
SENSORIA Process Calculi for Service-Oriented
Computing�

Martin Wirsing1, Rocco De Nicola2, Stephen Gilmore3, Matthias Hölzl1,
Roberto Lucchi4,��, Mirco Tribastone3, and Gianlugi Zavattaro4

1 Ludwig-Maximilians-Universität München, Germany
2 University of Florence, Italy

3 University of Edinburgh, United Kingdom
4 University of Bologna, Italy

Abstract. The IST-FET Integrated Project SENSORIA aims at developing a
novel comprehensive approach to the engineering of service-oriented software
systems where foundational theories, techniques and methods are fully integrated
in a pragmatic software engineering approach. Process calculi and logical meth-
ods serve as the main mathematical basis of the SENSORIA approach.

In this paper we give first a short overview of SENSORIA and then focus on
process calculi for service-oriented computing. The Service Centered Calculus
SCC is a general purpose calculus which enriches traditional process calculi with
an explicit notion of session; the Service Oriented Computing Kernel SOCK is
inspired by the Web services protocol stack and consists of three layers for ser-
vice description, service engines, and the service network; Performance Eval-
uation Process Algebra (PEPA) is an expressive formal language for modelling
distributed systems which we use for quantitative analysis of services. The calculi
and the analysis techniques are illustrated by a case study in the area of distributed
e-learning systems.

1 Introduction

Service-oriented computing is an emerging paradigm where services are understood as
autonomous, platform-independent computational entities that can be described, pub-
lished, categorised, discovered, and dynamically assembled for developing massively
distributed, interoperable, evolvable systems and applications. These characteristics
push service-oriented computing towards nowadays widespread success, demonstrated
by the fact that many large companies invest efforts and resources in promoting ser-
vice delivery on a variety of computing platforms, mostly through the Internet in the
form of Web services. Soon there will be a plethora of new services as required for
e-government, e-business, and e-science, and other areas within the rapidly evolving
Information Society.

� This work has been partially sponsored by the project SENSORIA, IST-2 005-016004 and by
the DFG project MAEWA.

�� Currently at European Commission, DG Joint Research Centre, Institute for Environment and
Sustainability, Spatial Data Infrastructures Unit.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 30–50, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

SENSORIA Process Calculi for Service-Oriented Computing 31

However, service-oriented computing and development today is done in a pragmatic,
mostly ad-hoc way. Theoretical foundations are missing, but they are badly needed for
trusted interoperability, predictable compositionality, and for guaranteeing security, cor-
rectness, and appropriate resources usage. Service-oriented software development is not
integrated in a controllable software development process based on powerful analysis
and verification tools and it is not clear whether service-oriented software development
scales up to the development of complete systems.

The IST-FET Integrated Project SENSORIA addresses the problems of service-
oriented computing by building, from first-principles, novel theories, methods and tools
supporting the engineering of software systems for service-oriented overlay computers.
Its aim is to develop a novel comprehensive approach to the engineering of service-
oriented software systems where foundational theories, techniques and methods are
fully integrated in a pragmatic software engineering approach.

The results of SENSORIA will include a new generalised concept of service for global
overlay computers, new semantically well-defined modelling and programming primi-
tives for services, new powerful mathematical analysis and verification techniques and
tools for system behaviour and quality of service properties, and novel model-based
transformation and development techniques. The innovative methods of SENSORIA will
be demonstrated by applying them in the service-intensive areas of e-business, automo-
tive systems, and telecommunications.

A main research strand of SENSORIA is the development of adequate linguistic prim-
itives for modelling and programming global service-oriented systems. This includes
an ontology for service-oriented architectures, UML extensions (see e.g. [35]) and the
declarative language SRML [16] for system modelling over service-oriented architec-
tures. Process calculi serve as the mathematical basis for programming and modelling
dynamic aspects of services and service-oriented systems and for analysing qualita-
tive and quantitative properties of services such as quality of service, security, per-
formance, resource usage, scalability. During the first year of SENSORIA a family of
process calculi for services has been developed which supports complementary as-
pects of service-oriented computing and qualitative and quantitative analysis of service-
oriented systems. The family comprises four core calculi for service description,
invocation and orchestration [6,19,25,9], stochastic and probabilistic extensions of
calculi for global computing [14,15,8], and process calculi and coordination languages
with cost and priority [10,5,3].

In this paper we give first a short overview of SENSORIA and then focus on pro-
cess calculi for service-oriented computing. For reasons of space we present only two
of the SENSORIA core calculi and one stochastic process algebra for analysing quan-
titative properties of service-oriented systems. For the other SENSORIA calculi the
reader is referred to the SENSORIA reports and publications available on the SENSORIA

web site [32].
The Service Centered Calculus SCC is a general purpose calculus based on an ab-

stract notion of service (independent of any specific technology) and aiming at a model
suitable for different technologies and scenarios. SCC enriches the name passing com-
munication mechanism of traditional process calculi, such as the π-calculus [27], with
explicit notions of service definition, service invocation and bi-directional sessioning.

