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Abstract. In this tutorial paper we present quantitative methods for
analysing Web Services with the goal of understanding how they will
perform under increased demand, or when asked to serve a larger pool of
service subscribers. We use a process calculus called SRMC to model the
service. We apply efficient analysis techniques to numerically evaluate our
model. The process calculus and the numerical analysis are supported
by a set of software tools which relieve the modeller of the burden of
generating and evaluating a large family of related models. The methods
are illustrated on a classical example of Web Service usage in a business-
to-business scenario.

1 Introduction

Web Services are a popular and effective method of component-based develop-
ment of distributed systems. Using widely-agreed standards service providers
are able to quickly develop flexible assemblies of components to respond to new
business demands. Legacy systems can be incorporated using application servers
as intermediates which expose the functionality of the legacy system on the net-
work, allowing it to be invoked by a remote service. This might itself have been
invoked by another service, allowing these components to be built into complex
workflows and managed as either an orchestration or a choreography.

Service providers publish their services in a public registry. Service consumers
discover services at run-time and bind to them dynamically, choosing from the
available service instances according to the criteria which are of most impor-
tance to them. This architecture provides robust service in difficult operational
conditions. If one instance of a service is temporarily unavailable then another
one is there to take its place.

It is likely though that this replacement is not fully functionally identical. It
might have some missing functionality, or it might even offer additional func-
tionality not found in the temporarily unavailable service instance. One reason
why differences such as this arise is that new versions of services are released in
order to correct errors or add new features. These updates are applied at differ-
ent times at different sites and therefore it is quite common for different hosts
to be running different versions of the software services. Some will be running
an older version, others the latest. Even if they are hosting the same version
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of the software then because of different security policies at different sites some
hosts will have disabled certain features, whereas others will not have done this
because their security policy is more permissive.

Even in the rare case of finding a functionally-identical replacement matters
are still not straightforward when non-functional criteria such as availability and
performance are brought into the picture. It is very unusual indeed for all of the
hosts which offer instances of a service to have identical performance profiles. In
contrast, the best practice in virtualisation argues that the hosts should inten-
tionally be heterogeneous (using different processors, memory, caches or disks)
in order that not all of them can be affected by a single flaw in a hardware
component. Seemingly small modifications such as this can have a vast impact
on performance which affects essentially all of the performance measures which
one would think to evaluate over the system configuration.

In practice it is very frequently the case that the functionally-equivalent re-
placement for the temporarily unavailable service will exhibit different perfor-
mance characteristics. Ultimately this is because it hosts a copy of the service
on another hardware platform which has either been intentionally made differ-
ent for reasons such as virtualisation practice, or unintentionally because it has
been commissioned at a different time when other hardware components were
the most cost-effective purchase.

Analytical or numerical performance evaluation provides valuable insights into
the timed behaviour of systems over the short or long run. Important methods
used in the field include the numerical evaluation of continuous-time Markov
chains (CTMCs) (see, for example, [1]) and the use of fluid-flow approximation
using systems of ordinary differential equations (ODEs) (see, for example, [2]).
In the present paper we work with a timed process calculus, the Sensoria Refer-
ence Markovian Calculus (SRMC) [3,4] which builds on Performance Evaluation
Process Algebra (PEPA) [1]. PEPA has both a discrete-state Markovian seman-
tics and a continuous-state differential equation semantics. We make use of both
kinds of analysis here.

Mathematical modelling formalisms such as CTMCs and ODEs are often ap-
plied to study fixed, static system configurations with known subcomponents
with known rate parameters. This is far from the operating conditions of service-
oriented computing where for critical service components a set of replacements
with perhaps vastly different performance qualities stand ready to substitute for
components which are either unavailable, or the consumer just simply chooses
not to bind to them.

We seek to address this issue with SRMC by building into the calculus a mech-
anism for the formal expression of uncertainty about binding and parameters (in
addition to the other dimension of uncertainty about durations modelled in the
Markovian setting through the use of exponentially-distributed random vari-
ables). We put forward a method of numerical evaluation for this calculus which
scales well with increasing problem size to allow precise comparisons to be made
across all of the possible service bindings and levels of availability considered.
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Numerical evaluation is supported inside a modelling environment for the cal-
culus. In addition to comparing the results of particular service configurations
we can combine the results to provide overall performance characteristics such
as are required for service level agreements.

Structure of this paper. SRMC allows three levels of uncertainty; uncertainty as
to the configuration of the system, uncertainty as to the rate parameters of some
system components and finally uncertainty as to the duration of events. After an
introduction to the calculus in Section 2 we build up to the full SRMC language
in reverse order of these levels of uncertainty. In Section 2.2 we review the PEPA
process algebra, a stochastic process algebra with support for compositional
construction of an underlying Markov chain. Thus we can reason about the
performance of a known system with unknown duration of events. We continue
in this section to show how we can augment this process algebra with the ability
to specify a range of rate parameters such that not only is the duration of a
particular event unknown but its average duration is specified as a set of possible
values. Because of this a single model in the SRMC calculus gives rise to a related
family of models in the PEPA stochastic process algebra. In Section 4 we explain
how this family of models is derived. Our intention is to perform analysis on these
models. In Section 5 we present a high-level query language for models, eXtended
Stochastic Probes (XSP). We show how this language is used to query models to
determine whether or not they satisfy precise service-level agreements on their
quality of service. In Section 6 we apply Markovian analysis techniques to all of
the models in this related family. In Section 7 we address the challenge of large-
scale modelling and recast the modelling problem in the continuous world where
we can apply Hillston’s fluid-flow approximation method [2] to obtain a system
of ordinary differential equations which allow us to efficiently analyse large-scale
versions of our models. In Section 8 we consider the suite of software tools which
are available to support the SRMC and PEPA process calculi. Section 9 surveys
related work and we present our conclusions after this.

2 Background

In order to introduce the concepts of SRMC we build up a generic example of a
Web Service. We will provide a specific example later.

2.1 SRMC

In this example we have a service which remains idle until it receives a request
from a client. The service does not specify the rate at which requests arrive, this
is specified elsewhere (in the definition of the client). Once a request comes in
the service computes (at rate r c) and then returns the response (at rate r r)
before becoming idle again.
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Listing 1.1. SRMC model of a Web Service

WS_A::{

r_c = 10.0; r_r = 1.0;

Idle = (request, _).Computing;

Computing = (compute, r_c).Responding;

Responding = (response, r_r).Idle;

};

This high-level model of the service describes only three states, Idle,
Computing and Responding, abstracting from many details of the service. These
three related definitions are collected into the namespace for the component WS A
together with the values of the rates for the activities compute and response.

This definition gives rise to a small transition system with only three states
and three transitions. The transition system corresponding to the component
WS A is shown in Figure 1. Note that component names and rate names have
been replaced by their fully qualified versions. Activity type names (such as
request, compute and response) are not subject to this expansion because
these names are used to define synchronisation points with other components
(and therefore cannot be renamed).

WS A::Idle

WS A::Computing

WS A::Responding

(request, )

(compute, WS A::r c)

(response, WS A::r r)

Fig. 1. Underlying transition system for the component WS A

We now consider an optimised version of this service where some computation
is avoided because the service can retrieve a previously computed result. Looking
up a result is ten times faster than re-calculating it. Only 30% of incoming
requests can be answered in this way, the remaining 70% of requests lead to the
result being computed as before.

Model components with similar names can be distinguished because they are
collected under a different namespace WS B. Thus here we have the definition
of a process term whose fully qualified name is WS B::Idle whereas the fully
qualified name of the previous process term is WS A::Idle.
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Listing 1.2. SRMC model of an optimised Web Service

WS_B::{

r_l = 100.0; p = 0.7; r_c = 10.0;

r_r = { 1.0, 0.6, 0.2 };

Idle = (request, p * _).Computing;

+ (request, (1 - p) * _).Retrieving;

Computing = (compute, r_c).Responding;

Retrieving = (lookup, r_l).Responding;

Responding = (response, r_r).Idle;

};

The advantage of using this optimised version of the service is reduced slightly
because connectivity to the service is very variable and responses coming back
from the service may be delayed (even though the service generated them quickly
by looking up a previously-calculated result). The transition system correspond-
ing to the component WS B is shown in Figure 2.

WS B::Idle

WS B::Computing WS B::Retrieving

WS B::Responding

(request, WS B::p * ) (request, (1- WS B::p) * )

(compute, WS B::r c) (lookup, WS B::r l)

(response, WS B::r r)

Fig. 2. Underlying transition system for the component WS B

In SRMC we can characterise this kind of variability by recording different
possible parameter values for the response activity. We denote these by listing a
set of possible values for the rate parameter ({ 1.0, 0.6, 0.2 } above). Uncertainty
about a rate parameter is represented in SRMC in this way (by listing a set of
possibilities) and uncertainty about a service binding is represented in a very
similar way.

