
A Unified Tool for Performance Modelling and
Prediction

Stephen Gilmore and Lëıla Kloul�

Laboratory for Foundations of Computer Science, The University of Edinburgh,
Edinburgh, Scotland, EH9 3JZ

Abstract. We describe a novel performability modelling approach
which facilitates the efficient solution of performance models extracted
from high-level descriptions of systems. The notation which we use for
our high-level designs is the UML graphical modelling language. The
technology which provides the efficient representation capability for the
underlying performance model is the MTBDD-based PRISM probabilis-
tic model checker. The UML models are compiled through an interme-
diate language, the stochastic process algebra PEPA, before translation
into MTBDDs for solution. We illustrate our approach on a real-world
analysis problem from the domain of mobile telephony.

1 Introduction

Distributed, mobile and global computing environments provide robust develop-
ment challenges to practising software system developers. Working with rapidly-
changing implementation technology means that developers often must spend
some of their development time finding and correcting errors in the software
libraries and APIs which they use. Fortifying this difficulty is the arduous terrain
of dynamic distributed systems where the difficulty of replaying a communica-
tion sequence which led to a system fault confounds the process of detecting and
correcting implementation errors.

In this setting, application developers rarely wish to expend the investment
of time which would be needed to build and analyse a performance model of the
system which they are developing. The concepts and the modelling languages of
performance analysis are relatively unfamiliar to software developers and when
already faced with a generous range of other difficulties in the development
process, early predictive performance analysis can easily be overlooked.

However, this is an imprudent practice. If performance design flaws are found
early in the development process then they can be corrected at a relatively low
cost. In contrast, if they are found after the development process is long underway
then they may be very expensive or even unrealistic to repair. If they are then
subsequently ignored, such problems will lead to unreliability of the high-end
consumer electronic devices which are increasingly used in safety-critical contexts
thoughout society.
� On leave from PRiSM, Université de Versailles, 45, av. des Etats-Unis, 78000 Ver-

sailles, France

S. Anderson et al. (Eds.): SAFECOMP 2003, LNCS 2788, pp. 179–192, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

180 S. Gilmore and L. Kloul

To combat these difficulties, a performance modelling methodology which is
designed for effective development of such global, mobile or high-end distributed
systems should provide at least the following two features: a convenient high-
level modelling notation for expressing performance models; and efficient solu-
tion methods for realistic models of complex systems. Unfortunately these two
requirements are often at variance. In order to access state-of-the-art solution
methods one usually additionally needs to master sophisticated representation
and analysis methods which sometimes are inconvenient or troublesome to use.
Conversely, high-level modelling platforms devote much of their efforts to provid-
ing reliable graphical editors and supporting document and IDE infrastructure
and this can come at the expense of equipping them with complementary anal-
ysis tools.

We provide a structured performance engineering platform for this problem
domain by connecting a specification environment (SENV) and a verification
environment (VENV) so that each may communicate with the other. The SENV
and VENV are connected by a bridge which consists of two categories of software
tools. These are:

– extractors which translate designs from the SENV into inputs for the VENV,
omitting any aspects of the design which are not relevant for the verification
task at hand; and

– reflectors which convert the results from the analysis performed by the
VENV back into a form which can be processed and displayed by the SENV.

A series of extractors can be chained together to provide a path from one spec-
ification formalism to another. Similarly, reflectors can be chained together in
order that the results of one analysis process may be presented back in the for-
mat of another. A process of extractor/reflector chaining is used here to connect
a specification environment to multiple verification environments. We use the
ArgoUML design environment [1] as our SENV and the PEPA Workbench [2]
and the PRISM probabilistic symbolic model checker [3] both play the role of
VENVs. ArgoUML provides the Unified Modelling Language (UML) [4] as its
modelling language. The PEPA Workbench and PRISM both support the PEPA
stochastic process algebra [5]. PRISM additionally supports a state-based lan-
guage based on the Reactive Modules formalism of Alur and Henzinger [6].