32 M. Wirsing et al.

SCC’s notion of service has been influenced by Cook and Misra’s calculus Orc [28] for
structured orchestration of services, where a service is a function returning a stream of
values.

The Service Oriented Computing Kernel SOCK is a three-layered calculus inspired
by the Web services protocol stack. The service description layer consists of a simple
calculus for service interface description which takes inspiration from WSDL [34] and
the abstract fragment of WS-BPEL [4]. At the service engine layer additional informa-
tion can be added which indicates how a service is actually run; this layer is inspired
by the full (executable) WS-BPEL language. The third service network layer, permits
modeling an overall network of interacting services; the source of inspiration for this
level has been the SOAP [7] protocol for message exchange among Web services.

Finally, we present Jane Hillston’s stochastic Performance Evaluation Process Al-
gebra (PEPA) [22,21]. This is an expressive formal language for modelling distributed
systems which is supported by a flexible workbench [17]. We use PEPA for quantitative
analysis of services. PEPA models are obtained by composing elements which perform
individual activities or cooperate on shared ones. To each activity is attached an esti-
mate of the rate at which it may be performed. The rates associated with activities are
exponentially distributed random variables thus PEPA is a stochastic process algebra
which describes the evolution of a process in continuous time. As an example for scal-
ability analysis, we investigate with PEPA how models of Web service execution scale
with increasing client population sizes.

All three presented calculi and analysis techniques are illustrated by a case study in
the area of distributed e-learning systems.

The paper is organised as follows: In Sect. 2 we present shortly the SENSORIA

project, its approach to service-oriented system development, and the running exam-
ple, i.e., the case study of a distributed e-learning and course management system. We
present the Service Centered Calculus SCC in Sect. 3.1 and the Service-Oriented Com-
puting Kernel SOCK in Sect. 3.2. In Sect. 4 we use PEPA for scalability analysis: we
investigate how models of Web service execution scale with increasing client popula-
tion sizes. We conclude the paper in Sect. 5 with some remarks on further SENSORIA

results.

2 SENSORIA

SENSORIA is one of the three Integrated Projects of the Global Computing Initiative of
FET-IST, the Future and Emerging Technologies action of the European Commission.
The SENSORIA Consortium consists of 12 universities, two research institutes and four
companies (two SMEs) from seven countries1.

1 LMU München (coordinator), Germany; TU Denmark at Lyngby, Denmark; FAST GmbH
München, S and N AG, Paderborn (both Germany); Budapest University of Technology and
Economics, Hungary; Università di Bologna, Università di Firenze, Università di Pisa, Uni-
versità di Trento, ISTI Pisa, Telecom Italia Lab Turino (all Italy); Warsaw University, Poland;
ATX Software SA, Lisboa, Universidade de Lisboa (both Portugal); Imperial College Lon-
don, University College London, University of Edinburgh, University of Leicester (all United
Kingdom).

SENSORIA Process Calculi for Service-Oriented Computing 33

Core Calculi for Service Computing &
Service Computing Platform

Q
u

al
it

at
iv

e
an

d
Q

u
an

ti
ta

ti
ve

A
n

al
ys

is

R
e-

E
n

g
in

ee
ri

n
g

L
eg

ac
y

S
ys

te
m

s

Model-driven
Development

Model-driven
Deployment

Global ComputerLegacy System

Service-Oriented Modeling
(Architectural Design Layer)

Global Computer

Fig. 1. The SENSORIA approach to service-oriented systems development

2.1 Aim and Approach of SENSORIA

The aim of the IST-FET Integrated Project SENSORIA is to develop a novel compre-
hensive approach to the engineering of service-oriented software systems where foun-
dational theories, techniques and methods are fully integrated in a pragmatic software
engineering approach. This includes a new generalised concept of service, new seman-
tically well-defined modelling and programming primitives for services, new powerful
mathematical analysis and verification techniques and tools for system behaviour and
quality of service properties, and novel model-based transformation and development
techniques.

The three main research themes of Sensoria concern

– The definition of adequate linguistic primitives for modelling and program-
ming global service-oriented systems, by building on a category theoretic and
process algebraic framework supporting architectural modelling and programming
for mobile global computing and by formally connecting these linguistic primitives
with UML in order to make the formal approaches available for practitioners;

– The development of qualitative and quantitative analysis methods for global
services, by using powerful mathematical analysis techniques including program
analysis techniques, type systems, logics, and process calculi for investigating the
behaviour and the quality of service of properties of global services;

– The development of sound engineering and deployment techniques for global
services, by providing new mathematical well-founded techniques for model-based
transformation, deployment, and re-engineering, and integrating them into a novel
engineering approach to service-oriented development.