Listing 1.3. Specifying binding uncertainty in SRMC

WS ::= { WS_A, WS_B };

Service = WS::Idle;
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These definitions record that the Web Service which we use will either be A
(the unoptimised version) or B (the optimised version) and that the service is
initially in its idle state.

Now we are able to complete our model by providing the definition of a
client who thinks for some time before requesting the service and waiting for the
response.

Listing 1.4. SRMC model of a Client

Client::{

r_t = 0.002; r_r = 0.5;

Idle = (think, r_t).Requesting;

Requesting = (request, r_r).Waiting;

Waiting = (response, _).Idle;

};

The namespace mechanism is helpful here also because there is no clash be-
tween the name of the rate identifier used here for requests (whose fully qualified
name is Client::r r) and rate identifiers used earlier for responses (whose fully
qualified names are respectively WS A::r r and WS B::r r). The transition sys-
tem corresponding to the client is shown in Figure 3.

Client::Idle

Client::Requesting

Client::Waiting

(think, Client::r t)

(request, Client::r r)

(response, )

Fig. 3. Underlying transition system for the client

Finally, we complete the model by requiring the Client and the Web Service
(whichever one it is) to cooperate on the request and response activities. All
other activities are performed by a single component independently from the
others.

Listing 1.5. SRMC model composition

Client::Idle <request, response> Service



302 A. Clark, S. Gilmore, and M. Tribastone

In the case where the binding is resolved in favour of WS A then the overall
model has the transition system corresponding to the client paired with WS A as
shown in Figure 4. All of the definitions which relate to the WS B namespace are
removed from this model and have no impact on the underlying transition system.

Client::Idle | WS A::Idle

Client::Requesting | WS A::Idle

Client::Waiting | WS A::Computing

Client::Waiting | WS A::Responding

(think, Client::r t)

(request, Client::r r)

(compute, WS A::r c)

(response, WS A::r r)

Fig. 4. Underlying transition system for the client paired with WS A

Client::Idle | WS B::Idle

Client::Requesting | WS B::Idle

Client::Waiting | WS B::Computing Client::Waiting | WS B::Retrieving

Client::Waiting | WS B::Responding

(think, Client::r t)

(request, WS B::p * Client::r r) (request, (1- WS B::p) * Client::r r)

(compute, WS B::r c) (lookup, WS B::r l)

(response, WS B::r r)

Fig. 5. Underlying transition system for the client paired with WS B

If, on the other hand, the binding is resolved in favour of WS B then the overall
model has the transition system corresponding to the client paired with WS B as
shown in Figure 5. All of the definitions which relate to the WS A namespace are
removed from this model.
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2.2 PEPA

The starting point for the new calculus was the stochastic process algebra
PEPA [1]. The PEPA language has the following combinators:

P ::= (a, λ).P | P + P | P ��
L

P | P/L

A (a, λ).P describes a process which may perform the action a at rate λ to
become the process P . The rate may be a numerical rate or the special rate �
(written as in SRMC) which means the operation is performed passively by this
process which must be subsequently synchronised with over this activity. The
other process involved in the synchronisation determines the rate of the activity.
The process P1 +P2 depicts competitive choice between the processes P1 and P2

and therefore may perform any of activity which P1 may perform or any which
P2 may perform. The operator ��

L
is cooperation/synchronisation between two

components over the given set of actions L. The process P/L behaves exactly as
P except that the activities in the set L are no longer observable and hence it is
not possible for another process to cooperate on these activities. This is referred
to as hiding, and we will not make use of hiding in this tutorial.

A model is represented by a series of definitions which describe the sequential
behaviour of named components. These named components are then combined
together in a main system equation which represents the interaction between the
various components in a model. This description of a model has an underlying
Markov chain representation though the user is hidden from the details of the
underlying states. Each defined sequential component is a description of a small
stateful process and each such is combined using the cooperation combinator
with the restriction that the two must synchronise over the specified action
labels. This may mean that some states are unreachable so composition does not
always increase the state space but in general the state-space size does increase
rapidly. Full details of the PEPA stochastic process algebra can be found in [1].

3 Case Study

In this tutorial the SRMC language is illustrated by means of a case study of a
Web-service orchestration. Our case study is adapted from the example proposed
in the specification of WS-BPEL 2.0, the OASIS standard for the description
of business process behaviour of Web services [5]. Figure 6 depicts an informal
outline of the business process of a sample order management system. Boxes
with straight corners represent the invocation of Web services. Dotted lines im-
pose sequentiality between invocations, and solid lines indicate data dependency.
For example, the invocation of Complete Price Calculation does not start until
Decide On Shipper returns. Similarly, Complete Production Scheduling needs
the output of Arrange Logistics before being called. The box with rounded cor-
ners indicates the execution of parallel flows. After Receive Purchase Order is
executed, the executions of Initiate Price Calculation, Decide On Shipper, and
Initiate Production Scheduling may start in parallel. Finally, after all these ac-
tivities terminate Invoice Processing may be invoked.
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Fig. 6. Sketch of the order management system case study used in this tutorial

The aim of this tutorial is not to provide an algorithmic procedure to au-
tomatically translate BPEL processes into SRMC models, rather we show how
the features of the language may be exploited to model web service orchestra-
tion. Nevertheless, the tutorial will also give directions on how to capture other,
more fine-grained behaviours which are not strictly in the domain of web ser-
vice description languages albeit they may affect the system’s performance. The
construction of the performance model of the case study will be carried out in-
crementally — from the components which exhibit sequential behaviour to their
arrangement through the cooperation operator to impose synchronisation and
ordering. The initial SRMC model will be kept intentionally simple — it will not
capture dynamic binding or rate uncertainty, in effect making it fall within the
realm of PEPA. This initial model will primarily serve the purpose of guiding
the reader through the most basic constituents of the language. Nevertheless,
we will show how it may give a coarse-grained understanding of the system’s
performance characteristics.

3.1 Initial Performance Model

Figure 6 clearly shows that the BPEL process is composed of four distinct com-
ponents with sequential behaviour. The first component, which describes the
main flow of execution, is responsible for the reception of a purchase order
and the final issue of an invoice. Between these two actions, three sequential
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components perform some activities in parallel, as discussed above. To generate
the performance model, it is necessary to associate each activity of the business
process with a rate, which uniquely describes the exponentially distributed vari-
able which indicates the duration of the activity. Listing 1.6 shows the PEPA
sequential component corresponding to the main flow of execution. The operator
prefix is used to describe the execution of an activity. Throughout this paper
we adopt the convention that the activity name is the initials of the associated
process name in Figure 6, and its rate of execution is indicated by r_<name>.
(For example, the rate of Receive Purchase Order is r_rpo). The sequential
component is cyclic so as to model the behaviour that the system is capable
of processing a new order after the previous one has completed. The sequential
components involved in price calculation, shipping management and production
scheduling may be derived in a similar fashion. Their underlying performance
models are shown in Listings 1.7, 1.8, and 1.9, respectively.

Listing 1.6. PEPA model of the main flow of execution of the BPEL process in Figure 6

ReceivePurchaseOrder = (rpo, r_rpo).InvoiceProcessing;

InvoiceProcessing = (ip, r_ip).ReceivePurchaseOrder;

Listing 1.7. PEPA model for price calculation

InitiatePriceCalculation = (ipc, r_ipc).CompletePriceCalculation;

CompletePriceCalculation = (cpc, r_cpc).InitiatePriceCalculation;

Listing 1.8. PEPA model for shipping management

DecideOnShipper = (dos, r_dos).ArrangeLogistics;

ArrangeLogistics = (al, r_al).DecideOnShipper;

Listing 1.9. PEPA model for production scheduling

InitiateProductionScheduling = (ips, r_ips).CompleteProductionScheduling;

CompleteProductionScheduling = (cps, r_cps).InitiateProductionScheduling;

In order to capture the business logic of the orchestration, these sequential
components need to be augmented with further behaviour. Price calculation,
shipping management, and production scheduling can only start after an order
is received. Moreover, these activities may run in parallel. In SRMC this can be
modelled by preceding their descriptions with a local state which synchronises
over some action fork. Similarly, the invoice processing activity can be executed
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after all the parallel flows are completed. To express this, a local state is added
to the descriptions, which synchronises over the action ip. Thus, Listings 1.7,
1.8, and 1.9 are revised as shown in Listings 1.10, 1.11, and 1.12, respectively.
In all descriptions, the names of the synchronising components are prefixed by
the words Fork and Join and their activities are executed passively.

