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Abstract

We describe a novel performability modelling approach, which facilitates the efficient solution of performance models extracted from

high-level descriptions of systems. The notation which we use for our high-level designs is the Unified Modelling Language (UML) graphical

modelling language. The technology which provides the efficient representation capability for the underlying performance model is the

multi-terminal binary decision diagram (MTBDD)-based PRISM probabilistic model checker. The UML models are compiled through an

intermediate language, the stochastic process algebra PEPA, before translation into MTBDDs for solution. We illustrate our approach on a

real-world analysis problem from the domain of mobile telephony.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Performance modelling; Multi-terminal binary decision diagram; Performance evaluation process algebra
1. Introduction

Distributed, mobile and global computing environ-

ments provide robust development challenges to practis-

ing software system developers. Working with rapidly

changing implementation technology means that devel-

opers often must spend some of their development time

finding and correcting errors in the software libraries and

APIs which they use. Fortifying this difficulty is the

arduous terrain of dynamic distributed systems where the

difficulty of replaying a communication sequence which

led to a system fault confounds the process of detecting

and correcting implementation errors.

In this setting, application developers rarely wish to

expend the investment of time which would be needed to

build and analyse a performance model of the system

which they are developing. The concepts and the

modelling languages of performance analysis are rela-

tively unfamiliar to software developers and when
0951-8320/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ress.2004.08.004

* Corresponding author. Tel.: C44 131 6505 189; fax: C44 131 667

7209.

E-mail address: stg@inf.ed.ac.uk (S. Gilmore).
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already faced with a generous range of other difficulties

in the development process, early predictive performance

analysis can easily be overlooked. However, this is an

imprudent practice. If performance design flaws are

found early in the development process then they can

be corrected at a relatively low cost. In contrast, if they

are found after the development process is long under-

way then they may be very expensive or even unrealistic

to repair.

Performance impacts on dependability because appli-

cation technology with poor or unpredictable perform-

ance cannot be depended on to perform when it is most

needed. Thus, there is a continuum between performance

analysis and dependability analysis encompassing the

federated study of these two subjects known as perform-

ability analysis [1]. We discuss performability analysis

here and show how custom performability requirements

can be checked against high-level application models.

Our belief is that a performability-aware methodology

for the effective development of global, mobile or high-

end distributed systems should provide at least the

following two features: a convenient high-level modelling

notation for expressing performance models; and efficient

solution methods for realistic models of complex

systems. Unfortunately, these two requirements are
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often at variance. In order to access state-of-the-art

solution methods one usually additionally needs to

master sophisticated representation and analysis methods

which sometimes are inconvenient or troublesome to use.

Conversely, high-level modelling platforms devote much

of their efforts to providing reliable graphical editors and

supporting document and IDE infrastructure and this can

come at the expense of equipping them with comp-

lementary analysis tools.

We provide a structured performance-engineering plat-

form for this problem domain by connecting a specification

environment (SENV) and a verification environment

(VENV) so that each may communicate with the other.

The SENV and VENV are connected by a bridge, which

consists of two categories of software tools. These are:
–
 extractors which translate designs from the SENV into

inputs for the VENV, omitting any aspects of the design

which are not relevant for the verification task at hand;
–

Fig. 1. The state diagram of Server.
reflectors which convert the results from the analysis

performed by the VENV back into a form which can be

processed and displayed by the SENV.

A series of extractors can be chained together to

provide a path from one specification formalism to

another. Similarly, reflectors can be chained together in

order that the results of one analysis process may be

presented back in the format of another. A process of

extractor/reflector chaining is used here to connect a

specification environment to multiple verification environ-

ments. We use the ArgoUML design environment [2] as

our SENV and the performance evaluation process algebra

(PEPA) Workbench [3] and the PRISM probabilistic

symbolic model checker [4] both play the role of VENVs.

ArgoUML provides the Unified Modelling Language

(UML) [5] as its modelling language. The PEPA Work-

bench and PRISM both support the PEPA stochastic

process algebra [6]. PRISM additionally supports a state-

based language based on the Reactive Modules formalism

of Alur and Henzinger [7].

In Ref. [8], we have presented the algorithm for deriving

a PEPA model from a UML model using the PEPA

Workbench as the unique verification environment. In this

paper, we use both the PEPA Workbench and the PRISM

probabilistic symbolic model checker. Moreover, we show

how to apply this new approach to a realistic example,

which is the hierarchical wireless network.

Structure of this paper. In Section 2, we describe

some of the background to this work, providing a

summary of UML, PEPA and PRISM modelling. In

Section 3, we describe the software architecture of the

system, as an integrated set of components. We give

details of the implementation, providing an explanation

of how these components work together. In Section 4,

we discuss the correctness of our translation from UML

to PEPA and PRISM calling attention to cases where
some care has been needed. In Section 5, we present our

case study, showing the approach applied to a realistic

example. In Section 6, we survey related work.

Conclusions are presented in Section 7.
2. Background

2.1. Unified modelling language

The UML is an effective diagrammatic notation used to

capture high-level designs of systems, especially object-

oriented software systems. A UML model is represented by

a collection of diagrams describing parts of the system from

different points of view; there are seven main diagram types.

For example, there will typically be a static structure

diagram (or class diagram) describing the classes and

interfaces in the system and their static relationships

(inheritance, dependency, etc.). State diagrams, a variant

of Harel state charts, can be used to record dynamic

behaviour. Interaction diagrams, such as sequence dia-

grams, are used to illustrate the way objects of different

classes interact in a particular scenario. As usual we expect

that the UML modeller will make a number of diagrams of

different kinds. Our analysis is based on state and

collaboration diagrams.

