each component, i, of the system exactly by only considering those variables that describeit, i.e. (Xi; Yi), then the system is said to be separable. In this case all the components are independentand a product form solution exists. For the system to be quasi-separable it is necessary only that it ispossible to analyse the behaviour of each component, i, of the system exactly by only considering one ofthe pair of system state vectors and the single variable from the other vector that is related to componenti, i.e. either (X; Yi) or (Xi;Y). A model of N such components, (X;Y), may be reduced in this way toN submodels, (X; Yi), if the rates of actions which change the state of Yi are determined only by thecurrent states of Yi and X and the rates of actions which change the state of Xi are determined only bythe current state of X.The analysis of these submodels gives rise to expressions for their steady-state marginal probabilities.As stated above, these marginal probabilities do not, in general, give rise to expressions for the jointprobability of the whole system, i.e. no product form solution exists. However, it is still possible tocalculate many interesting performance measures, such as the average response time of the system, usingthese marginal probabilities.Consider such a system of N components expressed in PEPA. The components are modelled asPEPA components, A1; : : : ; AN say. The interactions of these components are co-ordinated by anothercomponent B, which we will refer to as the scheduler. These components are related to the state spaceof the underlying CTMC of the form discussed above such that, B represents all the states X and Airepresents at least all the states Yi, i = 1; : : : ; N . That is, the Ai's represent those parts of the systemthat are considered in isolation and B represents those parts which are not. Note that in general eachcomponent Ai may represent more than just Yi as it may be desirable to include information that restrictsthe set of possible legal pairs (X; Yi).No actions are synchronised between the components A1; : : : ; AN , but the state of Ai is determinedby actions that are synchronised between it and B, contained in the set L. The state of the scheduler,B, is determined only by actions which can be internalised. That is, actions which are individual actionsof B or which are shared actions such that B determines the rate of the action and the action cannot beblocked by the state of Ai. Thus the system can be described in the following way;(A1 k � � � kAN)��L BThe set of synchronised actions L can be rewritten as N subsets Li, i = 1; : : : ; N . The subset Li containsonly all the actions that are synchronised between B and Ai. Denote by Ci the set of all actions thatare synchronised between B and each Aj such that j 6= i, i.e.Ci = [8j 6=iLjClearly, Ci � L and L = (Li [ Ci), i = 1; : : : ; N . If the actions in the subsets Ci are such that theirrates are not in
uenced by Ai and the actions in the intersection Li \ Ci are such that their rates arenot in
uenced by Ak, k = 1; : : : ; N , then the system can be rewritten in the following way;(A1 ��L1 B)��C1 (A2 k � � � kAN)This is done without changing the underlying CTMC except in the order in which state space is exploredi.e. the rewritten model is isomorphic to the original model. The proof of this equivalence follows fromthe equational laws for isomorphic components and expansion law given in [9] and the restrictions on thesets L, L1 and C1 given above. In addition the subsystem,(A1 ��L1 B)can now be isolated from the system without altering the individual behaviour of A1 in any way on theconditions for L1 and C1 given above. The same approach can be applied for every Ai, Li and Ci to giveexpressions for all N subsystems. A system that can be treated in such a way satis�es the conditionsfor quasi-separability presented above. Clearly the characterisation presented here is in an idealised formand requires further development for much more general models to be considered.3