Listing 1.10. Revised PEPA model for price calculation

ForkPriceCalculation = (fork, _).InitiatePriceCalculation;

InitiatePriceCalculation = (ipc, r_ipc).CompletePriceCalculation;

CompletePriceCalculation = (cpc, r_cpc).JoinPriceCalculation;

JoinPriceCalculation = (ip, _).ForkPriceCalculation;

Listing 1.11. Revised PEPA model for shipping management

ForkShipper = (fork, _).DecideOnShipper;

DecideOnShipper = (dos, r_dos).ArrangeLogistics;

ArrangeLogistics = (al, r_al).JoinShipper;

JoinShipper = (ip, _).ForkShipper;

Listing 1.12. Revised PEPA model for production scheduling

ForkProductionScheduling = (fork, _).InitiateProductionScheduling;

InitiateProductionScheduling = (ips, r_ips).CompleteProductionScheduling;

CompleteProductionScheduling = (cps, r_cps).JoinProductionScheduling;

JoinProductionScheduling = (ip, _).ForkProductionScheduling;

Other sequential components are added to the system to observe the causality
rules of the orchestration:

1. The fork action must be performed after rpo is executed.
2. The cpc action must be performed after dos is executed.
3. The cps action must be performed after al is executed.

Each rule is implemented by a cyclic two-state sequential component which ob-
serves the related actions in the order in which they must be executed. The
component in Listing 1.13 models the first rule. An excerpt of the system equa-
tion (which will be fully shown later in this section) is presented in Listing 1.14.
After a purchase order is received the component Fork1 behaves as Fork2.
This will in turn enable the activity fork, which will start the price calculation
process.
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Listing 1.13. Implementation of the causality rule for the execution of the parallel
flows

Fork1 = (rpo, _).Fork2;

Fork2 = (fork, r_fork).Fork1;

Listing 1.14. Excerpt of the model’s system equation showing the cooperation between
the main flow and the price calculation component

(ReceivePurchaseOrder <rpo> Fork1) <fork> ForkPriceCalculation

Rules 2 and 3 are handled in a similar way: A cyclic two-state sequential
component enforces the order of execution of the activities by enabling them
passively. The corresponding sequential components used in this example are
shown in Listings 1.15 and 1.16. Finally, the complete system equation for this
model is shown in Listing 1.17.

Listing 1.15. Implementation of the causality rule between price calculation and ship-
ping management

PriceShipping1 = (dos, _).PriceShipping2;

PriceShipping2 = (cpc, _).PriceShipping1;

Listing 1.16. Implementation of the causality rule between shipping management and
production scheduling

ShippingProduction1 = (al, _).ShippingProduction2;

ShippingProduction2 = (cps, _).ShippingProduction1;

Listing 1.17. Complete system equation of the PEPA model

Sys = (ReceivePurchaseOrder <rpo> Fork1)

<fork,ip>

(

(ForkPriceCalculation <cpc> PriceShipping1)

<fork,dos,ip> ForkShipper

)

<fork,al,ip>

(ForkProductionScheduling <cps> ShippingProduction1)
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Model of user workload. The system equation is combined with the model
of user workload, which represents the external agents that invoke the service.
Although various kinds of workload can be modelled, in this tutorial we shall
consider the case of closed workload, i.e., a collection of users which cyclically
execute the orchestration, interposing some think time between successive re-
quests. The model of a user is shown in Listing 1.18. It describes a typical
request/response scenario in which the activity rpo triggers the execution of
the orchestration and the activity ip indicates the response of the system. The
composition with the model of the orchestration is shown in Listing 1.19. Here,
we made use of the array operator [N_U] to indicate NU distinct users of the
system.

Listing 1.18. Model of a user of a closed workload

Think = (think, r_think).Execute;

Execute = (rpo, r_rpo).Wait;

Wait = (ip, _).Think;

Listing 1.19. Complete model with user workload

Model = Think[N_U] <rpo,ip> Sys

System concurrency level. Similarly to the user workload, the concurrency
levels of the system should be specified. The model in Listing 1.17 features
one copy for each sequential component of the system. Thus, if the number
of users is greater than one, then there is contention amongst these users to
access the orchestration. After a user executes the shared action rpo, all the
remaining users are blocked because the action cannot be enabled by the sys-
tem. Indeed, the sequential component ReceivePurchaseOrder will behave as
InvoiceProcessing, hence rpo is enabled again only after the current request
has been completely processed.

In this scenario, one sequential component can be thought of as a single flow of
execution which can handle only one request at all times. If multiple requests are
to be handled simultaneously, then multiple copies of the sequential components
need to be deployed. Again, SRMC makes use of the array operator to model
this situation. The concurrency level has a clear impact on the performance of
the system — it increases the system’s throughput, or equivalently, reduces the
response time. The concurrency level has also a clear counterpart in the actual
system that the SRMC description is modelling. For instance it may refer to the
number of threads or processes which are allocated to a given web service.

However, the modelling approach adopted in this case study poses an ad-
ditional difficulty: although some sequential components clearly correspond to
real units of execution, others have been introduced only to serve the auxiliary
purpose of guaranteeing the intended order of execution of the business logic.
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For this reason, the deployment of the latter kind of components will be depen-
dent upon the concurrency levels of the sequential components which they are
supporting.

One such example is the sequential component in Listing 1.15. To determine its
concurrency level, we first observe that its initial local state PriceShipping1 en-
ables an action (i.e., dos) which must be executed in cooperation with the compo-
nent DecideOnShipper, a local state of Listing 1.11. Let NFS be the concurrency
level of ForkShipper and NPS be the concurrency level of PriceShipping1. If
NFS > NPS a reachable state of the system may have NFS components in state
DecideOnShipper and NPS components in state PriceShipping1. Therefore,
NFS − NPS DecideOnShipper components cannot engage in the dos action.
This introduces a form of blocking in the SRMC model which does not corre-
spond to the real behaviour of the system, because dos is in fact an independent
activity. Thus, it must hold that NPS = NFS in order to avoid this undesired de-
lay. On the other hand, the local state PriceShipping2 enables a shared action
which is carried out in cooperation with CompletePriceCalculation, a local
state of the component in Listing 1.10. If the concurrency level of this compo-
nent, denoted by NPC , is lower than NPS , then the activity cpc will be subject
to delay. Conversely, if the concurrency level is higher, then some of the flows of
ForkPriceCalculation will be under-utilised because there are not be enough
requests to be served. In either case, the behaviour reflects that of the real sys-
tem, thus the concurrency level of ForkPriceCalculation does not affect the
calculation of the concurrency level of the auxiliary component PriceShipping1.

It is worthwhile pointing out that setting NPS > NFS does not alter the
performance results of the system. To understand this, observe that with such a
setting there are more auxiliary components than the number of flows which can
enable the dos action. The NPS − NFS surplus components will be idle across
the entire state space of the system. This is confirmed by the result that the
state spaces of the models with NPS ≥ NFS are lumpably equivalent [1,6], which
guarantees the equivalence of the derived performance measures.

Listing 1.20. Revised system equation of the PEPA model with concurrency levels

Sys = (ReceivePurchaseOrder[N_RP] <rpo> Fork1[N_RP])

<fork,ip>

(

(ForkPriceCalculation[N_PC] <cpc> PriceShipping1[N_FS])

<fork,dos,ip> ForkShipper[N_FS]

)

<fork,al,ip>

(

ForkProductionScheduling[N_PS]

<cps>

ShippingProduction1[N_FS]

)
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The concurrency levels of ShippingProduction1 and Fork1 can be
determined with similar arguments. The revised system equation is shown in
Listing 1.20.

3.2 Uncertainty about Parameters

The model described in the previous section may be subjected to quantitative
analysis to extract performance indices. By interpreting it against the opera-
tional semantics of PEPA, a CTMC is built and transient as well as steady-state
measures can be computed. However, one single analysis run often provides only
a partial understanding of the system under study. More often, one is interested
in the sensitivity of the performance to the variation of some of the system’s
parameters. For instance, one would like to ask questions such as: How is the
system’s performance affected by an increase in concurrency levels or an increase
in the rate of execution of an action?

These questions arise at all stages of a modelling study. For example, per-
formance analysis serves as a useful predictive tool which helps size the initial
capacity of the system; further along the system’s lifetime, it constitutes valuable
support for planning system upgrades. With PEPA, answering these questions
requires building a family of similar models, which maintain the same syntactic
structure expect for one of more parameters which change in value. For instance,
sensitivity analysis of the concurrency levels requires the construction of differ-
ent models as in Listing 1.20 with distinct values for the parameters N_RP, N_PC,
N_FS, or N_PS. If carried out manually, this process would be tedious and er-
ror prone. Fortunately, software tools for PEPA automate this form of analysis,
requiring minimal user intervention [7,8].