We have introduced performance information in the state

diagrams such that each transition in these diagrams is

labelled with a pair a/rate(r) where a is the action type

executed and r is an exponentially distributed rate

associated with this action. We often simplify the

representation of the transition labels in order to save

space writing this as a/r.

As an example of a UML model consider a client–server

system where a client sends requests to the server to

undertake computationally expensive tasks. Once the client

has sent a request, it should wait for the server to reply before

continuing with its own work. We denote by l the occurrence

rate of client requests and by m the service rate at the server.

The UML model of such a system is composed of a class

diagram, two state diagrams and a collaboration diagram.

The class diagrams introduce the components of the

system. With each class is associated a state diagram which

describes the state-to-state transition behaviour of each

instance of the class.
†
 The first state diagram (Fig. 1) describes the states of the

server. We assume that the server may be either idle or

busy and the transition from the first state to the second

one corresponds to the arrival of a request from the

client. Note that the rate associated with the action



Fig. 2. The state diagram of Client.

S. Gilmore, L. Kloul / Reliability Engineering and System Safety 89 (2005) 17–32 19
request at the server level is unspecified (u) since the

requests are generated by the client. The transition to the

idle state corresponds to the completion of the request

processing and the reply to the client, represented

formally as action reply with rate m.
†
 The second state diagram (Fig. 2) models the behaviour

of a client. We consider three possible states Computing,

Contacting and Waiting. In the first state, the client is

engaged in local computation, action compute with rate

a. When greater compute power is needed, he contacts

the server (state Contacting) and issues the request,

action request. After a certain waiting time, he receives a

response from the server with action reply. The rate at

which replies are produced is not specified by the client

but by the server. From the client’s point of view, this

rate is unspecified (u).
†
 The collaboration diagram in Fig. 3 depicts the

interactions between the system components, Server

and Client. We assume that we have two clients in the

system, which means two instances of Client. The

diagram shows that both clients must synchronize with

the server, but it does not make explicit the moment or

the actions on which they must synchronize. There is no

association between client1 and client2, meaning that

they behave independently from each other and have no

common synchronisation points.
In general, a UML collaboration diagram describes a

typical operational configuration of the system, specify-

ing the connections between the instances of the classes

of the system. The UML class diagram has described the

classes in the system, but not the number of instances of

these which are active, nor the connections between

them. The number of instances of each component is

crucial information for the performance modelling

process; a system with two servers is not the same as

one with twenty. The collaboration diagram contains this

information in the form of a directed graph linking

together instances of the classes in the system.
2.2. Performance evaluation process algebra

In PEPA [6], a system is viewed as a set of components

which carry out activities either individually or in
Fig. 3. The collaboration diagram.
co-operation with other components. Activities, which are

private to the component in which they occur, are

represented by the distinguished action type, t. Each

activity is characterized by an action type and a duration,

which is exponentially distributed. This is written as a pair

such as (a, r) where a is the action type and r is the activity

rate. This parameter may be any positive real number, or

may be unspecified. We use the distinguished symbol u to

indicate that the rate is not specified by this component. This

component is said to be passive with respect to this action

type and the rate of the shared activity is defined by another

component.

PEPA provides a set of combinators, which allow

expressions to be built which define the behaviour of

components via the activities that they engage in. These

combinators are presented in what follows.

Prefix (a, r)$P: Prefix is the basic mechanism by which

the behaviours of components are constructed. This

combinator implies that after the component has carried

out activity (a, r), it behaves as component P.

Choice P1CP2: This combinator represents a compe-

tition between components. The system may behave either

as component P1 or as P2. All current activities of the two

components are enabled. The first activity to complete

distinguishes one of these components and the other is then

discarded.

Co-operation P1)L P2 : This describes the synchroni-

zation of components P1 and P2 over the activities in the

co-operation set L. The components may proceed

independently with activities whose types do not belong

to this set. A particular case of the co-operation is when

LZ:. In this case, components proceed with all

activities independently. The notation P1sP2 is used as

a shorthand for P1)L P2 when L is empty. In a

co-operation, the rate of a shared activity is defined as

the rate of the slowest component.

Hiding P/L: This component behaves like P except

that any activities of types within the set L are hidden,

i.e. such an activity exhibits the unknown type t and the

activity can be regarded as an internal delay by the

component. Such an activity cannot be carried out in co-

operation with any other component: the original action

type of a hidden activity is no longer externally

accessible, to an observer or to another component; the

duration is unaffected.

Constant AZ
def

P : Constants are components whose

meaning is given by a defining equation: AZ
def

P gives the

constant A the behaviour of the component P. This is how

we assign names to components (behaviours). An explicit

recursion operator is not provided but components of

infinite behaviour may be readily described using sets of

mutually recursive defining equations.

For example, consider the client–server system described

above. To model this system using PEPA, we need two

components. Let Client and Server be the name of these
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components. The PEPA model is the following.

Clientcpg Z
def

ðcompute;aÞ$Clientctg

Clientctg ¼
def

ðrequest; lÞ$Clientwtg þ ðdeliver; dÞ$Clientcpg

Clientwtg ¼
def

ðreply;uÞ$Clientctg

Serveridle ¼
def

ðrequest;uÞ$Serverbusy

Serverbusy ¼
def

ðreply;mÞ$Serveridle

If we assume that we have two clients in the system, the

complete behaviour of the system is then obtained from the

following equation:

SystemZ
def
ðClientcpgjjClientcpgÞ)

K
Serveridle

where KZ{request, reply} is the set of activities on which

Client and Server must synchronize.

