
Replicating Web Services for Scalability

Mario Bravetti1, Stephen Gilmore2, Claudio Guidi1, and Mirco Tribastone2

1 University of Bologna
2 University of Edinburgh

Abstract. Web service instances are often replicated to allow service
provision to scale to support larger population sizes of users. However,
such systems are difficult to analyse because the scale and complexity
inherent in the system itself poses challenges for accurate qualitative or
quantitative modelling. We use two process calculi cooperatively in the
analysis of an example Web service replicated across many servers. The
SOCK calculus is used to model service-oriented aspects closely and the
PEPA calculus is used to analyse the performance of the system under
increasing load.

1 Introduction

Web Services expose applications on the Internet for open, accessible use. The
computational dynamics of such a distribution are that the resources of a server
hosting a service endpoint are shared among its many, geographically distributed,
clients. Evidently such a single-server design cannot scale to accommodate very
large numbers of clients so when scalability is identified as a concern a crucial
enhancement to this deployment architecture is to replicate the service across
many, usually geographically distributed, servers. This deployment leads to a
scalable design where more clients can be accommodated by adding more servers.
The resources of the replicated services are federated to serve many clients.

Clients of such a distributed service will usually need to become more compli-
cated because they will first need to discover service endpoints before binding to
a particular service instance. Service providers must also register with a registry
of services, so that they may later be discovered by the clients. Some services
are sufficiently specialised that their locations are known and this knowledge is
built into the service composition, and exploited. We consider such a scenario
here.

Web Services provide all of the necessary infrastructure for services to be
deployed in this way, with formal statements of the service provided, a formal
notion of registration with the registry and a procedure for service discovery in
registries. In the present paper we are concerned with the analysis of the high-
level design of a replicated service, based on measurements of individual service
instances and probabilistic estimates of likely bindings chosen by clients.

We are concerned here with using process calculus models to investigate how
well a distributed system can balance load in order to provide a scalable service
for larger pools of users downloading content over a shared network. The specific



scenario which we consider as an illustration of this class of systems is a Dis-
tributed E-Learning and Course Management System (DCMS) which provides
management of courses and degrees offered at several co-operating universities,
implemented as a collection of services. The system encompases services to pro-
vide e-learning courses which can be shared between universities and services
which enable several universities to jointly provide e-learning courses, thus fed-
erating resources and providing a wider programme of courses of study than
would be found at any of the universities individually. Lightweight federation
of resources in this way to form a “virtual university” is exactly the type of
interaction envisaged by the architects of the Web Service vision.

One of the difficulties of modelling such a design is capturing behaviour
correctly, and assuring oneself and others that this has been achieved. We model
the behaviour of the system in the SOCK calculus [1, 2]. We have exercised this
model using the JOLIE interpreter [3] in order to increase our confidence that
the model describes the behaviour which we intended to capture.

Another challenge of this type of work is the well-known state-space explosion
problem whereby a formal model of a system to which the algebraic methods and
tools of concurrency theory can be applied would be very likely to be resistant
to effective formal analysis. State-space explosion arises because the size of the
system as a whole is bounded by the product of the individual state-spaces of the
components which are composed in parallel. Evidently, this grows very quickly
even when the components used are high-level abstact models of services which
incorporate only the essential details needed for the modelling study. Due to the
state-space explosion problem models might be require either an infeasibly long
time to analyse, or an infeasibly large amount of storage.

To address this challenge, and be able to model the scalability problem of in-
terest, we adopt a continuous-space representation of the process algebra model
in contrast to the usual discrete-state representation of process algebra mod-
els via labelled transition systems. The process algebra used, PEPA, and the
continuous-state representation are both due to Hillston [4, 5]. The continuous-
state representation avoids the requirement to represent each possible state of the
system, making this analysis method applicable to systems of vastly greater scale
and complexity than those analysable using the explicit, discrete-state represen-
tations which are usually based on Continuous-Time Markov Chains (CTMCs).
In contrast the continuous-state representation maps the process algebra model
to a system of coupled Ordinary Differential Equations (ODEs). Because of this
an entirely different arsenal of numerical analysis procedures are available which
can efficiently compute valuable analysis results for large-scale systems such as
the one considered here.