3.1 The PEPA AnalyserThe purpose of con�ning the expression of a performance model to a particular modelling notation is sothat the model can be automatically checked for the presence or absence of certain properties, amongthem quasi-separability. We are presently completing the implementation of a separability analyser forPEPA.The PEPA Analyser uses some of the routines which were developed for the PEPA Workbenchtogether with static analysis routines taken from the PEPA-to-Ada translator. Descriptions of those toolsare available elsewhere [3, 4]. The static analysis routines are used in the inference of the interfaces whichmodel components present to the rest of the system and also in determining the smallest cooperationsets for each pair of components in the model, considered in isolation.Given this information the PEPA Analyser classi�es components as being either slaves|becausetheir interaction is controlled by another component|or schedulers. Upon being able to build up a setof non-communicating slaves controlled by a scheduler the PEPA Analyser identi�es a re-con�gurationof the system equation which isolates a quasi-separable component. If the Analyser is unable to form aset of slaves controlled by a scheduler it announces that the system is not quasi-separable.4 ExampleIn this section we illustrate the application of quasi-separability using an example from the �eld ofnetworking. The model presented here is shown to be of the type de�ned in Section 3. The model isdecomposed into a set of submodels which are solved numerically using the spectral expansion technique.Finally some numerical results are presented.4.1 Model DescriptionWe consider a system where jobs from a common incoming stream may be directed to one of N alternativegateways, each of which consists of a single server and an unbounded queue. The service, breakdownand repair processes at the di�erent nodes are independent of each other and have di�erent parameters,in general. The consequences of a breakdown at a server are not too catastrophic: service stops and theexisting jobs remain in place; new arrivals during the subsequent repair period may be re-directed toother queues. There are no job losses.Jobs arrive into the system in a Poisson stream with rate �. There are N servers, each with anassociated unbounded queue, to which incoming jobs may be directed. Server k goes through alter-nating independent operative and inoperative periods, distributed exponentially with means 1=�k and1=�k, respectively. While it is operative, the jobs in its queue receive exponentially distributed serviceswith mean 1=�k, and depart upon completion. When a server becomes inoperative (breaks down), thecorresponding queue, including the job in service (if any), remains in place. Services that are interruptedin this way are eventually resumed from the point of interruption.The system con�guration at any moment is speci�ed by the subset, �, of servers that are currentlyoperative (that subset may be empty, or it may be the set of all servers): � � 
N , where 
N =f1; 2; : : : ; Ng. There are of course 2N possible system con�gurations. If, at the time of arrival, a new job�nds the system in con�guration �, then it is directed to node k with probability qk(�). These decisionsare independent of each other, of past history and of the sizes of the various queues. Thus, a routingpolicy is de�ned by specifying 2N vectors,q(�) = [q1(�); q2(�); : : : ; qN (�)] ; � � 
N ; (4.1)where qk(�) is the probability that a job is directed to the kth queue, such that for every �,NXk=1 qk(�) = 1Intuitively, it seems better not to send jobs to nodes where the server is inoperative, unless that isunavoidable. This suggests the following strategy. If the subset of operative servers in the current systemcon�guration is �, and that subset is non-empty, send jobs to node k only if k 2 �, with probabilityproportional to qk :qk(�) = qkP`2� q` ; k 2 � ; 4



qk(�) = 0, otherwise. If � is empty (i.e. all servers are broken), send jobs to node k with probabilityqk (k = 1; 2; : : : ; N). This last point ensures that no jobs are lost and preserves the system property ofbeing fault protected, i.e. the e�ect of a failure is not catastrophic.We now wish to specify this problem in the Markovian process algebra PEPA. There are severalpossible reasons for wanting to do this, some of which were outlined in the introduction. Ultimately thisapproach will enable us to use an extended version of the PEPA workbench [3] to analyse the structureof the model and obtain a numerical solution direct from a formal speci�cation. Such a speci�cation isgiven in Figure 1, for the case where there are 2 queues in parallel.Queue10 def= (arr1;>):Queue11Queue1j def= (arr1;>):Queue1j+1 + (serv1;>):Queue1j�1 ; 1 � j � 1Queue20 def= (arr2;>):Queue21Queue2j def= (arr2;>):Queue2j+1 + (serv2;>):Queue2j�1 ; 1 � j � 1Sigma0 def= (arr1; �q1):Sigma0 + (arr2; �q2):Sigma0 + (repair1; �1):Sigma1+ (repair2; �2):Sigma2Sigma1 def= (serv1; �1):Sigma1 + (arr1; �):Sigma1 + (fail1; �1):Sigma0+ (repair2; �2):Sigma3Sigma2 def= (serv2; �2):Sigma2 + (arr2; �):Sigma2 + (fail2; �2):Sigma0+ (repair1; �1):Sigma3Sigma3 def= (arr1; �q1):Sigma3 + (arr2; �q2):Sigma3 + (serv1; �1):Sigma3+ (serv2; �2):Sigma3 + (fail1; �1):Sigma2 + (fail2; �2):Sigma1(Queue10 kQueue20) ��farr1;arr2;serv1;serv2g Sigma3Figure 1: A PEPA model of two M=M=1 queues in parallel with state dependent routingAs with most languages, there are many ways to describe this model in PEPA. However, we wish notonly to produce a concise speci�cation, but also one that captures our view of this model and facilitatessimpli�cation and solution in a clear manner. We therefore propose a speci�cation consisting of passivebu�ers controlled by a scheduler which represents the operational state of the system, �. The index ofthe scheduler is an integer representation of the binary system operational state, �, where broken is 0and not broken is 1, e.g. if only server i is working the operational (scheduler) state is 2i and so on. Thescheduler states can readily be generated recursively, as can expressions for additional queues. Thereforethe description of the system given here can easily be expanded. An alternative approach to specifyingsuch a model might be to consider each of the servers as separate components, rather than collectivelyin the scheduler. Such an approach would conceivably give rise to fewer terms in the speci�cation whenthe number of queues is large, but would inevitably make any decomposition based on quasi-separabilitysomewhat harder.4.2 Deriving SubmodelsThe model presented here is multi-dimensional, its birth-death processes operate on more than onenumerical line. In all cases the state of the queues is dependent on the actions of the scheduler, thereforethey are not separable. However, the queues themselves can be considered independent of each otherand still maintain the same overall behaviour, i.e. this model exhibits quasi-separability. By consideringthe queues this way it is possible to �nd the marginal queue size probabilities, which can then be usedto �nd most performance measures of interest. 5