In this work, such ‘system equations’ are automatically

generated from the collaboration diagram in an input UML

model. We treat collaboration diagrams as though they were

undirected graphs because in the PEPA process algebra terms

such as Server)L Client and Client)L Server are equivalent.

We have previously presented the algorithm for deriving a

PEPA system equation from such a collaboration diagram [8].

The transition system underlying the PEPA model gives

the continuous-time Markov process represented by the

model. The generation of this process is based on the

derivation graph of the model in which syntactic terms form

the nodes, and arcs represent the possible transitions

between them. This derivation graph describes the possible

behaviour of any PEPA component and provides a useful

way to reason about a model. The use of the derivation

graph is analogous to the use of the reachability graph in

stochastic extensions of Petri nets such as GSPN [6]. The

semantics of PEPA, presented in the structured operational

semantics style, are given in Appendix.

2.3. PRISM

Specifications are constructed in PRISM by defining a

collection of reactive modules which synchronise on shared

activities. The state of each module is determined by a set of

local variables. The models which we work with here are all

obtained by compiling an input PEPA model. All of these

have associated constants, which enumerate the states of the

module and use a single local variable to record the current

state. We developed the PEPA-to-PRISM compiler to allow

us to analyse our PEPA models with PRISM. Our compiler

has been incorporated into the latest release of PRISM

(version 1.3) [9].

The behaviour of a reactive module is encoded by a list

of guarded transitions, which name the activity performed

and specify assignments to the local variables, which are to

be carried out if the activity is performed. The PRISM

notation for assignment is x 0Ze meaning that the value of
the variable x should be updated to hold the result of

evaluating expression e. The PRISM specification of the

server from our running example is shown below.
//Output from the PEPA-to-PRISM compiler

//Version 0.03.2 ‘Jean Armour Avenue’

//Model file: clientServer

stochastic

//The Server as a PRISM reactive modules
specification

const Server_busyZ0;

const Server_idleZ1;

module Server
Server_STATE: [0..1] init
Server_idle;
[request] (Server_STATEZServer_
idle)/1: (Server_STATE’Z
Server_busy);
[reply] (Server_STATEZServer_
busy)/mu: (Server_STATE’Z
Server_idle);
endmodule

The PRISM model checker accepts descriptions of

discrete-time Markov chains (DTMCs), continuous-time

Markov chains (CTMCs) and Markov decision processes

(MDPs). However, all PEPA models define CTMCs so we

mark this as a stochastic model using the PRISM keyword

stochastic.

The definition of the Client is similar. The encoding of a

choice in the PEPA model is written as a list of alternatives

in the PRISM notation.
//Descriptive names for the local states
of

//this module, taken from the PEPA input
model

const Client_cpgZ0;

const Client_ctgZ1;

const Client_wtgZ2;

module Client1
Client1_STATE: [0..2] init
Client_cpg;
[compute] (Client1_STATEZCli-
ent_cpg)/alpha: (Client1_STATE’Z
Client_ctg);
[deliver] (Client1_STATEZCli-
ent_ctg)/delta: (Client1_STATE’Z
Client_cpg);
[request] (Client1_STATEZCli-
ent_ctg)/lambda: (Client1_STATE’Z
Client_wtg);
[reply] (Client1_STATEZCli-
ent_wtg)/1: (Client1_STATE’Z
Client_ctg);
endmodule
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Modules may be duplicated and renamed. To make the

second client in our example we would instantiate and

rename the first client, renaming its local state variable to

ensure that this is unique.
//We make another copy of the Client1
module

module Client2ZClient1 [Client1_STA-
TEZClient2_STATE]

endmodule

Finally, the clients and server are composed together

using synchronisation sets to specialise their activities, as in

PEPA.
//The system equation

system
((Client_1 j j j Client_2) j [request,
reply] j Server)
endsystem

//End of output from the PEPA-to-PRISM
compiler

We use PRISM to solve PEPA models for their stationary

probability distribution. The first step of this process is

generating the full state space of the system. This is

compactly stored by PRISM as a multi-terminal binary

decision diagram (MTBDD). The CUDD package [10] is

used as a library, providing MTBDD data structures and

algorithms to PRISM.
Fig. 4. Software architecture of the tool.
2.4. Analysis and model-checking

The PRISM model checker supports the analysis of

probabilistic and stochastic systems by allowing a modeller

to check a logical property against a model. The types of

properties which we wish to check are performability

questions assessing the likelihood of reaching a state where

the system is either no longer available at all or—even if

technically still available—its performance has been

compromised to the point where the appreciated quality of

service has fallen below the minimum standard demanded

by the users of the system.

Several logics and several types of model are supported

by the PRISM model checker. The appropriate logic for

continuous-time Markov chains is Continuous Stochastic

Logic (CSL) [11]. We have used PRISM here to perform

CSL-based model-checking of our high-level models.

The syntax of CSL is:

fTZ truejfalsejajfofjfnfjlfjP)p½j�jS)p½f�

jTZ XfjfUIfjfUf

where a is an atomic proposition, )2 {!, %, O, R}is a

relational parameter, p2[0, 1] is a probability, and I is an

interval of R:
Paths of interest through the states of the model are

characterised by the path formulae specified by P. Path

formulae either refer to the next state (using the X operator),

or record that one proposition is always satisfied until

another is achieved (the until-formulae use the U-operator).