In the envisaged software development process (cf. Fig. 1), services are modelled in a
platform-independent architectural design layer. By using model transformations, these
models are then transformed to the SENSORIA core calculi for qualitative and quanti-
tative analysis; moreover, for constructing operational realisations they are transformed

34 M. Wirsing et al.

 «temporary»

 «temporary»

«Service»

Course Management

«Service»

Tutor Service

 «temporary»

 «temporary»

 «temporary»

«Service»

Undergrad Advisor

«Service»

Multiple Choice

«Service»

Registration

«Service»

Registration Check

 «temporary»

«Service»

Exam

 «temporary»

 «temporary»

«Service»
E-Learning

«temporary»

«Service»

University Portal

Client System

Fig. 2. Architecture of the SENSORIA distributed e-learning and course management system

and/or refined to the service computing platform of SENSORIA which, in turn, can be
used for generating specific implementations over different global computing platforms
in a (semi-)automated way. On the other hand, legacy code is transformed systemati-
cally into service oriented software models (see Fig. 1). In all phases of service-oriented
development formal analysis techniques are used for validating and verifying qualitative
and quantitative properties of services and their interactions.

2.2 The E-Learning and Course Management Case Study

Today’s academic environment poses several challenges for administration, faculty, and
students. Administration has to provide services for more and more students while the
numbers of specialised subjects (e.g., bio-informatics and media informatics in addition
to traditional computer science) increases steadily and hence more courses need to be
scheduled. Faculty members are facing a higher workload and increasing demands from
students, e.g., with regards to the availability of homework sheets, course slides and ad-
ditional teaching aids. Furthermore students are expected to spend parts of their studies
in foreign countries without delaying their exams. To manage these problems efficiently
and cheaply, universities are beginning to use computerised course-management and
e-learning systems. Some of the functionalities performed by typical university soft-
ware systems are: management of curricula and students by a university, manage-
ment of single courses by teaching personnel, management of degrees by students, and
e-learning.

In SENSORIA we build a prototypical service-oriented distributed e-learning and
course management system (DECMS) that satisfies these requirements and is used to
guide SENSORIA research efforts. In order to support distribution, extensibility and
dynamic composition, DECMS has a service-oriented architecture (cf. Fig. 2) consist-
ing of services which are interconnected through ports that are typed by provided and

SENSORIA Process Calculi for Service-Oriented Computing 35

required interfaces (written in a “ball-and-socket” notation). Fig. 2 shows a UML ser-
vice diagram of the DECMS as a first simplified snapshot of an architecture model.

A client service connects to DECMS through a University Portal service which in
turn holds connections to the e-learning and the course management services. A tu-
tor service interacts with both, the e-learning and course management service. The
e-learning service offers an examination facility with multiple choice questions. This
is provided to the e-learning service by a dedicated examination service which in turn
requires an auxiliary multiple choice service. Similarly, the course management service
offers services for enrolling students in courses and querying and updating the current
undergrad advisor. These services are provided by the corresponding auxiliary services.

In the following we use examples concerning the management of single courses and
of degrees for illustrating the different process calculi presented in this article.

3 Core Calculi for Service-Oriented Computing

The core calculi for service specification permit focusing on the foundational aspects
and properties of services, and drive (via operational semantics) the implementation of
prototypes: Moreover they provide a common ground for experiments and for studying
relative expressiveness and lay the basis for extensions to deal with issues such as lin-
guistic primitives (e.g. compensation), quantitative properties (e.g. Quality of Service)
and qualitative properties (e.g. logics and type systems).

During the first year of SENSORIA four core calculi have been developed which put
different stress on and support complementary aspects of service-oriented computing:

SCC. The Service Centered Calculus [6] is a general purpose calculus for services
which focuses on sessions, i.e. client-service bidirectional interactions,

SOCK. The Service-Oriented Computing Kernel [19] proposes a three-layered calcu-
lus inspired by the Web services protocol stack (WSDL, WS-BPEL, SOAP),

COWS. The Calculus for Orchestration of Web services [25] mirrors WS-BPEL con-
structs such as message correlations, fault and compensation handlers, and flow
graphs,

SC. The Signals Calculus [9] considers publish/subscribe service interaction instead
of message-based client-service communication and supports the prototype imple-
mentation of a middleware for programming Long Running Transactions as de-
scribed by the SAGA-calculus.

Two different approaches have been followed in the design of core calculi for SOC:
technology-driven and theory-driven. The technology-driven approach of SOCK and
COWS consists of electing one specific service-oriented technology as the starting
point, and extracting from it a corresponding core model. This permits to crosscheck
whether the proposed general calculi adhere to the specificities of the currently avail-
able service oriented technologies. The opposite theory-driven approach of SCC and
SC consists of designing an abstract model of services that is not bound to a specific
technology; the resulting calculi are general enough to be applied to different global
computers on which services run.

In the following we present informally two of the four calculi, namely SCC and
SOCK.