The actions arr1 and serv1 apply only to queue 1 and the actions arr2 and serv2 apply only toqueue 2. Hence the expressions,(Queue10 kQueue20) ��(arr1;arr2;serv1;serv2) Sigma3(Queue10 ��(arr1;serv1) Sigma3) ��(arr2;serv2)Queue20and (Queue20 ��(arr2;serv2) Sigma3) ��(arr1;serv1)Queue10are isomorphic. Thus, evaluating the �rst part of each of the last two expressions,Queue(k)0 ��(arr(k);serv(k)) Sigma3will give an exact result for the marginal queue size probabilities for queue k. Clearly if models have beenspeci�ed with passive actions in the scheduler then the scheduler expressions will need to be rewrittenbefore evaluating the synchronised process. The condition by which this method may be applied here isthat the state of the scheduler cannot be determined by the number of jobs in the queues and that thenumber of jobs in each queue cannot be determined by the number of jobs in any other queue.It is important to note that this approach does not give rise to expressions for the joint queue sizeprobabilities since, as stated, this system is not separable. However the average number of jobs in thesystem is given by the sum of the average number of jobs in each queue which can be found from themarginal queue size probabilities. Other performance measures of interest can also be derived from thesemarginal probabilities. It is clear therefore that this approach does not give a product form solution, butis very useful nevertheless.One further problem remains if we are to obtain a numerical solution to this model, namely that thestate space of this model is in�nite and the PEPA Workbench can only solve �nite state systems. Hencewe introduce the use of the spectral expansion solution method.4.3 Solution by Spectral ExpansionThere are several methods by which a model such as the one described here can be solved. One suchmethod is spectral expansion [2] and some evidence has been suggested in [14] which favours its use in thiscase. In addition spectral expansion has previously been used with the stochastic process algebra TIPP[15]. The results derived for TIPP and spectral expansion are readily applied to PEPA and the modelpresented here is consistent with restrictions imposed in [15]. Therefore we do not intend to reproducethese earlier results, but rather show how our model is solved using spectral expansion directly from itsspeci�cation in PEPA.The spectral expansion method has been widely used to solve models with a 2 dimensional state spacewhich is �nite in one dimension and in�nite in the other. Models can be solved in this way if, above acertain �nite threshold, the rate of change of state is independent of the current state. The reduced formof the model derived in the previous section is of this kind.In the model considered here the dimensions of the process are clearly evident, Queue(k) is in�niteand Sigma is �nite. Furthermore every scheduler state Sigmai forms a legal pair with every state ofQueue(k)j and the service and arrival rates are independent of the number of jobs in the queue (exceptthere is no service when the queue is empty). It is then an easy matter to form 3 matrices, A, B and C,from the PEPA speci�cation corresponding to changes in scheduler state Sigmai, increases in queue sizeand decreases in queue size:� Let A = ai;i0 (i; i0 = 0; 1; : : : ; 2N � 1) be the matrix of instantaneous transition rates correspondingto transitions between states of the scheduler, Sigmai to Sigmai0. In the above model thesetransitions correspond to failures and repairs of individual servers in the system.� Let B be the diagonal matrix whose ith element is equal to the arrival rate when the scheduler isin state Sigmai, i.e. �qk(�).� Let C be the diagonal matrix whose ith element is equal to the service rate when the scheduler is instate Sigmai. In this model the service rate is either �k or zero, depending on whether the serveris operative or not.In addition, let D be the diagonal matrix whose ith element is equal to the ith row sum of A, thetotal rate at which servers fail or are repaired when the scheduler is in state Sigmai. De�ne the (row)vector of equilibrium probabilities of all states with j jobs in the queue:v(j) = [p(0; j); p(1; j); : : : ; p(2N � 1; j)] ; j = 0; 1; : : : (4.2)6