Structure of this paper: In the next section we describe some of the background
to this work, providing a summary of UML, PEPA and PRISM modelling. In
Section 3 we describe the software architecture of the system, as an integrated
set of components. We give details of the implementation, providing an explana-
tion of how the components work together and calling attention to cases where
some care has been needed. In Section 4 we present our case study, showing the
approach applied to a realistic example. In Section 5 we survey related work.
Conclusions are presented in Section 6.

2 Background

The Unified Modelling Language (UML) is an effective diagrammatic notation
used to capture high-level designs of systems, especially object-oriented software

A Unified Tool for Performance Modelling and Prediction 181

systems. A UML model is represented by a collection of diagrams describing parts
of the system from different points of view; there are seven main diagram types.
For example, there will typically be a static structure diagram (or class diagram)
describing the classes and interfaces in the system and their static relationships
(inheritance, dependency, etc.). State diagrams, a variant of Harel state charts,
can be used to record dynamic behaviour. Interaction diagrams, such as sequence
diagrams, are used to illustrate the way objects of different classes interact in
a particular scenario. As usual we expect that the UML modeller will make
a number of diagrams of different kinds. Our analysis is based on state and
collaboration diagrams.

We have introduced performance information in the state diagrams such that
each transition in these diagrams is labelled with a pair ‘a / rate(r)’ where a is
the action type executed and r is an exponentially distributed rate associated
with this action. We often simplify the representation of the transition labels in
order to save space writing this as ‘a / r’. A customer arrival causes a change
in the state of a queue so this would be one example of an action type which
we might use. Concretely, arrive/rate(λ) and serve/rate(µ) would be suitable
arc adornments for a state diagram for a queue (abbreviated to arrive/λ and
serve/µ).

In Performance Evaluation Process Algebra (PEPA) [5], a system is viewed
as a set of components which carry out activities either individually or in coop-
eration with other components. Activities which are private to the component
in which they occur are represented by the distinguished action type, τ . Each
activity is characterized by an action type and a duration which is exponentially
distributed. This is written as a pair such as (α, r) where α is the action type
and r is the activity rate. This parameter may be any positive real number, or
may be unspecified. We use the distinguished symbol � to indicate that the
rate is not specified by this component. This component is said to be passive
with respect to this action type and the rate of the shared activity is defined by
another component.

PEPA provides a set of combinators which allow expressions to be built which
define the behaviour of components via the activities that they engage in. These
combinators are presented below.

Prefix (α, r).P : Prefix is the basic mechanism by which the behaviours of
components are constructed. This combinator implies that after the component
has carried out activity (α, r), it behaves as component P .

Choice P1 + P2: This combinator represents a competition between com-
ponents. The system may behave either as component P1 or as P2. All current
activities of the two components are enabled. The first activity to complete dis-
tinguishes one of these components and the other is then discarded.

Cooperation P1 ��
L
P2: This describes the synchronization of components

P1 and P2 over the activities in the cooperation set L. The components may
proceed independently with activities whose types do not belong to this set.
A particular case of the cooperation is when L = ∅. In this case, components
proceed with all activities independently. The notation P1 ‖ P2 is used as a
shorthand for P1 ��

∅ P2. In a cooperation, the rate of a shared activity is defined
as the rate of the slowest component.

182 S. Gilmore and L. Kloul

Hiding: P/L This component behaves like P except that any activities of
types within the set L are hidden, i.e. such an activity exhibits the unknown type
τ and the activity can be regarded as an internal delay by the component. Such
an activity cannot be carried out in cooperation with any other component: the
original action type of a hidden activity is no longer externally accessible, to an
observer or to another component; the duration is unaffected.

Constant: A
def= P Constants are components whose meaning is given by a

defining equation:A def= P gives the constantA the behaviour of the component P .
This is how we assign names to components (behaviours). An explicit recursion
operator is not provided but components of infinite behaviour may be readily
described using sets of mutually recursive defining equations.