36 M. Wirsing et al.

P, Q ::= 0 Nil
| a.P Concretion
| (x)P Abstraction
| return a.P Return Value
| a ⇒ (x)P Service Definition
| a{(x)P} ⇐ Q Service Invocation
| r � P Session
| P |Q Parallel Composition
| (νa)P New Name

Fig. 3. SCC: syntax of processes

3.1 A Session-Oriented Process Calculus for Service-Oriented Systems

SCC is a calculus developed around the notions of service definition, service invocation
and bi-directional sessioning; it has been influenced by Cook and Misra’s Orc [28], a
basic programming model for structured orchestration of services. Orc is particularly
appealing due to its simplicity and yet great generality; its three basic composition
operators are sufficient to model the most common workflow patterns, identified by van
der Aalst et al. in [33].

SCC has novel features for programming and composing services, while taking into
account their dynamic behaviour. In particular, SCC supports explicit modeling of ses-
sions both on the client and on the service side, and provides mechanisms for session
naming and scoping, by relying on the constructs of π-calculus [27]. Sessions permit
describing and reasoning about interaction modalities more structured than the simple
one-way and request-response modalities provided by Orc and typical of a producer /
consumer pattern. Moreover, in SCC, sessions can be closed thus providing a mecha-
nism for process interruption and service cancellation and update which has no coun-
terpart in most process calculi.

Summarising, SCC combines the service oriented flavour of Orc with the name pass-
ing communication mechanism of the π-calculus.

Calculus description. Within SCC, services are seen as interacting functions (and even
stream processing functions) that can be invoked by clients. The syntax of (the kill-free
fragment of) SCC is reported in Figure 3. The operational semantics is not reported for
space constraints, it can be found in [6].

Service definitions take the form a ⇒ (x)P , where a is the service name, x is a
formal parameter, and P is the actual implementation of the service. As an example,
consider the service double defined as follows:

double ⇒ (x)x + x

(Here and in the following we omit the trailing 0.) This service receives the value x and
computes its double x+x. Service invocations are written as a{(x)R} ⇐ Q: each new
value v produced by the client Q will trigger a new invocation of service a; for each
invocation, an instance of the process R, with x bound to the actual invocation value

SENSORIA Process Calculi for Service-Oriented Computing 37

v, implements the client-side protocol for interacting with the new instance of a. As an
example, a client for the simple service described above will be written in SCC as

double{(x)(y)return y} ⇐ 5

After the invocation x is bound to the argument 5, the client waits for a value from the
server and the received value 10 is substituted for y and hence returned as the result of
the service invocation.

This is only the simplest pattern of interaction in the context of service oriented com-
puting, the so-called request-response pattern. Differently from object oriented comput-
ing, in service oriented computing clients and services can interact via more complex
patterns activating sessions after the first invocation. Within a session several values
can be exchanged from the service to the client and vice versa. Moreover, also other
services can be involved giving rise to a multi-party conversation.

A service invocation causes activation of a new session. A pair of dual fresh names, r
and r, identifies the two sides of the session. Client and service protocols are instantiated
each at the proper side of the session. For instance, interaction of the client and of the
service described above triggers the session

(νr)
(
r � 5 + 5 | r � (y)return y

)

(in this case, the client side makes no use of the formal parameter). The value 10 is
computed on the service-side and then received at the client side, that reduces first to
r � return 10 and then to 10 | r � 0 (where 0 denotes the nil process).

More generally, communication within sessions is bi-directional, in the sense that the
interacting partners can exchange data in both directions. Values returned outside the
session to the enclosing environment can be used to invoke other services. For instance,
a client may invoke the service double and then print the obtained result as follows:

print{(z)0} ⇐ (double{(x)(y)return y} ⇐ 5)

(in this case, the service print is invoked with vacuous protocol (z)0).
As a more significant example than those reported above, we present a simple orches-

trator used in the course management system whose aim is to invoke a service which
collects the results of two other services.

Example 1 (Service orchestration: email service for course events). A student wants to
be notified via email of all important events for two courses in which he is enrolled.
Assume that the course management system of the university provides the following
services: services Course1Events and Course2Events provide announcements for the
respective courses; the service email expects a value and then sends it to a student’s
address. Then the following process

email{(−)0} ⇐
(

Course1Events{(x)(y)return y} ⇐ •
| Course2Events{(x)(y)return y} ⇐ •)

will send an email for each announcement from either Course1 or Course2 to the
student. Note that we use the names • and − to denote unused names and binders for
unused names, respectively.

38 M. Wirsing et al.

As already anticipated above, another interesting aspect of SCC is that other services
can be invoked during the execution of a session thus giving rise to a multi-party con-
versation. As an example, let us consider the following Course-Registration Check.

Example 2 (Multi-party conversation: registration service). Using a syntax enriched
with the boolean and operator and an if-else construct, we can specify that a course
registration might require the student to satisfy certain requirements, e.g., having com-
pleted a lab in the previous term and passing a selection test.

regCheck ⇒ (x) if((completedLab ⇐ x) and (passedTest ⇐ x))
allow

else deny

This example demonstrates the invocation of other services (completedLab and
passedTest) during the execution of one service.