Structure of this paper In Section 2 we describe related work. In Section 3 we
present the Service Oriented Computing Kernel (SOCK) calculus used in Sec-
tion 4 to model our example Web Service. Following this we introduce Perfor-
mance Evaluation Process Algebra (PEPA) in Section 5 which we use to analyse
the non-functional aspects of the example in Section 6. We conclude in Section 7.



2 Related work

There are now many papers where stochastic process calculus models are mapped
to Continuous-Time Markov Chains for performance analysis [6–8]. Hillston’s
method of mapping process calculus models to ordinary differential equations is
a more recent development [5] but has already been used to analyse peer-to-peer
systems [9] and internet-scale spread of computer viruses such as worms [10].
An earlier paper by two of the present authors used Hillston’s ODE method to
show the failure of a centralised server model for the DCMS e-learning system
to scale with increasing load [11].

3 The SOCK Calculus

SOCK (Service Oriented Computing Kernel) [1] is a formal calculus developed
for reasoning about the main Service Oriented Computing issues. SOCK is di-
vided into three different calculi which addresses different aspects of service
design. The three SOCK calculi are called: service behaviour calculus, service
engine calculus and services system calculus. The first one allows for the design
of service behaviours by supplying computation and external communication
primitives inspired by Web Services operations and workflow operators (e.g. se-
quence, parallel and choice). The service engine calculus is built on top of the
former and allows for the specification of the service declaration where it is pos-
sible to design in an orthogonal way three main features: execution modality,
persistent state flag and correlation sets. The execution modality deals with the
possibility of executing a service in a sequential order or in a concurrent one; the
persistent state flag allows the designer to declare if each session (of the service
engine) has its own independent state or if the state is shared among all the
sessions of the same service engine; correlation sets is a mechanism for distin-
guishing sessions initiated by different invokers by means of the values received
within some specified variables. Finally, the services system calculus allows for
the composition of service engines into a system.

The term syntax of the calculus includes numerical values and (possibly
empty) tuples of variables x = 〈x0, x1, . . . , xn〉 and values v = 〈v0, v1, . . . , vn〉.
The null process is 0. Operations are single message (O) or involve two mes-
sages (Or). Outputs can be a signal s, a notification o@k(x ) or a solicit-response
or@k(x ,y) where o is an operation in O, or in Or, k the receiver location, x the
tuple of variables sent and y the received information. The process term x := e
denotes an assignment. χ?P : Q is the if-then-else process. P ;P is sequential
composition and P | P is parallel. Guarded choice is P + P . χ � P is guarded
iteration. For a complete description the reader is referred to [1].

A brief discussion of the SOCK operators for service engine description and
execution is given below:

Persistence The flags × and • are used to distinguish persistent and non-
persistent state. Where P is a service behaviour then P× is equipped with a
non-persistent state whereas P• is equipped with a persistent state.



Guards The execution of sessions may be guarded by correlation sets. In the
term c.P• the correlation set c guards the execution of the persistent service
P . Correlation sets may be empty (∅).

Sessions !W denotes a concurrent execution of the sessions in W whereas W ∗

denotes that sessions are executed in sequential order. For example !(∅ . P•)
indicates the concurrent execution of uncorrelated persistent service P .

Engines A service engine Y is the composition of a service declaration D and
an execution environment H, denoted D[H]. H represents the actual sessions
which are running on the engine coupled with a state (P,S).

Locations A service engine system E can be a located service engine YLOC or
a parallel composition of them E ‖ E.

4 Modelling Behaviour with SOCK

In an e-learning system the teaching material prepared by the teaching staff of
each university is made available as learning objects which students must obtain
by download from the content servers of the universities involved. The learning
objects contain electronic versions of course notes and presentation material
such as lecture slides. In addition many learning objects contain digital audio or
digital video recordings of lecture presentations given by teaching staff. Learning
objects are compressed archives of teaching material which vary in size and scale
from collections of material for a single lecture in a course to a complete record of
an entire lecture course. The lecture presentations of the course are downloaded
instead of being streamed because they may require repeated review in order to
digest the content.