The transition system underlying the PEPA model gives the continuous time
Markov process represented by the model. The generation of this process is based
on the derivation graph of the model in which syntactic terms form the nodes,
and arcs represent the possible transitions between them. This derivation graph
describes the possible behaviour of any PEPA component and provides a useful
way to reason about a model. The use of the derivation graph is analogous to
the use of the reachability graph in stochastic extensions of Petri nets such as
GSPN [5].

Specifications are constructed in PRISM by defining a collection of reactive
modules which synchronise on shared activities. The state of each module is
determined by a set of local variables. The models which we work with here are
all obtained by compiling an input PEPA model. All of these have associated
constants which enumerate the states of the module and use a single local vari-
able to record the current state. We developed the PEPA-to-PRISM compiler
to allow us to analyse our PEPA models with PRISM. Our compiler has been
incorporated into the latest release of PRISM (version 1.3) [7].

The behaviour of a reactive module is encoded by a list of guarded tran-
sitions which name the activity performed and specify assignments to the
local variables which are to be carried out if the activity is performed. The
PRISM model-checker accepts descriptions of discrete-time Markov chains
(DTMCs), continuous-time Markov chains (CTMCs) and Markov decision pro-
cesses (MDPs).

CSL model-checking of CTMCs allows the user to check performability prop-
erties which combine probabilities, behaviour and time, such as “the probability
that a hand off call will be dropped within 100 time units is less than 0.1.”

We use PRISM to solve PEPA models for their stationary probability dis-
tribution. The first step of this process is generating the full state space of the
system. This is compactly stored by PRISM as a multi-terminal binary deci-
sion diagram (MTBDD). The CUDD package [8] is used as a library, providing
MTBDD data structures and algorithms to PRISM.

3 The Software Architecture

Ours is a component-based software architecture in which we link substantial
software tools with lightweight connectors called extractors and reflectors. This

A Unified Tool for Performance Modelling and Prediction 183

promotes significant code re-use and allows for clean interfaces between systems
using formal description languages such as PEPA and PRISM’s reactive modules.

A performance modeller using our tool will design a system using a UML
modelling environment such as ArgoUML. UML software tools produce XML-
based model interchange files called XMI files. The XMI file of the model is
used by the PEPA Workbench to extract a PEPA model. The resulting PEPA
file is then submitted to the model checker PRISM. PRISM produces a steady
state probability vector. This is then reflected by the PRISM reflector as a PEPA
steady state probability vector. Using some information in the XMI file produced
initially by the UML tool, the PEPA workbench reflects these results as an XMI
document.

Finally the modeller can then visualize the performance measures obtained
since this last reflector of the chaining process consists in adding these new
information into the user UML model.

The start of our UML performance model analysis process is an .xmi or
.zargo file obtained from ArgoUML or a similar UML tool. The PEPA Work-
bench contains as components the PEPA Extractor and the PEPA Reflector
which convert between UML models and other kinds. The PEPA Extractor is
first used to process the file containing the UML model and extracts a PEPA
model from this. This PEPA model is then compiled using the PEPA-to-PRISM
compiler and solved by PRISM. The PRISM Reflector assumes that the PEPA
Extractor and compiler have already been run. The former has extracted a .pepa
file from an .xmi or .zargo file. The latter has extracted a .sm file from the
.pepa file and has written a log file (.log) mapping PEPA local state identifiers
onto the numeric constants used in the reactive modules notation. The output
from the PRISM tool onto the standard output stream has been captured and
saved in a .pres (PRISM results) file. The PRISM Extractor reads the .log
file and the .pres file and writes an .xml file in the same format as the PEPA
Workbench. PEPA Workbench results files can be read by the PEPA Reflector.
We use the PEPA Reflector next to merge the results with the orginial input
UML model to produce a modified .xmi or .zargo file which includes the results
of the performance analysis. This file can be loaded into the ArgoUML tool to
present the results back to the UML performance modeller.