When j > 0, these vectors (4.2) satisfy the balance equationsv(j)(D +B + C) = v(j)A+ v(j � 1)B + v(j + 1)C ; j = 1; 2; : : : (4.3)For j = 0, the equation is slightly di�erent:v(0)(D +B) = v(0)A+ v(1)C (4.4)In addition, all probabilities must sum up to 1:1Xj=0 v(j)e = 1 ; (4.5)where e is a column vector with 2N elements, all of which are equal to 1.The balance equations (4.3) can be rewritten in the formv(j)Q0 + v(j + 1)Q1 + v(j + 2)Q2 = 0 ; j = 0; 1; : : : (4.6)where Q0 = B, Q1 = A � D � B � C and Q2 = C. This is a homogeneous vector di�erence equationof order 2, with constant coe�cients. Associated with it is the characteristic matrix polynomial, Q(z),de�ned as Q(z) = Q0 +Q1z +Q2z2.Denote by z` and  ` the generalised eigenvalues and left eigenvectors of Q(z). These quantities satisfy `Q(z`) = 0 ; ` = 1; 2; : : : ; d, where d = degreefdet[Q(z)]g. The eigenvalues do not have to be simple,but it is assumed that if z` has multiplicity r, then it has r linearly independent left eigenvectors. Thisis invariably observed to be the case in practice. Under that assumption, any solution of (4.6) is of theform v(j) = dX̀=1 x` `zj̀ ; j = 0; 1; : : :where x` (` = 1; 2; : : : ; d), are arbitrary (complex) constants.Moreover, since only normaliseable solutions are acceptable, if jz`j � 1 for some `, then the cor-responding coe�cient x` must be set to 0. Numbering the eigenvalues of Q(z) in increasing order ofmodulus, the spectral expansion solution of equation (4.6) can be written asv(j) = cX̀=1 x` `zj̀ ; j = 0; 1; : : : (4.7)where c is the number of eigenvalues strictly inside the unit disk (each counted according to its multi-plicity). In the numerical experiments carried out with this model, the eigenvalues and eigenvectors ofQ(z) have always been observed to be simple, real and positive.Substituting (4.7), for j = 0 and j = 1, into (4.4), yields a set of homogeneous linear equations for theunknown coe�cients x`. There are 2N�1 independent equations in this set (rather than 2N ) because thegenerator matrix of the Markov process is singular. A further, non-homogeneous equation is providedby (4.5), which now becomes2NX̀=1 x` `e1� z` = 1These equations can be solved uniquely for the coe�cients x`, if c = 2N . This turns out to be the casewhen the total arrival rate is less than the total service rate over all states of the scheduler. Indeed, thisergodicity condition is equivalent to the requirement that Q(z) has exactly 2N eigenvalues strictly insidethe unit disk.Given the probabilities p(i; j), the average size of the queue is obtained fromL = 1Xj=1 j 2N�1Xi=0 p(i; j) (4.8)Hence, having determined the coe�cients x`, the average number of jobs in queue is obtained bysubstituting (4.7) into (4.8):L = 2NX̀=1 x`z` `e(1� z`)2 (4.9)Clearly this spectral expansion solution method will need to be carried out for every sub-modelobtained using quasi-separability to �nd the average number of jobs in the system as a whole. It is thena simple matter to �nd the average response time of the system using Little's Theorem.7



4.4 Numerical ResultsThe performance of any given con�guration of gateways is greatly dependent on the chosen routing vectorq and the external arrival rate, �. It is therefore a matter of considerable interest to optimise the routingvector with respect to given performance measures. Such a scenario for a 2 queue system is illustratedin Figure 2. Here the average response time of the system is given as a function of the routing vector(q; 1 � q) for a number of di�erent values of � given the same server characteristics. It is clear that apoor choice of routing vector, i.e. q is small, results in a relatively poor level of service for the users. Inaddition when the load is light the optimum routing vector is likely to favour the faster server, whereaswhen the load is increased the load is balanced between the servers.

q

W

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ=50

λ=75

λ=100

λ=125

Figure 2: Average response time, W , as a function of routing vector (q; 1� q)�1 = 250, �2 = 150, �1 = �2 = 0:1, �1 = �2 = 1The values of failure and repair rates, � and � also greatly a�ect the performance of the system. Ingeneral, frequent but short periods of inoperation cause much less disruption than infrequent but longones. This is illustrated in Figure 3, where the availability of each server does not change, but the durationof failure and repair periods does. In this example there is little di�erence in performance between thetwo cases when the repair periods are shortest. However, when the repair periods are extended theaverage response time of the system is greatly a�ected and the consequence of not optimising the routingvector is much more pronounced.5 Concluding RemarksIn this paper we have shown how complex models expressed in PEPA can be greatly simpli�ed by applyingquasi-separability. Decompositions of this kind are extremely useful when tackling models with large statespaces, especially when the state space grows exponentially with the addition of additional components.In the model used here to demonstrate this process the state space is in�nite in N dimensions andtherefore not generally tractable. However, the decomposition gives rise to N sub-models each of whichwas in�nite in one dimension only.Quasi-separability can be applied to a wide range of models to derive numerical results very e�ciently.While it does not generally give rise to expressions for joint probability distributions it does provide exactresults for many performance measures, possibly negating the need for more complex numerical analysis.Also the PEPA Analyser provides support so that models that exhibit quasi-separability can be identi�edautomatically. As such it is a very useful means of reducing the state space of large models.The characterisation we have derived here, both in general terms and in the context of PEPA isextremely limited. Clearly we need to consider more general forms of this property and this work is8
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