The full SCC comprises also other more specific operators that permit, for instance,
to interrupt the execution of a session or to cancel/update service definitions. The full
syntax is not reported here for space constraints, but can be found in [6]. Nevertheless
we describe informally how the interruption mechanism can be used.

A protocol, both on client-side and on service-side, can be interrupted (e.g. due to the
occurrence of an unexpected event), and interruption can be notified to the environment.
More generally, the keyword close can be used to terminate a protocol on one side and
to notify the termination to a suitable handler at the partner site. For example, the above
client is extended below for exploiting a suitable service fault that can handle printer
failures:

print{(z)0} ⇐fault (double{(x)(y)return y} ⇐ 5) | fault ⇒ (code)Handler

where Handler is a protocol able to manage printer errors according to their identifier
code.

Suppose that P is the printer protocol and that the keyword close occurs in P . When
invoked by the above client, a service-side session of the form r �fault P [fault/close]
is created, where fault is substituted for close . In case of printer failure the protocol P
should invoke the service close (instantiated to fault), with an error code err as a pa-
rameter. As effect of this invocation, the whole service-side session r is destroyed. The
invocation will instantiate an error recovery session that executes Handler[err/code].

Example 3 (Undergrad advisor service update). Session closing can be used also for
service update. Consider, for instance, the following service from a university manage-
ment system

undergradAdvisor ⇒ (−)Prof. A

that returns the name of current advisor for undergraduates. The service must be updated
as soon as the occupancy of this position changes. In the kill-free fragment of SCC
reported in Figure 3 there is no way to cancel a definition and replace it with a new
one. By contrast, in the full calculus, we can exploit session closing in order to remove

SENSORIA Process Calculi for Service-Oriented Computing 39

services and the interruption handler service can be used to instantiate a new version of
the same service. Consider, for instance,

r �new

(
undergradAdvisor ⇒ (−)Prof. A |
new{(−)0} ⇐new (update ⇒ (y)return y)

)
|

new ⇒ (z)
(

undergradAdvisor ⇒ (−)z |
new{(−)0} ⇐new (update ⇒ (y)return y)

)

The service update, when invoked with a new name z, permits to cancel the currently
active instance of service undergradAdvisor and replace it with a new one that returns
the name z. Notice that the service update is located within the same session r of the
service undergradAdvisor ; this ensures that when it invokes the interruption handler
service new the initial instance of the service undergradAdvisor is removed.

Other examples that assess the expressive power of SCC can be found in [6] and include
also a mapping of Orc into SCC and applications to hotel booking and blog management.

3.2 SOCK: Service Oriented Computing Kernel

SOCK is a three-layered calculus which addresses all the basic mechanisms for ser-
vice interaction and composition. In particular, SOCK permits to separately deal with
all the service design issues, that are decomposed into three fundamental parts: the be-
haviour, the declaration and the composition. In a few words, the behaviour represents
the workflow of a service instance (session), the service declaration introduces the as-
pects pertaining to execution modalities and, finally, composition allows us to reason
about the behaviour of the whole system composed by all the involved services.

One of the main aims of SOCK is to deal with current standards and in particular with
the ones related to Web services technologies (WS-BPEL, WSDL and SOAP). Indeed
SOCK extends more simple calculi [11,12,18] whose aim was to capture and model
the peculiarities of orchestration languages for Web services and, in particular, of WS-
BPEL. Consequently, according to WSDL specification, the basic building blocks for
service interaction are the two interaction forms supported by Web services: the one-
way and the request-response ones. On top of these two simple interaction modalities
we can build more complex interactions among participants by means of correlation
sets. Such a mechanism follows a data-driven approach to correlate many interac-
tions, thus making it possible to program communication sessions among participants.
It is worth noting that communication sessions may involve more than two peers; by
communicating correlation sets new participants can enter the communication session.
Activities in SOCK can be composed by means of well known WS-BPEL workflow
operators like parallel, sequence and two forms of choice, the external one depending
on the behaviour of the other services and the internal one where the selected activ-
ity depends only on the internal state of the service instance. Finally, as in WS-BPEL,
variables are used to track the internal state of SOCK processes.

Example 4 (Course registration service). The following service allows students to reg-
ister for courses. To this end it accepts register messages that contain identifiers
for the student and the course. The service replies to the client with either a cancel

40 M. Wirsing et al.

message (if the course is already fully booked or if the student is not eligible to take
this course), or with a confirmation. If the course was confirmed the student chooses
an exercise group; finally, the registration service notifies the student that he is enrolled
for the course and the exercise group. The interface of the Registration service is
specified in SOCK as follows:

REGISTRATION = register(〈student , courseNr〉);
(cancel@student(〈student , courseNr〉) +

(confirm@student(〈student , courseNr〉);
exerciseGroup(〈student , courseNr , groupNr〉);
enrolled@student(〈student , courseNr〉)))

The above specification is intended to be non-executable. This because further in-
formation must be added in order to indicate how the service interface is actually run
by an actual service executor. The information that must be added specifies if differ-
ent instances of the same service are run either in parallel or sequentially, and how the
variables are managed (they can be either persistent, that is they are kept also after the
execution of a service instance, or they are volatile).