Universities which host e-learning content are concerned with providing ser-
vices which ensure good availability of the content and limited download times
for the learning objects. Both of these are considered to be important metrics
and are addressed in different ways. A high level of availability of the content
is ensured by replicating the content distribution services (and the associated
learning objects) across the content servers of many of the universities involved.
Download times are reduced where possible by binding content requestors at the
point of download to the content server which is most likely to be able to serve
them well at that time.

The dynamic choice of content server is made using a metric which takes into
account the geographical location of the content requestor and the content server,
available bandwidth between the hosts, and the current load on the content
server. Some of these factors can be known or bounded in advance (e.g. the
maximum possible bandwidth between two endpoints) but some values must
be obtained at the time that the service is invoked (e.g. the current load on a
server).

It might seem that the best choice of server should always be the one which is
geographically closest however it is possible that a lightly-loaded server further
away from the content requestor might be able to serve them more quickly than
a heavily-loaded server which is nearby. When considering home download it



Fig. 1. The configuration of servers and services at the five sites

is usually the bandwidth to the Internet Service Provider which is the limiting
factor on download rate in any case. The metric used by the dynamic discov-
ery service attempts to take location, bandwidth and load factors into account
in order to be able to make a good selection of content host for the content
requestor.

Below we describe in the SOCK calculus the policy which would be used at
the Bologna site to determine the selection of content server. Each of the content
servers provides a service getLoad which, when invoked returns the current load
on the server as a integer value in the range 0 (no load, available for use) to
100 (fully loaded, unavailable for use). Lower numbers are better. The policy at
the Bologna site (UNIBO) compares its own load with the load at Pisa (UPISA),
Florence (UNIFI), Munich (LMU) and Edinburgh (UEDIN) before returning the
name of the server to download from. The remote servers are checked in a priority
order, with geographically nearer servers being checked before those which are
further away. A graphical representation of the system is shown in Figure 1.

4.1 Model in SOCK

In this section we present the SOCK behaviour of the services involved in the
system, together with their deployment in terms of SOCK service engines concur-
rently composed within the process System. The names UNIBO, UPISA, UNIFI,
LMU and UEDIN abstractly represent the location of the services provided by
the universities of Bologna, Pisa, Firenze, Munich and Edinburgh, respectively.
In particular, three behaviours are described: the clientBehaviour, the UniBoBe-
haviour and the ObjServerBehaviour.

The clientBehaviour models the behaviour of a client which sends a request
to the service of the University of Bologna by exploiting the Solicit-Response
getServer@UNIBO and, as a reply, it receives the address of the service to in-
voke for retrieving the e-learning object it is looking for. If the response message
contains a valid address (here we model a fault reply message with the value -1),
the client downloads the e-learning object by invoking the getObject operation



of the service whose location has been stored within the variable ServerAddress.
Here, we exploit the value id value, assigned to the variable ObjectID, for mod-
elling the reference of the object to download and we suppose that all the servers
are able to provide the same e-learning objects.

clientBehaviour ::= getServer@UNIBO(〈〉, ServerAddress);
ServerAddress == −1?0 :

(objectID := id value
; getObject@ServerAddress(objectID, object))

The UniBoBehaviour models the behaviour of the service provided by the Uni-
versity of Bologna and it supplies two different operations: getServer and get-
Object.

UniBoBehaviour ::= getServer(〈〉, addr, search)
+getObject(id, obj, obj := retrieve obj(id))

The former allows for the retrievement of the downloading service by following a
policy that takes into account the load of each server, whereas the latter allows
for the downloading of an e-learning object directly from the UNIBO service.
It is worth noting that the load of the other servers is retrieved by exploit-
ing the Solicit-Response operation getLoad whereas the functions loadhere()
and retrieve obj() model the internal computations for calculating the actual
load of the UniBo server and retrieving the requested object from the internal
database of the server, respectively.

search ::= load := loadhere(); load < 75?addr := UNIBO
: getLoad@UNIFI (〈〉, load); load < 60?addr := UNIFI
: getLoad@UPISA(〈〉, load); load < 60?addr := UPISA
: getLoad@LMU(〈〉, load); load < 40?addr := LMU
: getLoad@UEDIN(〈〉, load); load < 20?addr := UEDIN
: load := loadhere(); load < 95?addr := UNIBO
: addr := −1

Finally, the ObjServerBehaviour models the behaviour of each downloading ser-
vice by providing two different Request-Response operations: getLoad and get-
Object. The former allows for the returning of the load of the server whereas the
latter provides a means for downloading the requested e-learning object.