Our extractor and reflector software tools are implemented in the program-
ming languages Java and Standard ML [9]. The Java components handle the
processing of the zipped archives (in .zargo format) of UML models produced
by the ArgoUML tool and the parsing of the XMI documents containing the
UML models (in .xmi format). The DOM parser from the Java 1.4 javax.xml
package is used to parse the XMI files. Much of the more complex processing is
implemented in the Standard ML language.

We now present a case study which demonstrates the use of these tools.

4 Case Study: Hierarchical Cellular Network

The hierarchical cellular network consists of two tiers of cells, a level of macrocells
overlying a level of microcells. In this study, we consider the Manhattan model
[10] where the reuse pattern is based on a five squared microcell cluster, a central

184 S. Gilmore and L. Kloul

cell surrounded by four peripheral cells (Fig.1). This model takes its name from
the city of Manhattan which consists of square-blocks, representing buildings,
with streets in between them.

Macrocellular level

Microcellular level

Fig. 1. Reuse pattern of Manhattan model

As in this model each microcell has four neighbouring cells, we consider
a microcell cluster model composed of a central microcell surrounded by four
peripheral cells. We consider a FCA scheme (Fixed Channel Allocation [11]),
where S channels are distributed among the different cells. Let cj , j = 1 . . . 5 be
the capacity of microcell j and c0 the capacity of the macrocell.

Considering a homogeneous system in statistical equilibrium, any cluster of
microcells overlaid by a macrocell has statistically the same behaviour as any
other cluster of microcells overlayed by a macrocell. We use this observation to
decouple a cluster from the rest of the system. That is, we can analyze the overall
system by focusing on a given cluster under the condition that the neighbouring
clusters exhibit their typical random behaviour independently.

We consider two types of customers inside the cluster, the new calls and the
handover requests (ongoing calls). External arrivals to the cluster consist of the
handover requests coming from other clusters and the new calls initiated in that
cluster. We assume that the handover requests coming from other clusters may
occur only in the macrocell or the peripheral microcells. We consider that these
arrivals may never occur in the central microcell.

In this study, new calls can be assigned only to the microcell level. Moreover,
we consider a hierarchical cellular network using an overflow strategy but without
reversible capability, except for the external arrivals to the macrocell. A request,
either a new call or a handover request, initiated at the microcell level is served
in its originating microcell if a channel is available. Otherwise, according to the
overflow strategy, the request is overflowed to the upper level and is satisfied if
a channel is free at this level. In the case where all channels are busy at both

A Unified Tool for Performance Modelling and Prediction 185

levels, the request is dropped (in the case of a handover) or blocked (in the case
of a new call).

This system is studied under the usual Markovian assumptions. New call
and handover request arrivals follow a Poisson process. We assume that the
average new call arrival rates and the handover arrival rates are the same for
all cells in the network. The session duration which represents the duration of a
communication is modelled by a service time which is exponentially distributed
with parameter µ. The amount of time that a user remains within a coverage
cell of a given base station, called dwell-time, is assumed to be exponentially
distributed with parameter α.

In the next section we present the UML model corresponding to this system.

4.1 The UML Model

In the model, the external arrival process is represented by the event in by the
cells. The arrival rate is assumed to be λ1 in the macrocell, λ2 in the peripheral
microcells and λ3 in the central microcell.

Because of the different types of cells (macrocell, peripheral microcell, central
microcell) and the topology of the network, we make a distinction between han-
dover requests generated by the cluster itself (Fig. 2). This distinction is based

handoff in-up.chandoff up

Macrocellular level Macrocellular levelMacrocellular level Macrocellular level

handoff

handoff

handoff

 in.c

 out.c

 out-up.c

Fig. 2. The handoff requests graph

on the cell type this request originated from and the cell type satisfying this
request, which means the cell where the ongoing call has to be transferred to.
Thus, the arrival process of these customers is represented by the event handoff
indexed by the type of handover request as follows:

– handoff down represents the transfer of a call from the macrocell to a micro-
cell. This call is a handover request coming from outside the cluster to the
macrocell and because all its channels are busy, it has to be transferred to a
microcell,

– handoff up represents the transfer of a call from a microcell to the macrocell.
This call may be either a new call or a handover request coming from outside
the cluster to the microcell and because all channels in the microcell are busy,
it has to be transferred to the macrocell. The rate associated with this event
is the external arrival rate to the microcell,

– handoff in.c is the event which triggers the transfer of an ongoing call from
one of the peripheral microcells to the central microcell,

186 S. Gilmore and L. Kloul

– in contrast, handoff out.c represents the transfer of an ongoing call from the
central microcell to one of the four peripheral microcells,

– handoff in−up.c represents the case where an ongoing call coming from a
peripheral microcell and entering the central microcell, is then transferred
to the macro cell because all channels of the central microcell are busy,

– handoff out−up.c models the arrival of an ongoing call from the central micro-
cell to a peripheral microcell and because all channels of this cell are busy,
the handover call is overflowed to the macro cell.

As the process behind the four last handoff events is the same, the corresponding
rate is also the same and it is denoted by α (representing the mean dwell-time
in a microcell). In all cells, the service process is represented by event service.
As the service rate in each cell is assumed to be µ, when there are i, 1 ≤ i ≤ ck,
customers in a cell, the event service is of rate iµ.

In the following, we present the state diagrams of the different components
of our network and the collaboration diagram showing the interactions between
these components.

The State Diagrams. We denote by macro the macrocell overlying the cluster
of microcells. microc and microj , denote the central microcell and a peripheral
microcell respectively. For the sake of readability of the different state diagrams,
we limit the total number of channels to S = 18 and these channels are fairly
shared by the different cells: cj = 3, j = 0 . . . 5.

The state diagram of macro is described in Fig. 3 where macroi, i = 0 . . . 3,
is the state where i channels are busy.

service / µ service / 2µ

handoffout−up.c / handoffout−up.c / handoffout−up.c /

handoffup /

in−up.chandoff /

handoffup /

in−up.chandoff /in−up.chandoff /

handoffup /

uphandoff /
handoffdown /λ 1
handoffout−up.c /
handoffin−up.c /

macro 3macro 2macro 10macro

service / 3 µ

in /λ 1 in /λ 1
in /λ 1

Fig. 3. The State diagram of macro

A transition from state macroi to state macroi+1 denotes the arrival of either
a call from outside the cluster (in) or a call from one of the microcells with
handoff up, handoff in−up.c or handoff out−up.c. A natural termination of a call is
represented by a transition from state macroi to state macroi−1 with service.

When all channels are busy (state macro3), if a handover call arrives from
the microcells, the call is dropped and thus lost. Similarly, if a external handover
call arrives when all channels are busy, the call is blocked and lost.

The state diagram of microj is described in Fig. 4 where microj k, k = 0 . . . 3,
is the state where k channels are busy.

A Unified Tool for Performance Modelling and Prediction 187

service / µ service / 2µ

in /λ 2 in /λ 2
in /λ 2

uphandoff / λ 2

microj 0 1microj microj 2 microj 3

handoffdown /

handoffout−up.c /

in−up.chandoff /α

handoffout.c /

handoffin.c /α

handoffdown /

in−up.chandoff /2α

handoffin.c / 2α

handoffdown /

in−up.chandoff / α3

handoffdown /

handoffin.c / 3α

handoffout.c / handoffout.c /

service / 3 µ

Fig. 4. The State diagram of a peripheral microcell microj

A transition from state microj k to state microj k+1 denotes the arrival of
either a new call (in), an ongoing call from the central microcell (handoff out.c)
or from the macrocell (handoff down). The departure of a call from a peripheral
microcell to the central microcell (handoff in.c) or to the macrocell via the central
(handoff in−up.c) is depicted in the diagram by a transition from microj k to state
microj k−1. A similar transition with service models a natural termination of a
call.