An actual executor of the Registration service can be specified as follows

RegistrationExec = !({student , courseNr} � Registration×)

where ! (the equivalent of the bang operator of the π-calculus) denotes that different
service instances can be run in parallel and the subscript × indicates that variables are
not persistent.

Another relevant information in the specification of the RegistrationExec is the
correlation set, given by {student, courseNr}. Correlation sets are a fundamental in-
formation in case of parallel execution of different instances of the same service. In
fact, when messages are received by the executor of the service, they must be delivered
to the corresponding instance. The correlation set indicates which part of the message
is used to identify the correct instance.

Calculus description. The idea in SOCK is that the service design is divided into three
steps; the service behaviour defines a process describing the behaviour of a service in-
stance, while the service declaration enriches such a process with some additional infor-
mation about the execution modality of the service. Such parameters, that are exploited
by the service engines, describe whether to allow concurrent execution of service in-
stances or to support persistent state of service instances. Finally, the composition is
used to observe the behaviour of services when interacting each other. The SOCK cal-
culus is equipped with an operational semantics expressed by means of a labelled tran-
sition system. For space constraints we do not report here the semantics rules that are
described in [19]. In the following we report the syntax and an informal description of
how SOCK works.

The layer devoted to describe the service behaviour is programmed by using the
syntax reported in Fig. 4. 0 is the nil process. Outputs can be a signal s̄, the invocation
of an operation that can be one-way ō@k(�x) or request-response or@k(�x, �y), where s

SENSORIA Process Calculi for Service-Oriented Computing 41

P, Q ::= 0 (Nil)
| ε (Output)
| ε (Input)
| x := e (Assign)
| χ?P : Q (If-then-else)
| P ; P (Sequence)
| P |P (Parallel)
|
∑+

i∈W εi; Pi (Choice)
| χ � P (Loop)

ε ::= s | o(�x) | or(�x, �y, P)
ε ::= s̄ | ō@k(�x) | or@k(�x, �y)

Fig. 4. SOCK: syntax of processes

is a signal name, o and or are operation names, k represents the receiver location and,
finally, �x and �y are vectors of variables used to store the information passed during the
request and the response phase, respectively. Dually, inputs can be an input signal s, a
one-way o(�x) or a request-response or(�x, �y, P) invocation where s is a signal name, o
and or are operation names, �x and �y are, respectively, the vectors of variables used to
store the received information and the response and, finally, P is the process that has to
be executed between the request and the response. The process x := e assigns the result
of the expression e to the variable x. Also, χ?P : Q is the if-then-else process, where
χ is a logic condition on variables; if it holds then the process P is executed, otherwise,
the process behaves as Q. The processes P ; Q and P | Q are the standard sequential and
concurrent composition of processes P and Q, respectively.

∑+
i∈W εi; Pi represents the

choice operator among input guarded processes and, finally, χ � P is the conditional
loop that stops looping on P when the guard χ does not hold. In order to illustrate how
SOCK works we use some examples (in the following we complete the services with
their corresponding service declaration).

Example 5 (Service behaviour of multiple choice test evaluator). Let us consider the
case of a service which keeps track of the score in a multiple choice test. The ser-
vice suppplies a one-way operation update which is invoked every time a question is
answered and a request-response operation cres that returns the current number of cor-
rectly and incorrectly answered questions. The operation update expects a parameter
indicating whether the question was answered correctly or incorrectly, while cres has
no parameter. We also introduce a one-way operation reset that resets the test results.
The service behaviour is defined by the MultipleChoice process:

MultipleChoice ::=
(update(answer);
(answer = correct) ? nrCorrect := nrCorrect + 1

: nrFalse := nrFalse + 1)
+
cres(〈 〉, 〈nrCorrect, nrFalse〉,0)
+
reset(〈 〉); nrCorrect := 0; nrFalse := 0

42 M. Wirsing et al.

U ::= P× | P• W ::= c � U D ::=!W | W ∗ (Service declaration)

Y ::= D[H] H ::= c � PS PS ::= (P, S) | PS|PS (Service engine)

Fig. 5. SOCK: syntax of service declaration and service engine

As previously mentioned the service behaviour programs session instances, in this case
MultipleChoice supports three possible behaviours depending on the operation that
is invoked: i) update: one of the variables used to count the number of correct or false
answers is updated, the parameter answer determines which one, ii) cres: the vari-
ables nrCorrect and nrFalse, that contain the numbers of correct or false answers,
are returned to the invoker, and iii) reset: the variables nrCorrect and nrFalse are
set to 0.