Performance information is encoded into the CSL formulae

via the time-bounded until operator (UI) and the steady-state

operator, S. By expressing properties of interest using path

formulae we can check interval-of-time performability

measures over our system. By expressing properties of

interest with the steady-state operator we can determine

long-run measures over the system.

In Section 3, we describe the process of connecting the

ArgoUML, PEPA and PRISM tools.
3. The software architecture

Ours is a component-based software architecture in

which we link substantial software tools with lightweight

connectors called extractors and reflectors. This promotes

significant code re-use and allows for clean interfaces

between systems using formal description languages such as

PEPA and PRISMs, reactive modules. The global software

architecture in Fig. 4 shows the chaining process of the

extractors and reflectors we use.

A performance modeller using our tool will design a

system using a UML modelling environment such as

ArgoUML or a similar UML tool. UML software tools

produce XML-based model interchange files called XMI files.

The PEPA Workbench contains as components the

PEPA Extractor and the PEPA Reflector. The former is

first used to extract a PEPA model from the .xmi file

containing the UML model. The resulting file is a .pepa
file which is then compiled using the PEPA-to-PRISM

compiler. The compiler provides PRISM with a log file in

which PEPA local state identifiers have been mapped onto

the numeric constants used in the reactive modules notation.

PRISM solves the PEPA model and produces a steady

state probability vector. This is then reflected by the PRISM

reflector as a PEPA steady state probability vector. To do so,

the output from the PRISM tool onto the standard output
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stream is captured and saved in a.pres (PRISM results) file.

The PRISM Extractor reads the .log file and the.pres file

and writes an .ssp file in the format used by the PEPA

Workbench. The .ssp file contains steady-state probabil-

ities indicating the probability of finding the system in one of

its reachable states in the long run, after the initial transient

effects of the initial system configuration have subsided.

Using some information in the .xmi file produced

initially by the UML tool, the PEPA Workbench uses the

PEPA Reflector to merge the results with the original input

UML model to produce a modified .xmi file which

includes the steady-state probabilities results of the

performance analysis. This file can be loaded into the

ArgoUML tool to present the results back to the UML

performance modeller.

Our extractor and reflector software tools are

implemented in the programming languages Java and

Standard ML [12]. The Java components handle the

processing of the zipped archives (in .zargo format) of

UML models produced by the ArgoUML tool and the parsing

of the XMI documents containing the UML models (in.xmi
format). The DOM parser from the Java 1.4 javax.xml
package is used to parse the XMI files. Much of the more

complex processing is implemented in the Standard ML

language. Standard ML is well-suited to symbolic processing

problems and allows us to have greater confidence in the

correctness of our manipulation of the UML, process algebra

and reactive modules models than would have been possible

otherwise. The Standard ML components interoperate with

the Java ones because they are compiled with the ML-to-

Java-bytecode compiler, MLj [13]. This means that they are

seen from Java as a zipped archive of Java bytecode class

files. Many other functional programming language

compilers also target the Java platform in this way.

4. Correctness of the translation

Our analysis of a timed UML model proceeds by

translating the given model into a PRISM reactive modules

specification, obtained via a mapping into the PEPA

stochastic process algebra. If either of these mappings is

erroneous then all of the computational expense incurred in

solving the model and all of the intellectual effort invested

in the analysis and interpretation of the results obtained

would at best be wasted. In general, interpreting a model

with errors could lead to incorrectly concluding that the

proposed system will perform with acceptable levels of

availability and efficiency whereas this is in fact an

erroneous conclusion deduced from erroneous results. For

this reason, it is important to consider closely the

correctness and validity of our translation process.

One part of the translation is more amenable to this form

of analysis than the other, and we discuss this briefly here. It is

possible to make concrete formal statements about the

correctness of the translation from the intermediate PEPA

model to the final PRISM model. Despite differences in form
and expression, when fired against the operation semantics of

their relative languages the PEPA and PRISM models

generate isomorphic continuous-time Markov chains with

equivalent states and transitions. This is the sense in which

the equivalence of the two models can be formally stated.

However, this is only one part of the translation and the

correctness of the whole depends also on the correctness of

the initial translation from the UML model into PEPA. The

same argument cannot be applied to this part of the

translation because there is no canonical semantics for

timed UML models with exponentially distributed delays

which generates a CTMC. This prompts the question “In

what sense does the intermediate PEPA model represent the

input UML model?” and this question is more difficult to

answer because there is on universally agreed formal

semantics for UML models.

To this end, we have ensured that the generated PEPA

model makes the least demands on the semantic interpret-

ation of the UML diagram. That is, whatever semantics is

used to interpret the diagrams it needs only to respect the state

machine properties that each state machine is in one of its

local states at any time, and that changes of states cannot be

achieved by a means other than executing transitions. These

properties are sufficient to ensure that there are no possible

observations of the PEPA model which would not be possible

observations of the UML state machine collaboration. This

agreement can be reached in our work because we are

working within a well-defined subset of the UML state

diagrams language, which rules out syntactically those

language features over which there is most debate as to

their interpretation.
4.1. Special cases in the translation

In this section, we describe some of the places where

special care needs to be taken to ensure that the PEPA input

and PRISM output from the PEPA-to-PRISM compiler are

in agreement.