ObjServerBehaviour ::= getLoad(〈〉, load, load := loadhere())
+getObject(id, obj, obj := retrieve obj(id))

As far as the deployment of the services is concerned, below six service engines
are composed within a process called System. For the sake of precision, the
client is not a service because it does not start with a receiving operation thus,
its service engine provides only an execution environment, without any decla-
ration, where the service behaviour can be executed once. The UniBoServer is
the service engine which executes the UniBoBehaviour whereas UPisaServer,
UniFiServer, LmuServer and UEdinServer are the service engines of the down-
loading servers which all execute the same behaviour ObjServerBehaviour but
at different locations.



client ::= [clientBehaviour ]CLIENT

UniBoServer ::= !(∅ . UniBoBehaviour•)[∅ . (0,S)]UNIBO

UniF iServer ::= !(∅ . ObjServerBehaviour•)[∅ . (0,S)]UNIFI

UPisaServer ::= !(∅ . ObjServerBehaviour•)[∅ . (0,S)]UPISA

LmuServer ::= !(∅ . ObjServerBehaviour•)[∅ . (0,S)]LMU

UEdinServer ::= !(∅ . ObjServerBehaviour•)[∅ . (0,S)]UEDIN

System ::= client ‖ UniBoServer ‖ UPisaServer ‖ UniF iServer
‖ LmuServer ‖ UEdinServer

5 The PEPA Stochastic Process Algebra

Systems are represented in PEPA as the composition of components which un-
dertake actions. In PEPA the actions are assumed to have a duration, or delay.
Thus the expression (α, r).P denotes a component which can undertake an α
action, at rate r to evolve into a component P . Here α ∈ A where A is the
set of action types and P ∈ C where C is the set of component types. The rate
r models a delay of variable duration. Delays are samples from an exponential
random variable with parameter r, where this parameter is most often constant.
In this paper we will make use of functional rates [12] which allow the rate at
which an activity is performed to depend on the current state of the model. (In
Petri nets terms, a “marking-dependent” rate.)

For example, a server might offer its computing resources at a rate which
depended on the current state, (compute, fSERVER) where the function fSERVER

is defined as follows:

fSERVER =
{

0, if Serverdown

λ, if Serverup

A full description of the PEPA language can be found in [4]. To briefly sum-
marise, PEPA has a small set of combinators, prefix (.), choice (+), co-operation
(��, when co-operating over a set of activities, or ‖ when there is no co-operation)
and hiding (which we will not use here). Because we will be working with large
populations of replicated processes we write P [n] to denote n copies of compo-
nent P executing in parallel. For example,

P [5] ≡ (P ‖ P ‖ P ‖ P ‖ P ).

The total capacity of a component P to carry out activities of type α is termed
the apparent rate of α in P , denoted rα(P ). For example, rcompute(Serverup[2]) =
2λ, rcompute(Serverup ‖ Serverdown) = λ, and rcompute(Serverdown[2]) = 0.



5.1 Relating Markov chains and ODEs

In performance modelling based on continuous-time Markov chains, measures of
system performance are often derived by a calculation which uses the steady-
state probability distribution. To help us to compare modelling with ODEs and
CTMCs in this section we consider the simpler example of a queue in PEPA.

Q0
def= (arrive, λ).Q1

Qi
def= (arrive, λ).Qi+1 + (serve, µ).Qi−1 (0 < i < N)

QN
def= (serve, µ).QN−1

A typical performance measure for a model based on queues is the average
queue length, which is computed in different ways, depending on the observations
offered by the chosen semantics for the interpretation of the model.