Example 6 (Service behaviour of orchestration: tutor service). We consider the case of
a matchmaking service for private tuition: This service can be used in a course man-
agement system to match tutors willing to offer private tuition with students requesting
extra tuition. Each offer is identified by an offer id (oId). The process TutorService,
whose definition follows, defines the skeleton of the service behaviour that orchestrates
tutors and students:

TutorService ::=
requestTuition(oId, accept, offerTuition(oId, accept,0))
+
offerTuition(oId, accept, requestTuition(oId, accept,0))

In this process two request-response operations are supported, namely requestTuition
and offerTuition . If the requestTuition (resp. the offerTuition) operation is selected,
the process responds to the invoker when the offerTuition (resp. the requestTuition)
operation is performed and completed. As we will see in the following we exploit oId
as a correlation set, in the service declaration, to drive the sessions and join the student
and the tutor.

The service declaration consists of the service behaviour and of some parameters de-
scribing how to execute the service instances. The syntax is reported in Fig. 5. The
term D represents a service declaration while Y represents a service engine. Service
declarations are composed by a service behaviour, a flag describing how to manage the
internal states of service instances, the set of variables which play the role of correlation
set and a flag used to allow concurrent or sequential execution of service instances. In
particular, flag × denotes that P is equipped with a non-persistent state while • denotes
the opposite. Also, c is the correlation set which guards the execution of the sessions
and, finally, !W denotes a concurrent execution of the sessions while W ∗ denotes that
sessions are executed sequentially. Service engines are used to describe the behaviour
of the service during the execution. In particular, they are characterized by a service
declaration and by the process H which represents the execution state of the service
instances that, if the persistent state is not supported, are equipped with their own state
S while, in the opposite case, they refer to a unique state shared among the instances.

SENSORIA Process Calculi for Service-Oriented Computing 43

Example 7 (Service declaration of multiple choice service). Now we recall the
MultipleChoice service behaviour of Example 5 and we conclude its design by de-
scribing the service declaration which follows:

MultipleChoiceDec ::= { } � MultipleChoice∗•

In this case the service supports the sequential execution of service instances, the per-
sistent state and does not exploit correlation sets. The persistent state makes it possible
to use variables to keep track of the test results; this is because service instances inherit
the variables state of the previous service instance execution. It is worth noting that the
sequential execution guarantees that variables nrCorrect and nrFalse are managed in
a consistent way. Indeed, in the case of concurrent update invocations the variables up-
dates are sequentially performed. When we intend to support the concurrent execution
of service instances, the service behaviour must be refined by controlling the access to
the critical section which updates the variables. This could be done by exploiting, for
instance, the internal synchronization primitives.

Example 8 (Service declaration of tutor service orchestration). Now we recall the
TutorService service behaviour of Example 6 and we conclude its design by describ-
ing the service declaration which follows:

TutorServiceDec ::= {oId} � !TutorService×

In this case the service supports the concurrent execution of service instances and non-
persistent state. The correlation set contains oId which is instantiated by the first opera-
tion invocation and is exploited in the second one to select the right invocation call (i.e.
the one associated to the same offer id). As it emerges by this example, the correlation
set mechanism allows to involve a number of peers (in this case the service itself, the
student and the tutor clients) within a service instance.

Concluding, the third layer of the calculus allows us to reason about the behaviour
of the whole system that, essentially, consists of the parallel composition of service
engines. For example, this layer could be used to investigate the behaviour of the system
composed by the tutor and student clients and by a TradingService orchestration service.
Interested readers can find all the details in [19].

4 Stochastic Analysis of Nonfunctional Properties of
Service-Oriented Systems

Well-engineered, safe systems need to deliver reliable services in a timely fashion with
good availability. For this reason, we view quantitative analysis techniques as being as
important as qualitative ones. The quantitative analysis of computer systems through
construction and solution of descriptive models is a hugely profitable activity: brief
analysis of a model can provide as much insight as hours of simulation and mea-
surement. Jane Hillston’s Performance Evaluation Process Algebra (PEPA) [22] is an
expressive formal language for modelling distributed systems. PEPA models are con-
structed by the composition of components which perform individual activities or coop-
erate on shared ones. To each activity is attached an estimate of the rate at which it may

44 M. Wirsing et al.

be performed. The rates associated with activities are exponentially distributed random
variables thus PEPA is a stochastic process algebra which describes the evolution of a
process in continuous time.

Using such a model, a system designer can determine whether a candidate design
meets both the behavioural and the temporal requirements demanded of it. That is: the
service may be secure, but can it be executed quickly enough to perform its function
within a specified time bound, with a given probability of success?

4.1 An Application: Scalability Analysis

A growing concern of Web service providers is scalability. An implementation of a Web
service may be able at present to support its user base, but how can a provider judge
what will happen if that user base grows? We present a modelling approach supported
by the PEPA process algebra which allows service providers to investigate how models
of Web service execution scale with increasing client population sizes. The method has
the benefit of allowing a simple model of the service to be scaled to realistic population
sizes without the modeller needing to aggregate or re-model the system.