As for the macro, all arrivals when all channels of a peripheral cell are full
(state microj 3) are lost.

The state diagram of the central microcell microc is described in Fig. 5 where
microci, i = 0 . . . 3, is the state where i channels are busy.

service / µ

in /λ 3

handoffin.c /

in /λ 3

service / 2µ

handoffin.c /

handoffout_up.c /2α

handoffin.c /

in /λ 3

service / 3 µ

handoffout_up.c / 3α

microc 3

uphandoff / λ 3

handoffin−up.c /

microc 1 microc 2microc 0

handoffout.c / 2α handoffout.c / α3

handoffout_up.c /α

handoffout.c /α

Fig. 5. The State diagram of the central microcell microc

In this diagram, a transition from state microci to state microci+1 denotes
the arrival of either a new call (in) or an ongoing call from a peripheral micro-
cell (handoff in.c). A call leaving the central microcell for a peripheral micro-
cell (handoff out.c) or for the macrocell via a peripheral one (handoff out−up.c) is
depicted by a transition from microci to state microci−1.

The Collaboration Diagram. In the network, the peripheral microcells will
behave independently, but will synchronize with the central microcell when there
are handoff requests from one to another. Similarly both peripheral and central
microcells have to synchronize. These interactions of the different components
of the network are recorded in the collaboration diagram.

188 S. Gilmore and L. Kloul

 : microjmicro1 micro4 : microj

macro0 : macro

micros : microc

micro2 : microj micro3 : microj

Fig. 6. The Collaboration Diagram

4.2 Processing the Model

Solving this model requires using our extractor and reflector tools and the
PRISM model checker. We solve the model for cj = 8, j = 0..5. This implies
that there are 48 channels shared between 6 cells. The CTMC corresponding to
this model has more than a quarter of a million states (actually 262,144 states)
and the longest part of the process is generating and solving this CTMC with
PRISM. We used PRISM v1.3 for this with its Hybrid solution engine and its
Jacobi solver. The total storage for matrix and solution vectors built for the
model required 6208Kb of memory and the solver found the solution after 466
iterations. This took 45.31 seconds on a 1.6GHz Pentium IV with 256Mb of mem-
ory. The fact that this runtime is so short means that these tools can be used
by a software developer with no more significant impact on development time
than that spent on the edit-compile-run cycle in software development. We think
that this is an encouraging indicator for this method of software performance
analysis.

A screenshot showing the reflected results in the UML model can be seen in
Fig. 7. On each diagram state, we now have the name of the state and, between
the brackets, a performance measure related to this state. In this example we
have the steady-state residence probability, expressed as a percentage, for each
state.

4.3 Analysis and Model-Checking

The PRISM model checker supports the analysis of probabilistic and stochastic
systems by allowing a modeller to check a logical property against a model.
Several logics and several types of model are supported. The appropriate logic
for continuous-time Markov chains is CSL [12] and PRISM supports this type
of analysis of our models.

The syntax of CSL is:

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ | P��p[ψ] | S��p[φ]
ψ ::= Xφ | φ UI φ | φ U φ

A Unified Tool for Performance Modelling and Prediction 189

Fig. 7. The UML model with performance information added viewed in ArgoUML

where a is an atomic proposition, ��∈ {<,≤, >,≥ } is a relational parameter,
p ∈ [0, 1] is a probability, and I is an interval of R.

Paths of interest through the states of the model are characterised by the
path formulae specified by P. Path formulae either refer to the next state (using
the X operator), or record that one proposition is always satisfied until another
is achieved (the until-formulae use the U-operator).

Performance information is encoded into the CSL formulae via the time-
bounded until operator (UI) and the steady-state operator, S.

By expressing properties of interest using path formulae we can check
interval-of-time performability measures over our system. By expressing prop-
erties of interest with the steady-state operator we can determine long-run mea-
sures over the system.