If, on the one hand, this process is transparent to language, on the other
hand the information about parameter uncertainty must be stored separately
from the model. SRMC supports the declaration of array of parameters, which
takes the form param = { 1.0, 2.0, ... }. This gives rise to distinct perfor-
mance models in which the parameter param takes the different values in the
set. (The syntax is not limited to numerical literals, but arbitrary expressions
are also allowed.) This construct can be used for rate as well as concurrency
level uncertainty. In the latter case, the elements of the set are restricted to be
positive integers and expressions thereof.

Figure 7 shows the results of two sensitivity analysis studies conducted on the
model in Listing 1.20. In both cases the performance metric of interest is the
system’s steady-state throughput, indicated by the throughput of the action ip.
Figure 7(a) studies its sensitivity with respect to the rate r_dos, specified in the
SRMC model with the definition

r_dos = {0.1,0.2,...,5.0}.

These results enable the insight that the system benefits from increases in the
rate of the dos activity, albeit the relative gain diminishes significantly in the
region [2.0, 5.0]. For instance, doubling the rate from 0.5 to 1.0 gives a system’s
throughput improvement of about 30% while doubling the rate again from 2.0 to
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Fig. 7. Examples of parameter sweep for the model in Listing 1.20. Sensitivity anal-
yses are conducted with (a) rate r_dos and (b) concurrency level N_RP. In (a),
N_RP = 4 and in (b) r_dos = 5. In both cases the other parameters were set as fol-
lows: N_U = 4,N_PC = 3, N_FS = 3, N_PS = 2, r_think = 1.0; all other rates were set
to 10.0.

4.0 provides only an improvement of about 4%. A similar qualitative behaviour
is shown in Figure 7(b), which studies the sensitivity analysis with respect to
the concurrency level of ReceivePurchaseOrder, by using the definition

N_RP = {1,2,...,10}.

Unlike the former, the latter analysis gives rise to structurally different under-
lying CTMCs because the values of N_RP alter the number of sequential compo-
nents in the model and therefore the state space size.



312 A. Clark, S. Gilmore, and M. Tribastone

3.3 Uncertainty about System Configurations

A further dimension of uncertainty is represented by dynamic binding. This
is particularly interesting in service-oriented architectures, in which different
providers may be functionally equivalent, i.e. they expose the same interface of
the service. In these applications the identity of the services invoked by a client
does not need to be known in advance, rather their binding is usually mediated
by registries [9]. It is therefore a desirable feature to capture this form of dynamic
binding in the SRMC model — although the services expose the same interface,
their performance behaviour may vary significantly.

Listing 1.21. SRMC model for shipping management

r_rpo = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0};

r_think = {1, 2, 3, 4};

r_ip = 10.0; r_fork = 10.0; r_ipc = 10.0;

r_cpc = 10.0; r_dos = 5.0; r_al = 10.0;

r_ips = 10.0; r_cps = 10.0;

ForkShipper = SM::ForkShipper;

SM ::= { SM_A, SM_B, SM_C };

SM_A::{

ForkShipper = (fork, _).DecideOnShipper;

DecideOnShipper = (dos, r_dos).ArrangeLogistics;

ArrangeLogistics = (al, r_al).JoinShipper;

JoinShipper = (ip, _).ForkShipper;

};

SM_B::{

r_delay = 5;

ForkShipper = (fork, _).DecideOnShipper;

DecideOnShipper = (dos, r_dos).Delay;

Delay = (delay, r_delay).ArrangeLogistics;

ArrangeLogistics = (al, r_al).JoinShipper;

JoinShipper = (ip, _).ForkShipper;

};

SM_C::{

r_fail = 5;

r_repair = {1, 2};

ForkShipper = (fork, _).DecideOnShipper;

DecideOnShipper = (dos, r_dos).ArrangeLogistics

+ (failure, r_fail).Failure;

Failure = (repair, r_repair).DecideOnShipper;

ArrangeLogistics = (al, r_al).JoinShipper;

JoinShipper = (ip, _).ForkShipper;

};
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Our language incorporates dynamic binding by means of namespace defini-
tions. A namespace is used to isolate the definitions that are needed to fully
define an individual component of the system under study. Functional equiva-
lence among namespaces is then imposed through an array operator syntactically
and semantically similar to the rate array operator introduced in Section 3.2.
These features are now introduced by means of our running example. Let us
suppose that the shipping management activities are outsourced and that they
are accessed via web-service invocations. An interesting matter is to determine
the impact on the overall orchestration of the shipping management services
which can be bound. In order to answer this question, let us suppose that the dy-
namic behaviour of three of these services is known to the performance modeller.
Each implementation of this service is assigned a namespace, SM_A, SM_B, and
SM_C. The model of shipping management in Listing 1.11 is revised as shown in
Listing 1.21. The namespace array SM indicates the set of possible bindings. Each
element is a process definition within a namespace, accessed using the format
<namespace>::<process>. Process and rate definitions are uniquely identified
by their name as well as the namespace in which they are defined, thus the
same definition can appear within distinct namespaces. This property has been
exploited in our case study in order to stress the functional uniformity across
the possible bindings. The implementation SM_A encapsulates the original defi-
nition of the process; SM_B interposes some external delay between the actions
dos and al; finally, SM_C models a less reliable service which may fail. After
failure occurs, some delay is introduced to reset the server to a fully working
state. Additionally, SM_C has a rate array which indicates uncertainty about the
rate of failure r_f.

This SRMC model gives rise to four underlying PEPA models, organised in a
tree as shown in Figure 8. Each node represents a binding to a specific namespace
or the selection of a rate of an array. Here, the nodes of the first level denote the
binding to the three implementations of the shipping management component.
The leaves indicate the parameter sweep across the rate of failure r_f. This

Fig. 8. The four PEPA models which underlie the SRMC description in Listing 1.21,
represented as leaves of a tree. The nodes along the path from the root indicate the
bindings to namespaces and the choice of rates for each PEPA model. In parentheses
is the steady-state system throughput for each configuration.
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analysis is not performed with SM_A and SM_B because these namespaces do
not define a rate array. Each leaf is also labelled with the steady-state system
throughput (action ip, in parentheses). The results show that the extra delay
in SM_B has a negative effect on the performance. Conversely, the throughput
does not deteriorate significantly when the rate of failure is relatively small, i.e.
r_f = {1,10}. On the other hand, the perceived performance for r_f = 100 is
comparable to that of the system which binds to SM_B.

4 Deriving Experiments

In this section we explain precisely how all individual experiments are derived
from a single SRMC model file. We will continue to use our running example
for illustration. The aim is to derive a number of separate PEPA models corre-
sponding to the number of distinct system configurations. We then analyse each
PEPA model once for each configuration of the appropriate variable rates.

4.1 Namespace Scoping

The first part of our algorithm is to scope the identifiers used within namespaces.
This is a straightforward translation which makes sure that each defined identi-
fier is prefixed with the list of namespaces in which it occurs. There may be more
than one if it occurs within a nested namespace. Additionally each reference to
an identifier must be similarly prefixed in the same way as the definition was
scoped. Shown below is the scoping as applied to the SM_B namespace:

Listing 1.22. Scoped SM_B

SM_B::{

SM_B::r_delay = 5;

SM_B::ForkShipper = (fork, _).SM_B::DecideOnShipper;

SM_B::DecideOnShipper = (dos, r_dos).SM_B::Delay;

SM_B::Delay = (delay, SM_B::r_delay).SM_B::ArrangeLogistics;

SM_B::ArrangeLogistics = (al, SM_B::r_al).SM_B::JoinShipper;

SM_B::JoinShipper = (ip, _).SM_B::ForkShipper;

};

Notice that action names are not scoped, this allows cooperation in the final
system equation between components defined in separate namespaces. The glob-
ally defined rate r_dos is also not prefixed with any namespace since this rate
is defined at the top level.
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4.2 Namespace Selections

The key component in distinguishing system configurations in SRMC models is
the namespace selection definitions. In our example this is the line:

SM ::= { SM_A, SM_B, SM_C };

We do a depth first search of all namespace selections because some namespace
selections will entail further namespace choices. This occurs when we have a
namespace selection nested within a namespace which is itself a choice. In our
example this does not occur and in fact we have only one choice leading to three
system configurations. Once a namespace has been chosen there are two tasks
left to do; the first is to promote the definitions made within the given namespace
into the top level and remove the now empty namespace definition. The second
task is to substitute references to the selection definition (in this case SM) for
references to the selected namespace. In this example we have been quite frugal
in our use of the abstract namespace SM, so there is only one line to change other
than the promoted definitions, namely the line:

ForkShipper = SM::ForkShipper;

Because we made this definition and then used the name ForkShipper the
system equation is the same for all three models. However in general the system
equation is modified according to the namespace selections. So that references to
SM::ForkShipper and SM::DecideOnShipperwould be replaced with references
to SM_A::ForkShipper and SM_A::DecideOnShipper and respectively so for the
other definitions and the other derived models.