When modelling in the Markovian interpretation we obtain the steady-state
probability distribution, π. For a given queue bound, say N = 8, the average
queue length is computed by weighting the probability of a state (Qi denotes the
state where the queue is of length i) by the number of customers in the queue
at that point.

a =
8∑

i=0

iπ(i)

When the state-space of the model grows in size any analysis which is based
on an interleaving semantics (as in CTMCs) becomes prohibitively expensive.
We turn then to a continuous approximation and solve the initial value problem
for the ODEs to see how the numbers of each type of component change from
initial (known) values at time t = 0, as time progresses forwards. We cannot
compute the average queue length in the same way as for the CTMC because
we do not have the stationary probability distribution. Instead we calculate it
by considering a collection of 90 (say) independent queues all of capacity 8. The
average queue length at time t is

a =
8∑

i=0

i
[Qi(t)]

90

where the term [Qi(t)] is understood to mean “the number of instances of Qi

at time t”. We divide by 90 because that is the number which we have in our
collection in this example.

We compute the average queue length numerically using both CTMC-based
and ODE-based approaches, up to a specified accuracy of the numerical solution
procedures (that is, a specified number of decimal places of accuracy). When
we compare these we find good agreement in the results, up to the specified
accuracy of the calculation of the solutions (see Figure 2). The solutions are
computed using two entirely different numerical procedures. For the Markov
chain, Jacobian over-relaxation, and for the differential equations, fifth-order
Runge-Kutta with an adaptive step size.



Av. queue length Av. queue length Difference
λ µ (CTMCs at equilibrium) (ODEs at t = 200)

1 4 0.333299009029 0.333298753978 2.5× 10−7

1 2 0.982387959648 0.982386995556 9.6× 10−7

1 1 4.000000000000 4.000000266670 −2.6× 10−7

2 1 7.017612040350 7.017613704440 −1.6× 10−6

4 1 7.666700990970 7.666701306580 −3.2× 10−7

Fig. 2. Solutions computed using CTMCs and ODEs

It is pleasing to have such good agreement in the results but it might be
something of a mystery to the reader as to why the agreement is so good. In
order to illuminate further the relationship between the CTMC and ODE inter-
pretations we consider a simpler instance of the model above, a single sequential
component with only three states defining a two-place queue.

Q0
def= (arrive, λ).Q1

Q1
def= (arrive, λ).Q2 + (serve, µ).Q0

Q2
def= (serve, µ).Q1

The continuous-time view This process is at least enough to contain a use of
a choice (in Q1). When interpreted against the operational semantics of Marko-
vian PEPA [4] this generates the following generator matrix for the underlying
Markov chain. (By convention this matrix is called Q, but it is not to be confused
with our process variables Q0, Q1 and Q2).

Q =

−λ λ 0
µ −λ− µ λ
0 µ −µ


The stationary probability distribution of this Markov chain, π, is obtained by
solving the equation

πQ = 0

subject to the requirement that the distribution is a good probability distribution
(i.e. sums to 1). ∑

π = 1

The symbolic solution of the above set of simultaneous linear equations is

π =
[

µ2

λ2 + µλ + µ2
,

µ λ

λ2 + µλ + µ2
,

λ2

λ2 + µλ + µ2

]
.



The continuous-space view When interpreted against the ODE semantics of
PEPA [5], the above model instead gives rise to the following system of ordinary
differential equations.

dQ0

dt
= −λQ0 + µQ1

dQ1

dt
= λQ0 − λQ1 − µQ1 + µQ2

dQ2

dt
= λQ1 − µQ2

A system of differential equations has a stationary solution, which occurs, as you
might expect, when nothing is changing. That is, for our queue:

0 = −λQ0 + µQ1

0 = λQ0 − λQ1 − µQ1 + µQ2

0 = λQ1 − µQ2

If we re-write the above system of linear equations in vector-matrix form, we
find that it is:

0 = [Q0 Q1 Q2]Q

If we then solve this initial value problem for the above system of differential
equations for initial values of Q0 = 1, Q1 = 0, Q2 = 0 then, because of con-
servation of mass, the equilibrium points will coincide with the steady-state
distribution of the CTMC model. Therefore all measures calculated from the
steady-state probability distribution (such as average queue length) will coin-
cide. We argued this agreement only by considering one simple example here
but a formal correspondence between the two semantic descriptions has been
proven by Hillston by reference to Kurtz’s theorem.