The language accepted by the PEPA-to-PRISM compiler

is a subset of the PEPA stochastic process algebra. The

restrictions applied to the language are firstly that

component identifiers can only be bound to sequential

components (formed using prefix and choice and references

to other sequential components only). Secondly, each local

state of a sequential component must be named. For

example, we would rewrite P Z
def
ða; rÞ$ðb; sÞ$P as

P Z
def

ða; rÞ$P2

P2 Z
def

ðb; sÞ$P

These restrictions are relatively mild and are already

enforced by the UML tools, which we use in any case. The

diagrams which we can draw with our UML tool do not

allow anonymous states such as (b, s)$P and they do not

support the concurrency extension to state machines.



S. Gilmore, L. Kloul / Reliability Engineering and System Safety 89 (2005) 17–32 23
With regard to performance models one final restriction

is applied: active/active synchronisations are not allowed.

The reason for this is that the PRISM interpretation of these

differs from the PEPA interpretation. In consequence, the

results computed by PRISM from such a model would differ

from the results computed by the PEPA Workbench.

PEPA synchronisations processed by the PEPA-to-

PRISM compiler may have more than one passive

participant. We use this fact crucially in encoding our

performance measures as witness components in the

model. These act as observers of the behaviour of the

model, changing state to record significant events such as

failures and repairs of servers, and giving names to

important states such as the state where all of the servers

have failed.

The restriction in force on synchronisations in the

compiler is that each must have exactly one active

component. This restriction is checked statically, without

the need to explore the entire state space of the model.

Because this is done statically, the PEPA-to-PRISM

compiler will conservatively over-estimate the models in

which an active/active synchronisation appears to occur. For

example, the following model would be faulted by the

compiler.

P ¼
def
ða; r1Þ$P þ ðb; r2Þ$P2 Q ¼

def
ðc; r4Þ$Q

P2 ¼
def
ðc; r3Þ$P

System ¼
def

P )
fb;cg

Q

Fig. 5. Reuse pattern of
The compiler infers the alphabets for each model

component from its set of recursive definitions. It then

classifies the activities in these alphabets as being individual

or shared and active or passive.

The compiler estimates that the model above contains an

active/active synchronisation on the activity c where P

performs the activity at rate r3 and Q performs it at rate r4.

However, no such active/active synchronisation would ever

take place because the local state P2 is actually unreachable.

This follows because Q would be required to first

synchronise on a b activity with P but Q can never perform

a b activity at all, only c. Faulting models such as this which

appear to have an active/active synchronisation which they

actually do not are not very problematic because this

problem always indicates the presence of unreachable states

(dead code) in the model, probably signalling an error on the

part of the modeller.

We now present a case study which demonstrates the use

of these tools.
5. Case study: hierarchical cellular network

The hierarchical cellular network consists of two tiers of

cells, a level of macrocells overlying a level of microcells.

In this study, we consider the Manhattan model [14,15]

where the reuse pattern is based on a five squared microcell

cluster, a central cell surrounded by four peripheral cell

(Fig. 5). This model takes its name from the city of
Manhattan model.



Fig. 6. The cluster model.
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Manhattan, which consists of square-blocks, representing

buildings, with streets in between them.

As in this model each microcell has four neighbouring

cells, we consider a microcell cluster model composed of a

central microcell surrounded by four peripheral cells as

shown in Fig. 6. We consider a FCA scheme (Fixed Channel

Allocation [16]), where S channels are distributed among

the different cells. Let cj, jZ1,.,5 be the capacity of

microcell j and c0 the capacity of the macrocell.

Considering a homogeneous system in statistical equili-

brium, any cluster of microcells overlaid by a macrocell has

statistically the same behaviour as any other cluster of

microcells overlaid by a macrocell. We use this observation

to decouple a cluster from the rest of the system. That is, we

can analyse the overall system by focusing on a given

cluster under the condition that the neighbouring clusters

exhibit their typical random behaviour independently.

We consider two types of customers inside the cluster,

the new calls and the handover requests (ongoing calls).

External arrivals to the cluster consist of the handover

requests coming from other clusters and the new calls

initiated in that cluster. We assume that the handover

requests coming from other clusters may occur only in the

macrocell or the peripheral microcells. We consider that

these arrivals may never occur in the central microcell.

In this study, new calls can be assigned only to the

microcell level. Moreover, we consider a hierarchical

cellular network using an overflow strategy but without

reversible capability, except for the external arrivals to the

macrocell. A request, either a new call or a handover

request, initiated at the microcell level is served in its

originating microcell if a channel is available. Otherwise,

according to the overflow strategy, the request is overflowed
Fig. 7. The handoff r
to the upper level and is satisfied if a channel is free at this

level. In the case where all channels are busy at both levels,

the request is dropped (in the case of a handover) or blocked

(in the case of a new call).

This system is studied under the usual Markovian

assumptions. New call and handover request arrivals follow

a Poisson process. We assume that the average new call

arrival rates and the handover arrival rates are the same for

all cells in the network. The session duration which

represents the duration of a communication is modelled

by a service time which is exponentially distributed with

parameter m. The amount of time that a user remains within

a coverage cell of a given base station, called dwell-time, is

assumed to be exponentially distributed with parameter a.

In Section 5.1, we present the UML model corresponding

to this system.
5.1. The UML model

In the model, the external arrival process is represented

by the event in by the cells. The arrival rate is assumed to be

l1 in the macrocell, l2 in the peripheral microcells and l3 in

the central microcell.

Because of the different types of cells (macrocell,

peripheral microcell, central microcell) and the topology

of the network, we make a distinction between handover

requests generated by the cluster itself (Fig. 7). This

distinction is based on the cell type this request originated

from and the cell type satisfying this request, which means

the cell where the ongoing call has to be transferred to.