The completion of these two tasks results in what is an almost valid PEPA
model for each possible configuration. The remaining non-valid PEPA definitions
are those rate definitions with uncertainty; these are removed in the next section.
The (almost valid) PEPA model given in Listing 1.23 corresponds to choosing
SM_A and the Listings 1.24 and 1.25 show the differences between that model
and the derived instances resulting from choosing SM_B and SM_C respectively.

Listing 1.23. Scoped PEPA model example

r_rpo = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0};

r_think = {1, 2, 3, 4};

r_ip = 10.0; r_fork = 10.0; r_ipc = 10.0;

r_cpc = 10.0; r_dos = 5.0; r_al = 10.0;

r_ips = 10.0; r_cps = 10.0;
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ReceivePurchaseOrder = (rpo, r_rpo).InvoiceProcessing;

InvoiceProcessing = (ip, r_ip).ReceivePurchaseOrder;

Fork1 = (rpo, _).Fork2;

Fork2 = (fork, r_fork).Fork1;

ForkPriceCalculation = (fork, _).InitiatePriceCalculation;

InitiatePriceCalculation = (ipc, r_ipc).CompletePriceCalculation;

CompletePriceCalculation = (cpc, r_cpc).JoinPriceCalculation;

JoinPriceCalculation = (ip, _).ForkPriceCalculation;

PriceShipping1 = (dos, _).PriceShipping2;

PriceShipping2 = (cpc, _).PriceShipping1;

ForkShipper = SM_A::ForkShipper;

SM_A::ForkShipper = (fork, _).SM_A::DecideOnShipper;

SM_A::DecideOnShipper = (dos, r_dos).SM_A::ArrangeLogistics;

SM_A::ArrangeLogistics = (al, r_al).SM_A::JoinShipper;

SM_A::JoinShipper = (ip, _).SM_A::ForkShipper;

SM_A::Deciding = [ SM_A::DecideOnShipper ];

ShippingProduction1 = (al, _).ShippingProduction2;

ShippingProduction2 = (cpc, _).ShippingProduction1;

ForkProductionScheduling = (fork, _).InitiateScheduling;

InitiateScheduling = (ips, r_ips).CompleteProduction;

CompleteProduction = (cps, r_cps).JoinProductionScheduling;

JoinProductionScheduling = (ip, _).ForkProductionScheduling;

User = (think, r_think).Execute;

Execute = (rpo, _).Wait;

Wait = (ip, _) .User;

Waiting = [ Wait ];

n_u = {7000, 8000, 9000};

n_rp = 800;

n_pc = {500, 600, 700};

n_fs = {500, 600, 700};

n_ps = 400;

User[n_u] <rpo, ip>

( (ReceivePurchaseOrder[n_rp] <rpo> Fork1[n_rp])

<ip,fork>

( (ForkPriceCalculation[n_pc] <cpc> PriceShipping1[n_fs])

<dos,fork,ip>

ForkShipper[n_fs]

)
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<fork,al,ip>

( ForkProductionScheduling[n_ps] <cps>

ShippingProduction1[n_fs]

)

)

Listing 1.24. Scoped PEPA model example

// Same as in the other model

ForkShipper = SM_B::ForkShipper;

SM_B::r_delay = 20;

SM_B::ForkShipper = (fork, _).SM_B::DecideOnShipper;

SM_B::DecideOnShipper = (dos, r_dos).SM_B::Delay;

SM_B::Delay = (delay, SM_B::r_delay).SM_B::ArrangeLogistics;

SM_B::ArrangeLogistics = (al, SM_B::r_al).SM_B::JoinShipper;

SM_B::JoinShipper = (ip, _).SM_B::ForkShipper;

SM_B::Deciding = [ SM_B::DecideOnShipper ];

// The rest is also the same including the system equation

Listing 1.25. Scoped PEPA model example

// Same as in the other model

ForkShipper = SM_C::ForkShipper;

SM_C::r_fail = 5;

SM_C::r_repair = {1, 2};

SM_C::ForkShipper = (fork, _).SM_C::DecideOnShipper;

SM_C::DecideOnShipper = (dos, r_dos).SM_C::ArrangeLogistics

+ (failure, SM_C::r_fail).SM_C::Failure;

SM_C::Failure = (repair, SM_C::r_repair).SM_C::DecideOnShipper;

SM_C::ArrangeLogistics = (al, r_al).SM_C::JoinShipper;

SM_C::JoinShipper = (ip, _).SM_C::ForkShipper;

SM_C::Deciding = [ SM_C::DecideOnShipper + SM_C::Failure ];

// The rest is also the same including the system equation

4.3 Rate Parameter Experiments

The rate parameter selections are removed simply by creating a standard PEPA
rate specification using the first of the possible selections for the rate. This
gives us three PEPA models which are written out to three files: SM_A.pepa
and SM_B.pepa and SM_C.pepa. It remains only to perform sensitivity analysis
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over these PEPA models. We create an experiment for each which ranges over
all possible combinations of the rate selections, we use these to override the
definitions given in the standard PEPA model using substitution. The first two
PEPA models corresponding to the choices SM_A and SM_B use only globally
defined rate choices while the choice of SM_C uses a rate choice which need not
be ranged over for the other models. So the number of experiments will be larger
for the configuration in which SM_C is chosen. Where the ... stand for the rest
of the arguments given to compute the specified measure, the experimentation
for the first configuration begins with:

ipc --rate r_po=1,r_think=1,n_u=7000,n_pc=500,n_pc=500 ...
ipc --rate r_po=2,r_think=1,n_u=7000,n_pc=500,n_pc=500 ...

ipc --rate r_po=1,r_think=2,n_u=7000,n_pc=500,n_pc=500 ...
ipc --rate r_po=2,r_think=2,n_u=7000,n_pc=500,n_pc=500 ...

ipc --rate r_po=1,r_think=3,n_u=7000,n_pc=500,n_pc=500 ...
ipc --rate r_po=2,r_think=3,n_u=7000,n_pc=500,n_pc=500 ...
...

In this way we range over all possible rate configurations appropriate for the SM_A
system configuration. We are not ranging over the rate SM_C::r_repair because
this rate is not used in the first (or second) configuration. The experiment for
the second configuration looks much the same, for the third we must range over
the extra rate SM_C::r_repair and our experiment looks like:

ipc --rate r_po=1,r_think=1,n_u=7000,n_pc=500,n_pc=500,r_repair=1
ipc --rate r_po=2,r_think=1,n_u=7000,n_pc=500,n_pc=500,r_repair=1

ipc --rate r_po=1,r_think=2,n_u=7000,n_pc=500,n_pc=500,r_repair=1
ipc --rate r_po=2,r_think=2,n_u=7000,n_pc=500,n_pc=500,r_repair=1

ipc --rate r_po=1,r_think=3,n_u=7000,n_pc=500,n_pc=500,r_repair=1
ipc --rate r_po=2,r_think=3,n_u=7000,n_pc=500,n_pc=500,r_repair=1
...

The number of experiments produced for each of the derived PEPA models is
equal to the product of the lengths of all the appropriate rate selections. For
the SM_A PEPA model this is 6 × 4 × 3 × 3 × 3 = 648 and the same is true
for the second (SM_B) configuration. For the SM_C configuration it is this number
multiplied by the extra uncertainty of the rate r_repair which is 2×648 = 1296
adding these all together we get the total number of experiments to be 2592.

5 Query Specification

When performing analysis over a SRMC model we generate many — perhaps
several thousand — PEPA model instances which must all be analysed sepa-
rately. Clearly we do not wish to analyse each of these PEPA model instances
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by hand but automatically. We therefore require a query specification technique
that is portable across many similar models. Our query specification language
is that of eXtended Stochastic Probes [10]. We enhance this by allowing virtual
components.