6 Modelling Performance with PEPA

The distributed system in PEPA is based on the cooperation between a popula-
tion of clients and instances of server threads at each mirror site. Let m be the
number of classes of clients in the system and k the number of mirror sites. In
this modelling framework, the distributed system is completely characterised by
the following entities:

– Connection Setup Matrix C ∈ R+m,k

, whose element ci,j is the rate at which
a class-i client connects to mirror j.

– End-to-End Available Bandwidth Matrix D ∈ R+m,k

, whose element di,j is
the rate at which a class-i client downloads from mirror j.

– Idle Vector t ∈ R+m

, whose element ridle,i is a class-i client’s thinking time.
– Population Vector p ∈ N+m

, whose element pi is the population of class-i
clients.



– System Deployment Vector q ∈ N+k

, whose element qj denotes the number
of threads available at mirror j.

The model of a client is as follows.

Client i
def= (connect1, ci,1).(download1, di,1).Idlei

+ (connect2, ci,2).(download2, di,2).Idlei

. . .
+ (connectk, ci,k).(downloadk, di,k).Idlei

+ (overload ,>).Client i

Idlei
def= (idle, ridle,i).Client i

(1 ≤ i ≤ m)

Although the clients attempt connections to all the mirrors, we will model the
mirrors in such a way that only one connection is granted as determined by the
policy expressed below. For each mirror Mirrorj , 1 ≤ j ≤ m, we have:

Mirror j
def=

(
connectj , fj(s)

)
.MirrorUploadingj

MirrorUploadingj
def=

(
download j ,>

)
.Mirror j

This description features a functional rate for the connect action, fj(s) : C →
{0,>} where s is a PEPA component denoting the current state of the system.
When fj evaluates to 0, the activity is not enabled by the sequential component.
We have determined that in any state at most one such function evaluates to >,
i.e.:

∀s, @fi, fj : fi(s) = >, fj(s) = >, j 6= i

By defining the functional rates for the connect action we encode the load bal-
ancer’s policy into the model, as we shall see later. Note that no mirror performs
any overload action. This is accomplished by another sequential component as
follows:

Overload def=
(
overload , o(s)

)
.Overload

o(s) =
{
> fi(s) = 0, 1 ≤ i ≤ m
0 otherwise

That is, Overload is enabled if all the mirrors’ functional rates evaluate to 0.
This ensures that no state is deadlocked. The initial state of the system is:(

Client1[p1] ‖ Client2[p2] ‖ . . . ‖ Clientm[pm]
)

��
L

(
Mirror1[q1] ‖ Mirror2[q2] ‖ . . . ‖ Mirrork[qk]

)
L = {connect1, connect2, . . . connectk,

download1, download2, . . . downloadk, overload}

Let Loc be a k-tuple assigning labels to mirrors, so that we can use Mirror j and
MirrorLocj interchangeably. We now provide the model using the framework



described above. In this case study, let Loc = (UNIBO, UNIFI, UPISA, LMU,
UEDIN). In this example, we consider a single class of clients located at UNIBO,
i.e. m = 1. In the definitions of the functional rates fUNIBO–fUEDIN, we use
process terms to indicate the number of copies of sequential components that
behave as those terms in the system’s state. The functional rates are defined
thus.

fUNIBO =



> if MirrorUploadingUNIBO < 75
> if MirrorUploadingUNIBO < 95,

MirrorUploadingUNIFI ≥ 60,
MirrorUploadingUPISA ≥ 60,
MirrorUploadingLMU ≥ 40,
MirrorUploadingUEDIN ≥ 20

0 otherwise

fUNIFI =

> if MirrorUploadingUNIBO ≥ 75,
MirrorUploadingUNIFI < 60

0 otherwise

fUPISA =


> if MirrorUploadingUNIBO ≥ 75,

MirrorUploadingUNIFI ≥ 60,
MirrorUploadingUPISA < 60

0 otherwise

fLMU =


> if MirrorUploadingUNIBO ≥ 75,

MirrorUploadingUNIFI ≥ 60,
MirrorUploadingUPISA ≥ 60,
MirrorUploadingLMU < 40

0 otherwise

fUEDIN =



> if MirrorUploadingUNIBO ≥ 75,
MirrorUploadingUNIFI ≥ 60,
MirrorUploadingUPISA ≥ 60,
MirrorUploadingLMU ≥ 40,
MirrorUploadingUEDIN < 20