Thus, the arrival process of these customers is represented

by the event handoff indexed by the type of handover

request as follows:
†

equ
handoffdown represents the transfer of a call from the

macrocell to a microcell. This call is a handover request

coming from outside the cluster to the macrocell and

because all its channels are busy, it has to be transferred

to a microcell,
†
 handoffup represents the transfer of a call from a

microcell to the macrocell. This call may be either a

new call or a handover request coming from outside

the cluster to the microcell and because all channels in

the microcell are busy, it has to be transferred to the
ests graph.



Fig. 8. The state diagram of macro.
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macrocell. The rate associated with this event is the

external arrival rate to the microcell,
†
 handoffin.c is the event which triggers the transfer of an

ongoing call from one of the peripheral microcells to the

central microcell,
†
 in contrast, handoffout.c represents the transfer of an

ongoing call from the central microcell to one of the four

peripheral microcells,
†
 handoffin-up.c represents the case where an ongoing call

coming from a peripheral microcell and entering the

central microcell, is then transferred to the macrocell

because all channels of the central microcell are busy,
†
 handoffout-up.c models the arrival of an ongoing call from

the central microcell to a peripheral microcell and

because all channels of this cell are busy, the handover

call is overflowed to the macrocell.

As the process behind the four last handoff events is the

same, the corresponding rate is also the same and it is

denoted by a (representing the mean dwell-time in a

microcell). In all cells, the service process is represented by

event service. As the service rate in each cell is assumed to

be m, when there are i, 1%i%ck, customers in a cell, the

event service is of rate im.

In the following, we present the state diagrams of the

different components of our network and the collaboration

diagram showing the interactions between these components.

5.1.1. The state diagrams

We denote by macro the macrocell overlying the cluster

of microcells. Microc and microj, denote the central
Fig. 9. The state diagram of a pe
microcell and a peripheral microcell, respectively. For the

sake of readability of the different state diagrams, we limit

the total number of channels to SZ18 and these channels

are fairly shared by the different cells: cjZ3, jZ0,.,5.

The state diagram of macro is described in Fig. 8 where

macroi, iZ0,.,3, is the state where i channels are busy.

A transition from state macroi to state macroiC1 denotes

the arrival of either an ongoing call from other macrocells

(in) or from one of the microcells with handoffup, handoffin-

up.c or handoffout-up.c. A natural termination of a call is

represented by a transition from state macroi to state

macroiK1 with service.

When all channels are busy (state macro3), if a handover

call arrives from the microcells, the call is dropped and thus

lost. Similarly, if an external handover call arrives when all

channels are busy, the call is blocked and lost.

The state diagram of microj is described in Fig. 9 where

microjk, kZ0,.,3, is the state where k channels are busy.

A transition from state microjk to state microjkC1

denotes an external arrival call (new call or a handover

request from other clusters) with action in, an ongoing call

from the central microcell (handoffout.c) or from the

macrocell (handoffdown). The departure of a call from a

peripheral microcell to the central microcell (handoffin.c) or

to the macrocell via the central (handoffin-up.c) is depicted

in the diagram by a transition from microjk to state

microjkK1. A similar transition with service models a

natural termination of a call. As for the macro, all arrivals

when all channels of a peripheral cell are full (state

microj3) are lost.
ripheral microcell microj.



Fig. 10. The state diagram of the central microcell microc.
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The state diagram of the central microcell microc is

described in Fig. 10 where microci, iZ0,.,3, is the state

where i channels are busy.

In this diagram, a transition from state microci to state

microciC1 denotes the arrival of either a new call (in) or an

ongoing call from a peripheral microcell (handoffin.c). A call

leaving the central microcell for a peripheral microcell

(handoffout.c) or for the macrocell via a peripheral one

(handoffout-up.c) is depicted by a transition from microci to

state microciK1.
5.1.2. The collaboration diagram

In the network, the peripheral microcells will behave

independently, but will synchronize with the central

microcell when there are handoff requests from one to

another. Similarly, both peripheral and central microcells

have to synchronize. These interactions of the different

components of the network are recorded in the collaboration

diagram given in Fig. 11.
Fig. 11. The collaboration diagram.
5.2. The PEPA model

The PEPA model extracted from the UML model

consists of six components, macro, microc and microj,

1%j%4. These components are defined in Fig. 12.

The system is formed by the co-operation of macro and

the different microcells. Since the four peripheral microcells

proceed independently, and co-operate with the central

microcell, the system is defined as follows:

System Z
def
ððmicro10jj.jjmicro40Þ)

L
microc0Þ)

K
macro0

where L is the set of activities on which the central microcell

and the peripheral microcells must synchronize. The set K

contains the activities on which the macrocell and the

microcells must synchronize. These two co-operation sets

are defined as follows:

L Z fhandoffin:c0 handoffout:cg

K Z fhandoffup0 handoffinKup:c0 handoffoutKup:c0 handoffdowng
5.3. Processing the model

Solving this model requires using our extractor and

reflector tools and the PRISM model checker. We solve the

model for cjZ8, jZ0,.,5. This implies that there are 48

channels shared between 6 cells. The CTMC corresponding

to this model has more than a quarter of a million states

(actually 262,144 states) and the longest part of the process

is generating and solving this CTMC with PRISM. We used

PRISM v1.3 for this with its Hybrid solution engine and its

Jacobi solver. The total storage for matrix and solution

vectors built for the model required 6208 kb of memory and

the solver found the solution after 466 iterations. This took

45.31 s on a 1.6 GHz Pentium IV with 256 Mb of memory.