When specifying a measurement we are often concerned with specifying a
set or sets of states. In the Markovian world these states are the states of the
CTMC which underlies the PEPA model in question. Even when analysing a
single PEPA model one does not wish to specify the states of the Markov chain
directly since these are automatically derived from the PEPA model. We wish
to specify such states compositionally just as we have compositionally described
the model. One method of doing this is with a state specification where the full
state space of the model is filtered with respect to the population sizes of the
sequential states of the individual components. Figure 9 reports the grammar of
state specifications.

expr := Process population
| int constant
| expr relop expr comparison
| expr binop expr arithmetic

relop := = | �= | > | <
| ≥ | ≤ relational operators

binop := + | − | × | ÷ binary operators
pred := ¬pred not

| true | false boolean
| if pred

then pred
else pred conditional

| pred && pred disjunction
| pred ‖ pred conjunction
| expr expression

Fig. 9. The full grammar of the state specifications

State specifications can work well for measurements of steady-state condition
probabilities but are not so appropriate for passage-time measurements. This is
because for passage-time analysis we are concerned with events which happen
and the states which result from those events. This means that slight changes
to the model can affect the passage-time specification greatly because there are
more or fewer states along the passage. In SRMC we mitigate this to some extent
with our use of virtual components. A virtual component is one which has no
representation within the CTMC but takes its population value as a function of
the populations of other related components. For example using the following
definition it is possible to define a component whose population is a measure of
the number of components which are in either the Broken state or the Offline
state:
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Listing 1.26. Virtual Component for an unavailable service

Unavailable = [ Broken + Offline ] ;

When we wish to measure the states of a component that correspond to
some abstract state, such as being unavailable or being within a passage to be
measured, we can use a virtual component to ensure that the query specification
may be the same across several configurations. When modelling with a single
PEPA model this can be useful in that the states along the passage are defined
in the same place as the behaviour of the component(s) involved in the passage
— such as a user component which is in an abstract state of Waiting in order to
analyse reponse-time. This is especially useful in SRMC when the definitions for
a service component can change based on the system configuration in use for a
specific derived PEPA model. In our running example we use virtual components
to specify when the shipping component is in a state of deciding on a shipper.
For configurations SM_A and SM_B this is simply one local state. For configuration
SM_C though the shipping component may be in the DecideOnShipper state or
the Failure state in which it is still in the (delayed) process of deciding on the
shipper. So we make the virtual component with:

Listing 1.27. Virtual Component for deciding

Deciding = [ DecideOnShipper + Failure ];

For each of the configurations SM_A and SM_B this is simply:

Listing 1.28. Virtual Component for deciding

Deciding = [ DecideOnShipper ];

Now when we make the selection we can simply refer to SM::Deciding in this
way we have a measure of the number of components in the abstract state of
‘Deciding’ which is portable across all of the derived PEPA models.

Activity probes can allow a more intuitive query specification when the states
we are interested in are the results of a sequence of event observations. This
is the common case when the query is a passage-time query. In xsp the mod-
eller specifies a series of activities to be observed and the compiler automatically
translates this into a PEPA sequential component which can then be queried as
a filter on the entire state space of the model. For passage-time measurements
the user can label activities of the probe as either start activities which begin
the passage or stop activities which end the passage. The probe states which are
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source, target or passage states are then mechanically derived and given to the
analyser. The user therefore need not specify the states they are interested in
at all, only the events/observations. A very common passage-time query which
measures the response-time is given by the probe specification:

Listing 1.29. Response-time probe specification

request:start, response:stop

In our example the request is started with the completion of a think activity
and is terminated with the completion of a ip activity. So the equivalent probe
for our example model is:

Listing 1.30. Response-time probe specification

think:start, ip:stop

However often we are concerned with the response-time as observed by a
single client, rather than that observed by the system above. The above probe
will measure the passage between the occurrence of a request activity performed
by any component in the model (usually a synchronisation between one client
and the service being modelled) and an occurrence of a response activity again
performed by any component. To observe only those request and response
activities which originate from a single ‘tagged’ client we can attach the probe
to a single Client component rather than the whole model. The following probe
using the double colon syntax achieves this for our example:

Listing 1.31. Response-time probe specification

User::(think:start, ip:stop)

Sometimes events are not powerful enough to express the queries that we
are interested in. This is often the case when we are interested in the response-
time when the service is in a particular state. For example we may have made
one passage-time measurement already using the above probe and found that
the general response-time is adequate, but that we wish to know more about
how this general response-time profile is made up. One possibility is to split up
the query into several analysing response-times when the service is in different
states. The following two probes analyse the response-time for all requests that
are initially made when the service is entirely available or (at least) partially
unavailable.
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Listing 1.32. Response-time probe specification

User::({Unavailable == 0}think:start, ip:stop)

User::({Unavailable > 0}think:start, ip:stop)

The guards on the first activity observation (of the think activity) are state
specifications. Note that these may refer to virtual components as well as to
regular component populations. Guards need not always be used to make a dis-
tinction as to when a passage is begun, they may also be used to terminate the
passage. The following two probes analyse the time it takes for a system to be-
come fully repaired after the initial breakdown of one of its components/servers.

Listing 1.33. Response-time probe specification

break:start, {Broken == 1}repair:stop

break:start, {Broken == 0}:stop

Here we do not assume that there is a single server which may be broken or not,
but several servers each of which may be broken independently. So the probe
must begin the passage on observation of the first breakage and only terminate
the passage when a repair activity fixes the only broken server (other servers
may have broken since the first one did). The first probe achieves this by only
observing a repair activity if there is exactly one server in the Broken state.
However this may still not be robust enough since we may change the model such
that a repair does not necessarily fix the broken server, for example there may

Pdef := name :: R locally attached probe
| R globally attached probe

R := activity observe action
| R1, R2 sequence
| R1 | R2 choice
| R:label labelled
| R/activity resetting
| (R) bracketed

| R n iterate
| R{m, n} iterate
| R+ one or more
| R∗ zero or more

| R? zero or one
R := . . . | {pred}R guarded

Fig. 10. The full grammar of the eXtended Stochastic Probes query specification
language
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be more than one thing broken within the server. The second probe by contrast
has the guard placed on the :stop label itself. This means that the probe will
consider itself to have terminated the passage precisely when we first move into
a state in which there are no servers in the Broken state. Figure 10 provides the
full grammar for the xsp language.

6 Markovian Modelling with Many Models

In the Markovian world in which we generate a CTMC from a PEPA model
we suffer from the well-known state-space explosion problem. Small increases in
the size of the PEPA model or the population size of a component or compo-
nents within the model can cause the number of distinct states of the generated
CTMC to increase dramatically. We mitigate this to some extent with our use
of aggregation [6] but this can provide only so much relief — this is described
in [11]. When the model state space becomes large we cannot simply allow more
time for the numerical solver because at some point the state space is simply
too large to even generate or hold in memory. From our single SRMC model
we generate a large number of PEPA models each of which can be solved inde-
pendently. Because we do not model uncertainty by increasing the complexity
of a single large PEPA model then provided each derived PEPA model is not
itself too large we avoid state space explosion. In other words we can solve many
small models better than we can solve one very large model. Indeed each of the
generated PEPA models may be solved in parallel on many machines using a
grid or cluster computing environment. The task of separately solving each of
these models falls into the class of problems which are known in the parallel
computing community as “embarrassingly parallelisable”. That is to say, they
are essentially a large number of independent processes without synchronisa-
tion points and therefore they deliver impressive speedups when executed on a
compute cluster.

Even with this the model sizes which can be solved using the CTMC tech-
nology is still low. Although in our example model presented so far we have
several thousand users and several hundred server processes. Unfortunately this
would result in an unmanageably large CTMC with a state-space size described
in astronomical terms. Given this, instead of analysing the whole system we are
obliged to analyse a portion of it, such as the performance of one set of server
processes. To this end we modified our SRMC model to have one for each kind of
server process — this means we set the values NRP , NPC , NFS and NPS all to
one. We are therefore able to reduce the number of clients since some clients will
be served by other server processes. In this example we ranged over the number
of users NU with the SRMC definition:

Listing 1.34. Number of users specification

N_U = { 2, 3, 4, 5, 6};
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This also meant that we are not ranging over the values NPC and NFS and
hence there were not as many experiments to run. We ran 750 experiments each
of which took between 30 seconds and one 1 minute to complete on an ordinary
desktop computer.

Prior to solving each of the models we must specify some query with which
to analyse each model. This is because some queries require us to automatically
add components to the model in order to distinguish states. For our model of
the web service we are interested in the response-time as observed by a single
user. Often we are interested in average response-time but compiling the PEPA
models to CTMCs allows a finer grained analysis known as passage-time quantile
analysis [12,13]. This allows the prediction of not just the average response-time
but the response-time profile, such that we know the probability of receiving a
response at or within any given time t after the request was made. This allows
us to answer such service-level agreements as: “90 percent of all requests will be
serviced within 10 seconds” something which is not possible to answer with only
the average response-time. Having specified this as our performance query once
for the SRMC model, this is then translated into the equivalent query for each of
the generated PEPA models. Thus, for each of the generated PEPA models we
calculate a cumulative distribution function which plots the time t for a specified
range (in this case 0 to 10) against the probability that a specific user observes
the ip event t time units after performing a think action.