0 otherwise

This model can be analysed through the underlying CTMC, stochastic simula-
tion or ODEs. As far as Markovian analysis is concerned, the model allows us to
fully take advantage of state space reduction by aggregation [13]. For instance,



the state [MirrorUNIBO = 74,MirrorUploadingUNIBO = 1] aggregates 75 states.
However, basic combinatorics suggests that the state space size of the underlying
Markov chain, even with aggregation, is at least the product of the maximum
number of incoming connections in each site. With this model’s parameters,
that would mean a Markov chain with over 273 million states, which is at the
limit of the state-of-the-art in Markov chain solution technology. On the other
hand, the model can be represented by a system of 17 coupled ODEs. This is
the mathematical representation that we use to evaluate the performance of this
system [5].

In this section we carry out time series analysis which allows us to see how
the number of each type of component in the model varies as a function of time.
This can provide the modeller with insights into the utilisation of the mirrors
in both the transient and the steady state (as time increases and the transient
behaviour tends to the equilibrium behaviour). In particular, we studied the
impact that the client’s behaviour has on such a performance index. The model
parameters are as follows. The initial population of clients is 400. The deployment
vector is the maximum number of available threads at each site as inferred from
the definitions of the functional rates. Connection rate to all the mirror sites
is 20.0. Available bandwidth per thread is 1/60 at LMU and UNIFI and 1/30
at UNIBO, UEDIN, and UPISA. We conducted sensitivity analysis of the idle
activity by solving the system for the following values of ridle: 0.001, 0.01, 0.02,
0.03, 0.04, 0.05 and 0.06. The graphs in Fig. 3 show time-series plots of the
number of threads at each site in the 0–400 s time interval for such values of
ridle. The results were obtained by running the model through the adaptive
step-size 5th-order Dormand Prince solver with default settings in our software
tool, the “PEPAto” library [14] (100 data points, 0.001 step size, 1E-4 absolute
error, 1E-4 relative error).

We compared the results from the numerical integration of the differential
equations against stochastic simulation. Figure 4 shows good agreement between
the deterministic trajectory (black line) and four independent runs of Gillespie’s
stochastic simulation algorithm (grey lines). The plot shows the evolution of the
number of active threads at UNIFI for ridle = 0.01. Similar fitting has been
observed in the other cases under study.

6.1 Commentary on the results

From these analysis results we are able to see how the load on each server
varies as a function of time and see how the speed with which all servers reach
saturation varies as a function of variation in idle time. In Figures 3(b)–3(h) we
see how the load on the servers is balanced out in response to increasing client
demand. In our model increasing client demand is achieved by decreasing client
idle time (going from ridle = 0.001 to ridle = 0.06). At the system initiation all
clients stand ready to connect and so the load on the Bologna server (UNIBO)
rises rapidly. Thus we are considering here a difficult case for the system, but
one which is likely to occur in practice. In systems with large numbers of clients
one often observes the well-known “flashcrowd effect” where large numbers of



(a) Legend (b) ridle = 0.001

(c) ridle = 0.01 (d) ridle = 0.02

(e) ridle = 0.03 (f) ridle = 0.04

(g) ridle = 0.05 (h) ridle = 0.06

Fig. 3. Utilisation of the mirror sites.



Fig. 4. Comparison between ODE analysis and stochastic simulation of the evolution
of the number of active threads at UNIFI for ridle = 0.01.

clients attempt to connect at the system initiation. This phenomenon is widely
observed in peer-to-peer systems [9].

When the system is lightly loaded (Figure 3(b)) then after the initial flurry
of work we find that from time 200 onwards the Bologna server is processing all
requests itself and passing nothing on to the other servers. As the load increases
(Figure 3(c) and (d)) we observe that the Bologna server is passing work on to
the other servers in Italy (UNIFI and UNIPI). Small increases in load beyond
this point cause work to be passed to the further-away Munich server (LMU)
until it saturates (Figure 3(f)), and the Edinburgh server similarly (Figure 3(g)).
Finally, the Bologna server must bear the remaining load itself (Figure 3(h)).
These results show the load-balancing function at work in practice.