5 Related Work

Work which is similar in spirit to our own approach is that of Petriu and Shen [13]
where a layered queueing network model is automatically extracted from an
input UML model with performance annotations in the format specified by a
special-purpose UML profile [14]. We do not follow the same UML profile because
it is not supported by our modelling tool. Additionally, the performance evalu-
ation technology which we deploy (process algebras and BDD-based solution) is
quite different from layered queueing networks.

Another performance engineering method which is similar to ours is that
of López-Grao, Merseguer and Campos [15] where UML diagrams are mapped
into GSPNs which can be solved by GreatSPN. We use different UML diagram

190 S. Gilmore and L. Kloul

types from these authors and, again, a different performance evaluation tech-
nology. Stochastic Petri nets and stochastic process algebras have different, but
complementary, modelling strengths [16].

One feature of our work which is distinctive from both of the above is the role
of a reflector in the system to present the results of the performance evaluation
back to the UML modeller in terms of their input model. We consider this to
be a strength of our approach. We do not only compile a UML model into a
performance model, we also present the results back to the modeller in the UML
idiom.

6 Conclusions

We have described a component-based method of linking a collection of software
tools to facilitate automated processing of UML performance models. The con-
nectors in this method are the extractors and reflectors which we have developed.
We have applied the tools to the analysis of a realistic model of a hierarchical
cellular telephone network.

This approach to modelling allows the modeller to access a powerful and
efficient solution technology without having to master the details of unfamiliar
modelling languages such as process algebras and reactive modules. Our experi-
ence of using the PEPA and PRISM tools has been uniformly good.

One of the decisions which we have had to take in this work was the choice
of UML diagrams and metaphors to employ. In part our choice in this was
restricted by the degree of support offered by the UML modelling tool which we
used (ArgoUML). However, the outcome of this was that it directed us to use
familiar and well-understood parts of the UML modelling notation. One of our
motivations for this work is reducing the potential for error in early stages of the
performance modelling process and we consider that this outcome is supported
by this influence to use the well-understood parts of UML.

We hope that we have gone some way to providing automated support for
computing simple performance measures and to circumventing an unnecessary
notational hurdle if this was acting as an impediment to the understanding and
uptake of modern performance analysis technology.

The dependability and safety of computer-based systems is a complex issue
with many opposing and sometimes conflicting aspects. In this paper we have
focused on quantitative aspects of system dependability taking the view that it
is sometimes the case that quantitative analysis takes second place to qualitative
analysis of systems. Well-engineered, safe systems need to deliver reliable services
in a timely fashion with good availability. For this reason, we view quantitative
analysis techniques as being as important as qualitative ones.

We have recently developed an extension of the PEPA stochastic process
algebra where PEPA components are used as coloured tokens in a stochastic
Petri net. The resulting formalism is called PEPA nets [17]. Our future work is to
integrate the PEPA nets formalism with our extractor and reflector tools. Given
an extended UML tool which supports the forthcoming UML 2.0 design we would
be able to map the extended UML 2.0 activity diagrams onto PEPA nets for
analysis purposes. The activity diagrams in UML 2.0 are given a semantics which

A Unified Tool for Performance Modelling and Prediction 191

is based on Petri nets and queueing theory and are intended for analyses such as
ours. An algorithm translating PEPA nets models into the PEPA formalism has
already been developed and implemented [18]. Using this it would be possible
to take extended activity diagrams through to analysis by PRISM using the
method followed in this paper.

Acknowledgements. The authors are supported by the DEGAS (Design Envi-
ronments for Global ApplicationS) project IST-2001-32072 funded by the FET
Proactive Initiative on Global Computing. The authors thank Gethin Norman
and David Parker of the University of Birmingham for the implementation of the
PEPA process algebra combinators in the PRISM model checker. Jane Hillston
and David Parker provided helpful comments on an earlier draft of this paper.

References

1. Tigris.org project. ArgoUML: A modelling tool for design using UML. Web page
and documentation at http://argouml.tigris.org/, 2002.