Having calculated this function for each of the generated PEPA models we now
have a database mapping process instantions and rate parameters to response-
time profiles. We can extract information from this database as we wish. The
graph on the left of Figure 11 shows for one specific set of process instantiations
(or system configuration) the response-time profile as we vary the number of
users. All the other rates are held constant — by this we mean that we have
selected results from runs which have the same parameters other than the num-
ber of users. This graph indicates that the number of users has a quite dramatic
effect on the response-time of the system, where there is a low number of users
the probability of passage completion rises very quickly with time. As the num-
ber of users is increased the rise of the probability of completion against time
is more languid. The graph on the right hand side of the same figure does the
same kind of analysis except here we have kept constant the number of users and
the parameter that we are varying — whereby again ‘varying’ means selecting
the already computed results which correspond to a varying — rate of rpo the
rate at which the service can receive orders. From this graph we learn that at
least for the parameter range chosen the rate of rpo does not drastically affect
the response-time as observed by a single user. This is a perhaps surprising re-
sult because the activity performed at this rate is included within the analysed
passage.

Figure 12 shows a similar kind of surface plot except in these graphs we are
holding only the system configuration as constant and ranging over the whole
rate configuration space for each derived PEPA model. What you see is the
depths of probabilities at each time for the given system configuration. Where
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Fig. 11. A surface plot showing how the number of users affects the response-time
profile
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Fig. 12. Surface plots depicting the cumulative distribution functions for each system
configuration across all rate configurations

this depth is long there is great variability in the probability of completing the
passage at that time. In other words at that time the rates have a large affect
on the probability of completing the passage. Where the depth is low the rates
do not affect so much the probability of completion, this may be because there
is either always low or always high proability at that time or it may be because
there is some bottleneck in the passage and therefore altering other rates has
less effect.

Figure 13 depicts the candle-stick graphs of completion of the passage for
all the experiments performed automatically from the SRMC model. At each
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Fig. 13. Candlestick graphs showing the probability of completion ranging over all of
the experiments performed automatically from the SRMC model
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Fig. 14. Time graphs showing probability of completion at the given times plotted
against experiment number

time point the top and bottom bars represent the best and worst performing
experiment at that time point. We see from these two graphs that the range of
possibilities is quite high which suggests that the exact system configuration is
important for the modelled system. The thick bar along each line represents a
particular middle-percentage range for that time — in other words we remove
some percentage of best performing experiments and some percentage of the
worst performing experiments. The graph on the left plots between 10 and 90
percent while the graph on the right plots between 40 and 60 percent. In general
this can highlight the possibility that the best or worst performing experiment
is really an outlier and the wide variability of the experiments is not a true
reflection of the variability of the system as a whole. It can also allow the modeller
to zero in on experiments which are causing particularly good or poor results
and determine whether or not the system/model can be improved as a whole.

Another kind of graph which we plot are called simply time graphs. These plot
the probability of completing the passage within the given times against all the
experiment numbers of all the system and rate parameter configurations ranged
over within the SRMC model. On the left of Figure 14 we see only the single time
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8.0 being plotted. From this graph we can see that with few exceptions there is
at least a sixty percent chance that the passage will be completed and in some
configurations it is close to a certainty. On the graph of the right of the same
figure we plot more than one time, indeed our software ranges over sets of times
although more than two is not very useful when the graphs are in black and white.
From these two times we can see that there are some configurations that are more
likely to complete the passage within time 3.0 than other poorer performing
configurations are at time 7.0. Again this demonstrates wide variability in the
system we are modelling.

7 Large-Scale Modelling with Differential Equations

Our use of SRMC to model uncertainty by splitting up the possible system
configurations has ensured that our model does not inflate to an unmanageable
size through the modelling of uncertainty. However there are many models which
are inherently large, in particular models of web services often hope to have
many thousands of users. Therefore even when modelling one single configuration
the state-space size is simply too massive. Recently it has become possible to
analyse such systems with a fluid-flow approach. In this case the PEPA model
is translated into a system of ordinary differential equations. These are solved
until the model has reached a steady-state in which the population levels of each
kind of component are stationary. This gives us the same kind of steady-state
measurements that are possible with the CTMC analysis. Systems in which the
limit of user components for CTMC analysis was of the order of a few tens can
now be analysed with a more realistic number of users in the many thousands.
Unfortunately the price paid for this extraordinary rise in model size capacity is
a reduced set of analyses which are appropriate. In particular our passage-time
analysis used on the CTMC models of the Section 6 in as of yet unavailable.

In our example model we can instead calculate a measure of the average
response-time by looking at the number of users who are typically in a state
of waiting for their response. For each derived PEPA model instance and rate
configuration we solve the assocated ODEs to provide a time-series analysis.
These plot the population of the specified component types against time. Three
such graphs are shown in Figure 15 one for each of the three system configura-
tions. Note that after some time each of these time-series becomes stable in that
the population of each component type is not changing. This allows us to infer
the steady-state or long-term average poplulation of each component type. By
analysing the long-term population level of the number of waiting users we can
gain a measure of the response-time of the system. The graph in Figure 16 plots
the steady-state population of waiting users for all of the experiments (that is
all system configurations at all rate configurations). We did the same for the
number of deciding shippers (recall from Section 5 that ‘Deciding’ was a virtual
component) and the results are plotted in Figure 17. Overall we ran 2592 ex-
periments each of which took between 1 and 3 seconds to complete. We invoked
these in serial on an ordinary desktop PC and achieved results within 2 hours.
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Fig. 15. Example time-series showing how the population of a subset of the component
types in specific model instances change with time
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Fig. 16. Graphs showing how configurations affect the number of waiting users

For some models the time taken to produce one result is longer, alternatively
we may have a larger uncertainty space resulting in many more experiments. In
these cases it is worth considering farming out the solving of each experiment
(or a set of experiments) using a parallel computing cluster such as Condor as
we have done before [14].

The results show that the population levels tend to concentrate on a very
small number of values, as can be intuitively appreciated by the presence of
horizontal lines in the graphs. An explanation of this behaviour is that there
are dominant elements in the parameter space considered in this case study.
Particularly, the rate r_rpo and the instance of SM have a strong impact on
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Fig. 17. Graphs showing how configurations affect the number of deciding shippers

Table 1. Results of Figure 16 grouped by SM and r_rpo. The third column shows the
average population level across all the experiments with the same configuration.

SM r_rpo Average Value

SM_A 0.5 66.65
SM_A 1.0 114.25
SM_A 1.5 149.94
SM_A 2.0 177.70
SM_A 2.5 199.90
SM_A 3.0 218.07
SM_B 0.5 61.52
SM_B 1.0 99.97
SM_B 1.5 126.28
SM_B 2.0 145.40
SM_B 2.5 159.85
SM_B 3.0 159.85
SM_C 0.5 123.05
SM_C 1.0 199.95
SM_C 1.5 252.56
SM_C 2.0 290.91
SM_C 2.5 319.69
SM_C 3.0 319.69

the population levels considered. Table 1 gives the results of Figure 16 in an
aggregated form by grouping the experiments according to these two parame-
ters. It shows the average population level across all the experiments with the
same values of r_rpo and SM. Each group of experiments exhibits a negligible
standard deviation, confirming the strong influence of the two parameters on the
performance measure.

The specific instance of SM seems to have a stronger impact in some cases. For
instance, the groups of experiments (SM_B, 2.5) and (SM_B, 3.0) have the same
average population level, suggesting a low sensitivity of result with respect to
the change in the value of the rate r_rpo. The same situation is observer for the
groups (SM_C, 2.5) and (SM_B, 3.0).
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8 Software Tools for SRMC and PEPA

The kinds of analysis presented in this tutorial are supported by a suite of
software tools which can be accessed at http://groups.inf.ed.ac.uk/srmc/.
The tool smc implements the compiler for SRMC, and is based on Pepato and
ipc for the quantitative analysis. This section gives an overview of the tool-chain
and discusses the main features of each individual application. The architecture
of the software for SRMC is depicted in Fig. 18.