7 Conclusions

By federating the resources of the SOCK and PEPA process calculi we have
been able to consider our case study of a replicated Web Service from both
the functional and the non-functional (performance) perspectives. In a previous
study we used analysis of a process calculus model using differential equations [5]
to show that an architecture based on a centralised single server would not scale
in the way desired [11]. In the present paper we use these methods to show
that a replicated design does scale adequately. We have been able to use the
continuous-space methods of [5] to analyse a model of a size which would defeat
discrete-state analysis. The method is illustrated on the example of an e-learning
system here but is generally applicable to analyse the scalability of replicated
Web Services.

Acknowledgements: The authors are supported by the EC-funded FET-IST GC2
project number 016004 SENSORIA (Software Engineering for Service-Oriented
Overlay Computers). The Jolie interpreter and the example considered here are
available for download from http://jolie.sourceforge.net. The authors thank the



anonymous reviewers for their insightful remarks which helped us to improve the
paper for this version. Thanks to Adam Duguid for many helpful suggestions on
model analysis.

References

1. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: Sock: A calculus for
service oriented computing. In: Service-Oriented Computing - ICSOC 2006, 4th
International Conference, Chicago, IL, USA, December 4-7, 2006, Proceedings.
Volume 4294 of LNCS. (2006) 327–338

2. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and or-
chestration conformance for system design. In: Conference on Coordination Models
and Languages (COORDINATION’06). LNCS, Springer (2006)

3. Montesi, F., Guidi, C., Lucchi, R., Zavattaro, G.: JOLIE: a Java Orchestration
Language Interpreter Engine. In: Proceedings of CoOrd 2006, ENTCS (2006)

4. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

5. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Sec-
ond International Conference on the Quantitative Evaluation of Systems, Torino,
Italy, IEEE Computer Society Press (2005) 33–43

6. Holton, D.: A PEPA specification of an industrial production cell. The Computer
Journal 38(7) (1995) 542–551

7. Forneau, J., Kloul, L., Valois, F.: Performance modelling of hierarchical cellular
networks using PEPA. Performance Evaluation 50(2–3) (2002) 83–99

8. Razafindralambo, T., Valois, F.: Performance evaluation of backoff algorithms
in 802.11 ad-hoc networks. In: PE-WASUN ’06: Proceedings of the 3rd ACM
international workshop on Performance evaluation of wireless ad hoc, sensor and
ubiquitous networks, New York, NY, USA, ACM Press (2006) 82–89

9. Duguid, A.: Coping with the parallelism of BitTorrent: Conversion of PEPA to
ODEs in dealing with state space explosion. In: FORMATS 2006, Springer LNCS
4202 (2006) 156–170

10. Bradley, J., Gilmore, S., Hillston, J.: Analysing distributed Internet worm attacks
using continuous state-space approximation of process algebra models. J. Comput.
System Sci. (2007) doi:10.1016/j.jcss.2007.07.005. To appear.

11. Gilmore, S., Tribastone, M.: Evaluating the scalability of a web service-based
distributed e-learning and course management system. In Bravetti, M., Núñez,
M.T., Zavattaro, G., eds.: Third International Workshop on Web Services and
Formal Methods (WS-FM’06). Volume 4184 of Lecture Notes in Computer Science.,
Vienna, Austria, Springer (2006) 156–170

12. Hillston, J., Kloul, L.: An efficient Kronecker representation for PEPA models. In
de Alfaro, L., Gilmore, S., eds.: Proceedings of the first joint PAPM-PROBMIV
Workshop. Volume 2165 of Lecture Notes in Computer Science., Aachen, Germany,
Springer-Verlag (2001) 120–135

13. Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA
models. IEEE Transactions on Software Engineering 27(5) (2001) 449–464

14. Tribastone, M.: The PEPA Plug-in Project. In: Proceedings of the 4th Interna-
tional Conference on the Quantitative Evaluation of Systems (QEST’07), IEEE
Computer Society Press (2007) 53–54