The fact that this runtime is so short means that these tools

can be used by a software developer with no more

significant impact on development time than that spent on

the edit–compile–run cycle in software development. We

think that this is an encouraging indicator for this method of

software performance analysis.

A screenshot showing the reflected results in the UML

model can be seen in Fig. 13. On each diagram state, we

now have the name of the state and, between the brackets, a

performance measure related to this state. In this example,

we have the steady-state residence probability, expressed as

a percentage, for each state.
5.4. Performance analysis and model-checking

For such a system, the performance measures of interest

are the blocking probability of new calls and the dropping

handover probability. The blocking probability is defined as

the probability that a new call is denied access to a channel,



Fig. 12. PEPA components extracted from the UML model.
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because all channels accessible by new calls at both cellular

levels are busy. This probability is computed by considering

the states where the new calls are lost. A new call is lost if it

arrives at a full microcell and the handoffup activity fails

because the macrocell is also full.

The dropping handover probability is defined as the

probability that a call in progress is blocked due to handoff

failure during its communication. In other words, the

ongoing call is blocked because there is no available

channel in the cells it may be transferred to. This probability

is computed by considering the states where the activities

handoffout-up.c and handoffin-up.c may fail, states which

correspond to a full macrocell.

The impact of different parameters of the system on these

probabilities can be investigated. Among these parameters,

we can find the channel allocation scheme used, the user

mobility and the overflow strategy [15]. For example, Figs.

14 and 15 show the results we obtain when investigating the

impact of the channel allocation schemes on the blocking
and dropping probabilities. Two allocation schemes are

considered, a symmetric scheme where each cell has 7

channels and a non-symmetric one where each microcell has

5 channels and macrocell has 17 channels.

In Fig. 14, we can see that, with the first channel

assignment scheme, where all cells have the same capacity

(7), the dropping handover probabilities obtained are higher

than those obtained when we consider the second scheme.

This is due to the fact that all channels of a macrocell may

be requested by all microcells of the cluster. Indeed, the role

of the macrocell is to provide additional capacity with a pool

of overflow channels to be shared between all microcells.

Thus, any microcell may request a transfer of an ongoing

call to the macrocell and this request has more chance of

being satisfied if an important channel number is assigned to

the macrocell. In other words, even if we have less channels

in each microcell (5 in the second scheme) which may

increase the number of handovers, the availability of a

greater number of channels (17) in the macrocell will allow



Fig. 13. The UML model with performance information added viewed in ArgoUML.
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the macrocell to provide for a greater number of transfer

requests of ongoing calls. The figure shows also that for low

loads, the difference between the curves is important and

that difference decreases considerably for heavy loads. The

reason is that when the system is heavily loaded, all

channels of the macrocell will be inclined to be occupied
Fig. 14. Dropping hando
and it does not make a big difference to consider one

channel assignment scheme rather than the other one.

In Fig. 15, we can observe the same phenomena as in the

previous figure. New call blocking probabilities obtained

when considering cells with the same capacity are greater

than those obtained when considering the channel
ver probabilities.



Fig. 15. New call blocking probabilities.
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assignment scheme where the macrocell has an important

channel number compared to microcells. This similarity is

due to the fact that new calls may be assigned only to the

microcellular level. That means that when all channels of

the microcell in which this call has been generated are busy,

the microcell engages in a handoffup activity. The new call is

treated as an ongoing call.

Exploring symmetric versus asymmetric resource allo-

cation schemes between both cellular levels shows that a

channel allocation scheme assigning more resources to the

macrocellular level yields better results.

CSL model-checking of CTMCs allows the user to check

performability properties, which combine probabilities,

behaviour and time. Using the PRISM tool, we model-

checked a number of CSL formulae against our model of the

Manhattan system. The most useful formula for perform-

ability analysis is a probabilistically quantified time-

bounded until formula. We used formulae of the following

generic form:

PRp½pre U%t post�

The semantic meaning of such a formula is that with

probability at least p, the system will be able to evolve from

any state satisfying the pre formula to some state satisfying

the post formula, in time at most t. We obtain the most

information from such a formula by setting the probability

as high as we can (as close to 1.0 as possible) and setting the

time bound as low as we can (tighter time bounds are more

informative than looser ones). We use these formulae to

express responsiveness measures over the model, thereby
learning how quickly the system can recover from error

states, overloading, or other malfunctions.

PRISM’s model-checking procedure for CSL formula

determines the number of states in the reachable state space

which satisfy the formula. This is strictly more informative

than a simple Boolean-valued result indicating whether or

not the formula is always satisfied.

The model analysis computes the size of the reachable

state space as its first subcomputation. Given this result, we

then may learn that from some determined proportion of

this state space it is not possible for the system to respond

within the stated time bound, with the required certainty.

This might be all of the state space, none of it, or

somewhere in between. In this way, model-checking CSL

formulae and interpreting the results helps the modeller to

learn more about the stochastic behaviour of the system

and the progress of the probability mass through the state

space over time.

We used PRISM’s Hybrid engine and the CSL formulae

were checked using the uniformisation and Fox-Glynn

procedures from this engine. The results of our experiments

are shown in Table 1. The first four columns give

information about the formula which was checked (the p,

pre, t, and post components of PRp[pre U%t post]) and the

last two columns give the number of satisfying states and the

time taken for PRISM to check this formula (on a 1.6 GHz

Pentium PC running Red Hat Linux 7.2).