Fig. 18. Architecture of the software tools for SRMC

8.1 Pepato

Pepato is a Java Application Programming Interface (API) which provides core
services for the execution of PEPA-related tasks. The API is centred around
an abstract syntax tree representation of a PEPA model which can be created
programmatically or via the parsing of a file with the concrete syntax presented
throughout this tutorial. This in-memory representation gives access to func-
tionality for Markovian analysis and fluid-flow approximation through ODEs.

The modules for Markovian analysis include a state-space explorer, which in-
fers the labelled transition system according to the semantics rules of PEPA. The
generated state space is the input to the steady-state analyser which constructs
the underlying Markov chain and solves it for the equilibrium distribution us-
ing the external library MTJ (Matrix Toolkit for Java) [15]. The solution can be
used for the calculation of a predefined set of performance indices, indicated as
reward structures over the Markov chain: the throughput is calculated for each ac-
tion type, and the mean population level is given for each sequential process in the
system. An alternative form of Markovian analysis is stochastic simulation, which
is offered by Pepato with the implementation of a semantics for PEPA [16] which

http://groups.inf.ed.ac.uk/srmc/
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maps onto efficient methods such as Gillespie’s direct method [17] and Gibson-
Bruck’s algorithms [18]. This module, which relies on the stochastic simulation
algorithms implemented by the Java library ISBjava [19], permits the tuning of
the most common parameters of a simulation study, including number of replica-
tions, time horizon, confidence intervals, and output variables of interest.

The module for fluid-flow analysis transforms a PEPA model into a system of
first-order ODEs according to the semantics described in [20]. The differential
equation model can be analysed with a range of numerical solvers and the output
provides the evolution of the population levels of the system’s components over
time. The module uses the odetojava package by Patterson and Spiteri [21],
available in the ISBjava library.

Pepato is exposed through a command-line interface for the purpose of com-
munication with the other non-Java elements of the SRMC tool-chain.

8.2 ipc

The ipc tool is written in Haskell and supports the analysis of response-time
quantiles for PEPA [13]. The tool permits the definition of performance mea-
sures (called probes) by using a regular-expression like specification language
called xsp which we described in Section 5. The tool converts a PEPA model
and its measurement specification into an equivalent PEPA model for the nu-
merical analysis. In its latest incarnation, backed by the library ipclib [7], the
solvers are implemented natively. Optionally, the user can invoke the original
tool-chain, which translates the model into the input format accepted by Hy-
dra [22], implemented in C++, which has been designed to cope efficiently with
large-sized models (i.e. up to 107 states).

8.3 smc

The SRMC Model Compiler (smc) is our software support for translating from
the SRMC language into multiple PEPA models. The tool is written in Haskell
alongside the ipc library and hence uses the same parsing for the PEPA specific
portions of the SRMC syntax. The user provides both a SRMC model together
with a query specification. From this, one PEPA model per system configura-
tion is produced. The query specification is robust enough to be used over all
the PEPA models. Note that we do not produce one PEPA model for each ex-
periment. Each experiment consists of a system configuration (or equivalently
a derived PEPA model) and a set of rate parameter instantiations. So our smc
compiler produces for each derived PEPA model a list of rate parameter instan-
tiations relevant to that particular model instance. For each experiment the ipc
tool is invoked with the particular PEPA model, the particular rate parame-
ter instantiations and the globally appropriate query specification. The ipc tool
may then produce the result itself for a Markovian response-time quantile query
or pass the instantiated model onto Pepato to solve using ordinary differential
equations.
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9 Related Work

This tutorial paper is concerned with using process calculi to model Web Services
with a particular focus on quantitative evaluation. As others have before us, we
used a process calculus to express our model. The process calculus SRMC builds
on the simpler process algebra PEPA which has been used for numerous studies
of stochastically-timed systems (for a recent overview of modelling with PEPA
see [23] and [24]).

SRMC can be seen as an extension of PEPA. Formally, it is a superset of the
PEPA language in the sense that every PEPA model is immediately an SRMC
model which gives rise to a singleton set of PEPA model instances. Another
extension of PEPA which had mobility (rather than binding) as its motivation
was the language of PEPA nets [25,26]. PEPA nets are stochastic Petri nets
whose tokens are PEPA terms. We find this language applied to modelling Web
Services in [27].

PEPA nets and the stochastic π-calculus are applied to modelling a Web
Service in [28]. Of note with regard to this paper is that properties of interest to
the PEPA net model are specified using PMLν , an extension of Larsen and Skou’s
Probabilistic Modal Logic (PML). This is a distinctive approach to characterising
sets of states which are of interest in the specification of performance measures.
Modal logics are rarely used for this purpose and temporal logics such as CSL
are more commonly applied here.

However, the style of modelling pursued in the above work is discrete-state
Markovian modelling. With the advent of the theory presented in [2] and the
algorithm presented in [29] it was possible to map process algebra models to
systems of ordinary differential equations for solution. The relationship between
these two kinds of models is explored from a theoretical perspective in [30] and
by example in [31] and [11].

One of the earliest published papers to include a PEPA modelling case study
which is carried out using this evaluation method is [32]. In this paper a large-
scale model of the BitTorrent distribution protocol is developed in PEPA and
solved using the fluid-flow approximation. Previous models of Web Services con-
sidered in this style include the distributed e-learning and course management
system considered in [33] in PEPA and the same system considered in the un-
timed process calculus SOCK and in PEPA in [34].

10 Conclusion and Future Perspectives

In this paper we have addressed an inherent difficulty of modelling studies,
namely that we lack certainty about details of the system which we are mod-
elling. Very often this problem can be due to a lack of knowledge about rate
parameters but it is also possible that we lack certainty about the function of
some components of the system. This can be because we are undertaking a
prospective modelling study of a still-to-be-constructed system. At this point
decisions about the specification have not yet been finalised (and a quantitative
modelling study can guide us in making the right decisions).
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There are principally two ways to address these kinds of problems within a
model. The first is to try to abstract away from the details of the components
about which we are uncertain but such an approach risks missing too much detail
and then our models will be unconvincing and their results will be inaccurate.
The second is to try to include all of the detail of each possible component,
presenting these as internal choices made by the model. Unfortunately, if we
have included too much detail then we encounter the well-known state-space
explosion problem where we simply do not have enough memory available to
represent the detailed model or not enough time to compute the desired results.
The model might be useful, if it helped us to think clearly, but we will always
feel uncertain about it because we will be unable to test it or make predictions
based on it.

The alternative which we have pursued here is to accept that we have more
than one model to consider and that we need to apply our analysis to a related
family of models. There are two attendant difficulties here. The first is that if
we are to consider a large family of models then we surely want to generate
these models automatically via a repeatable transformation. The smc compiler
performs this function for the SRMC language, generating many PEPA models
for a single input SRMC model. The second difficulty which we encounter here
is that we have a daunting number of model evaluations to perform. For this
approach to be feasible we need an evaluation mechanism which has low uni-
tary cost. Fortunately the cost of solving initial value problems for systems of
differential equations can extremely low.

We have applied these methods here to modelling Web Services and it seems
that they suit this domain well because of its inherent uncertainty about binding
sites and the attendant level of performance which we can expect to receive.
However, we hope that our methods will also be useful beyond the domain of
Web Services and that we may find many possible applications of the SRMC
language in the future.
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A Detailed Results

In this section we depict some of the graphs that we have produced from our
example models which have not been shown in the main text. We include these
here for completeness because it is sometimes the case that one can see the
significance of one graph only in comparison to others.

Figure 19 shows some more of the candle stick graph possibilities which were
not shown in Section 6. Figures 20 and 21 and shows all of the time graphs which
plot probability of completion within the given time against experiment number.



336 A. Clark, S. Gilmore, and M. Tribastone

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

P
ro

ba
bi

lit
y

Time

top = 90 bottom = 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

P
ro

ba
bi

lit
y

Time

top = 85 bottom = 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

P
ro

ba
bi

lit
y

Time

top = 80 bottom = 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

P
ro

ba
bi

lit
y

Time

top = 75 bottom = 25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

P
ro

ba
bi

lit
y

Time

top = 70 bottom = 30

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

P
ro

ba
bi

lit
y

Time

top = 65 bottom = 35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

P
ro

ba
bi

lit
y

Time

top = 60 bottom = 40

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

P
ro

ba
bi

lit
y

Time

top = 55 bottom = 45

Fig. 19. Candlestick graphs showing the probability of completion ranging over all of
the experiments performed automatically from the SRMC model
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Fig. 20. Time graphs showing the probability of completion within the given times
ranging over all of the experiments performed automatically from the SRMC model
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Fig. 21. Time graphs showing the probability of completion within the given times
ranging over all of the experiments performed automatically from the SRMC model
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Fig. 22. Selected experiment number interval graphs for the SRMC model ODEs
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