2. S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling. In Proceedings of the Seventh
International Conference on Modelling Techniques and Tools for Computer Per-
formance Evaluation, number 794 in Lecture Notes in Computer Science, pages
353–368, Vienna, May 1994. Springer-Verlag.

3. M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic model
checker. In T. Field, P. Harrison, J. Bradley, and U. Harder, editors, Proc. 12th
International Conference on Modelling Techniques and Tools for Computer Perfor-
mance Evaluation (TOOLS’02), volume 2324 of LNCS, pages 200–204. Springer,
2002. http://www.cs.bham.ac.uk/˜dxp/prism/.

4. Object Management Group. Unified Modeling Language, v1.4, March 2001. OMG
document number: formal/2001-09-67.

5. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

6. R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System Design:
An International Journal, 15(1):7–48, July 1999.

7. D. Parker. PRISM 1.3 User’s Guide. University of Birmingham, February 2003.
http://www.cs.bham.ac.uk/˜dxp/prism.

8. F. Somenzi. CUDD: CU Decision Diagram Package. Department of Electrical and
Computer Engineering, University of Colorado at Boulder, February 2001.

9. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML: Revised 1997. The MIT Press, 1997.

10. M.D. Kulavaratharasah and A.H. Aghvami. Teletraffic performance evaluation of
microcellular personal communication networks (PCN’s) with prioritized handoff
procedures. IEEE Transactions on Vehicular Technology, 48(1):137–152, January
1999.

11. I. Katzela and M. Naghshineh. Channel assignment schemes for cellular mobile
telecommunication systems: A comprehensive survey. Proceedings of the IEEE,
82(9):1398–1430, 1994.

12. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov
chains. In Computer-Aided Verification, volume 1102 of LNCS, pages 169–276.
Springer-Verlag, 1996.

http://argouml.tigris.org/
http://www.cs.bham.ac.uk/~dxp/prism/
http://www.cs.bham.ac.uk/~dxp/prism

192 S. Gilmore and L. Kloul

13. D.C. Petriu and H. Shen. Applying the UML performance profile: Graph grammar-
based derivation of LQN models from UML specifications. In A.J. Field and P.G.
Harrison, editors, Proceedings of the 12th International Conference on Modelling
Tools and Techniques for Computer and Communication System Performance
Evaluation, number 2324 in Lecture Notes in Computer Science, pages 159–177,
London, UK, April 2002. Springer-Verlag.

14. B. Selic, A. Moore, M. Woodside, B. Watson, M. Bjorkander, M. Gerhardt, and
D. Petriu. Response to the OMG RFP for Schedulability, Performance, and Time,
revised, June 2001. OMG document number: ad/2001-06-14.

15. J.P. López-Grao, J. Merseguer, and J. Campos. From UML activity diagrams to
stochastic Petri nets: Application to software performance analysis. In Proceed-
ings of the Seventeenth International Symposium on Computer and Information
Sciences, pages 405–409, Orlando, Florida, October 2002. CRC Press.

16. S. Donatelli, J. Hillston, and M. Ribaudo. A comparison of Performance Evaluation
Process Algebra and Generalized Stochastic Petri Nets. In Proc. 6th International
Workshop on Petri Nets and Performance Models, Durham, North Carolina, 1995.

17. S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. PEPA nets: A structured
performance modelling formalism. Performance Evaluation, 2003. Special issue
of selected papers from the Proceedings of the 12th International Conference on
Modelling Tools and Techniques for Computer and Communication System Per-
formance Evaluation. To appear.

18. S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. Performance modelling with
PEPA nets and PRISM. In Proceedings of the Second PASTA workshop, pages
23–39, Edinburgh, Scotland, June 2003.

	Introduction
	Background
	The Software Architecture
	Case Study: Hierarchical Cellular Network
	The UML Model
	Processing the Model
	Analysis and Model-Checking

	Related Work
	Conclusions