Table 1 demonstrates several typical properties of CSL

model-checking. Firstly, having a larger state space

satisfying the pre-formula leads to a longer run-time.

Secondly, higher probability of certainty leads to a longer



Table 1

CSL model-checking results

Probability p Formula pre Time t Formula post #states satisfying Run time in s

0.5 true 1.0 microcellFull 262,144 (all) 6.453

0.5 true 0.001 microcellFull 229,376 4.708

0.995 true 0.001 microcellFull 229,376 5.255

0.995 microcellFull 0.001 lmicrocellFull 229,376 4.543

0.25 allCellsFull 0.1 lallCellsFull 262,144 (all) 0.947

0.5 allCellsFull 0.001 lallCellsFull 262,136 1.0

0.75 allCellsFull 1.0 lallCellsFull 262,144 (all) 0.843
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run-time. Thirdly, tighter time bounds reduce the number of

states satisfying a formula.
6. Related work

Work which is similar in spirit to our own approach is that

of Petriu and Shen [17] where a layered queuing network

model is automatically extracted from an input UML model

with performance annotations in the format specified by a

special-purpose UML profile [18]. We do not follow the same

UML profile because it is not supported by our modelling tool.

Additionally, the performance evaluation technology which

we deploy (process algebras and BDD-based solution) is quite

different from layered queueing networks.

Another performance engineering method which is

similar to ours is that of Lòpez-Grao et al. [19] where

UML diagrams are mapped into GSPNs which can be

solved by GreatSPN. We use different UML diagrams types

from these authors and, again, a different performance

evaluation technology. Stochastic Petri nets and stochastic

process algebras have different, but complementary,

modelling strengths [20].

A different approach again is taken by Lindemann et al.

[21] who map state and activity diagrams into generalised

semi-Markov processes which can be solved by DSPNex-

pressNG. Their use of GSMPs provides an improvement in

expressive power over our use of CTMCs, allowing

deterministic delays in addition to exponentially distributed

ones. However, this increased expressivity comes at the cost

that GSMPs are less easily amenable to numerical solution

than CTMCs.

One feature of our work, which is distinctive from both

of the above, is the role of a reflector in the system to present

the results of the performance evaluation back to the UML

modeller in terms of their input model. We consider this to

be a strength of our approach. We do not only compile a

UML model into a performance model, we also present the

results back to the modeller in the UML idiom.
7. Conclusions

We have described a component-based method of linking

a collection of software tools to facilitate automated
processing of UML performance models. The connectors

in this method are the extractors and reflectors which we

have developed. We have applied the tools to the analysis of

a realistic model of a hierarchical cellular telephone

network.

This approach to modelling allows the modeller to access

a powerful and efficient solution technology without having

to master the details of unfamiliar modelling languages such

as process algebras and reactive modules. Our experience of

using the PEPA and PRISM tools has been uniformly good.

One of the decisions which we have had to take in this

work was the choice of UML diagrams and metaphors to

employ. In part our choice in this was restricted by the

degree of support offered by the UML modelling tool which

we used (ArgoUML). However, the outcome of this was that

it directed us to use familiar and well-understood parts of

the UML modelling notation. One of our motivations for

this work is reducing the potential for error in early stages of

the performance modelling process and we consider that this

outcome is supported by this influence to use the well-

understood parts of UML.

It is not the case that an inexperienced modeller can use

our system to compute any performance measure that they

wish without needing any understanding of the abstraction,

modelling and mathematical analysis at work in perform-

ance prediction and estimation. However, we hope that we

have gone some way to providing automated support for

computing simple performance measures and to circum-

venting an unnecessary notational hurdle if this was acting

as an impediment to the understanding and uptake of

modern performance analysis technology.

The dependability and safety of computer-based systems

is a complex issue with many opposing and sometimes

conflicting aspects. In this paper, we have focused on the

quantitative aspects of system dependability known as

performability because they lie on the border between

performance and dependability. We have the view that it is

sometimes the case that quantitative analysis takes second

place to qualitative analysis of systems. However, safe,

well-engineered systems need to deliver reliable services in

a timely fashion with good availability. For this reason, we

view quantitative analysis techniques as being as important

as qualitative ones.

We have recently developed an extension of the PEPA

stochastic process algebra where PEPA components are



Fig. 16. The operational semantics of PEPA.
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used as coloured tokens in a stochastic Petri net. The

resulting formalism is called PEPA nets [23]. Our future

work is to integrate the PEPA nets formalism with our

extractor and reflector tools. Given an extended UML tool,

which supports the forthcoming UML 2.0 design, we would

be able to map the extended in UML 2.0 activity diagrams

onto PEPA nets for analysis purposes. The activity diagrams

in UML 2.0 are given a semantics which is based on Petri

nets and queueing theory and are intended for analyses such

as ours. An algorithm translating PEPA nets models into the

PEPA formalism has already been developed and

implemented [22]. Using this, it would be possible to take

extended activity diagrams through to analysis by PRISM

using the method followed in this paper.
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Appendix. Structured operational semantics for PEPA

The semantic rules, in the structured operational style,

are presented in Fig. 16; the interested reader is referred to

Ref. [6] for more details. The rules are read as follows: if the

transition(s) above the inference line can be inferred, then

we can infer the transition below the line. The notation ra(E)

which is used in the third co-operation rule denotes the

apparent rate of a in E.
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