One of the most severe problems a Distributed E-learning and Course Management
System (DECMS) has to deal with is the performance degradation occurring when
many users are requesting the service simultaneously. Let us imagine a DECMS is avail-
able for collecting final course projects of a class. Teaching staff usually put a deadline
on those activities, and students are likely to get their projects ready very close to the
due date. The DECMS has to cope with a flash crowd-like effect, as server resources
(i.e. memory, CPU and bandwidth) have to be shared among a large number of users,
thus paving the way for performance penalties experienced by users.

4.2 Setup of the Model

We consider the model in the optimistic scenario where hardware and software failures
are assumed to occur sufficiently infrequently that we will not represent them. Fur-
ther, the server is sufficiently well-provisioned that we may also neglect the possibility
failures caused by out-of-memory errors or overrunning the thread limit on the JVM
hosting the Web container. We will return to review these optimistic assumptions after
we compute performance results from our model.

We conducted experiments to estimate the appropriate numerical values for the pa-
rameters used in our model. We implemented a simple Web Service in which SwA was
enabled to allow it to save a binary file attached by the client. The implementation of the
server interface as well as the method for processing attachments are timed methods, in
order to let us gather measurement data on their invocation.

The client makes a designer-tunable number of service calls, the attachment file size
being passed as application argument. The designer may also set an inter-message idle
period; however, our results were not affected by changes in this parameter.

We restrict our analysis to a case where one single course is being managed. We as-
sume that no other services simultaneously run on the server; thus, the server download
capacity cs as well as server upload capacity μs are fully available for the Web Service.
The clients’ (i.e. students) arrival process is assumed to be well-described by a Pois-
son distribution with rate λ. The system allows a maximum number of students (course

SENSORIA Process Calculi for Service-Oriented Computing 45

size) N . We assume that all students have the same values for download capacity cc and
upload capacity μc. Like the server, we also suppose that no other process but the Web
Service client-side application consumes network resources.

When multiple clients are involved, the server has to share its bandwidth among
them. A model of the behaviour of the network is therefore necessary. We address this
issue by developing a simple model for characterising service performance of the sys-
tem. In this model we assume an ideal network in which no loss occurs and network
nominal capacity means available bandwidth. We also suppose that transmissions are
established on top of TCP connections where fairness against concurrent requests is
perfect.

Given the above assumptions, if we denote i (i > 0) as the number of uploading
clients at any point in time, the uploading rate of each connection request is:

request = min
{cs

i
, μc

}
(1)

Similarly, if j is the number of downloading clients (i.e., clients who are receiving the
response message), the downloading rate of each connection response is:

response = min
{μs

j
, cc

}
(2)

4.3 Model Analysis

Model analysis has been carried out by setting local activity rates as they were obtained
in our experimental tests. Table 1 shows the complete parameter set. It is worthwhile
to observe that network parameters represent bandwidths normalised by the message
size being sent. For instance, cs = 0.001 means that the server is able to get the entire
message completed in 1000 s; this value resembles a realistic situation where a server
equipped with a 10 Mbps connection has to download a file about 1 GB long. We also
would like to point out that server upload capacity is much faster than its download

Table 1. Parameter set for model analysis

Parameter Meaning Rate (s−1)

α create 1689.20
β attach 25000.00
γ processResponse 6493.50
θ save 12.33
η processRequest 1290.32
λ queue 20.00
N Population size 100
cs Server download bandwidth 0.001
μs Server upload bandwidth cs/3
cc Client download bandwidth (cs/10) · 106

μc Client upload bandwidth cc/30

46 M. Wirsing et al.

capacity because of the size of the message being transmitted: here we have assumed
1 KB long SOAP response messages in our parameter set. The value of λ is to consider
flash crowd-like effect, such that triggered for instance by simultaneous service requests
when a deadline is due.

As our model considers client components which perform only one request, tran-
sient analysis has to be carried out for evaluating the performance of the system. The
traditional approach to attempt this numerical evaluation via transient analysis of a
continuous-time Markov chain will not succeed here because the state space of the
system is too large. However, as shown in [21], the ODE-based representation of the
model offers excellent scalability because the size of the space vector does not change
for N varying. The model is shown in Fig. 6.

ClientIdle def= (queue, λ).ClientUploading
ClientUploading def= (request , �).Stop

Server0
def= (queue, �).Server1

Serveri
def= (queue, �).Serveri+1 + (request , min{ cs

i
, μc}).Serveri−1

(0 < i < N)
ServerN

def= (request , min{ cs
N

, μc}).ServerN−1

⎛

⎜
⎝ClientIdle ‖ ClientIdle ‖ · · · ‖ ClientIdle

︸ ︷︷ ︸
N

⎞

⎟
⎠ ��

{queue,request,response}
Server0

Fig. 6. Simplified PEPA model of the DECMS

4.4 Numerical Results

We used the PEPA Workbench [17] to compile the PEPA model to a differential equa-
tion form which we could solve using a fifth-order Runge Kutta numerical integrator.
In the continuous-space representation performance results could be evaluated at low
computational cost. In particular, we required only 0.03 seconds of compute time to
obtain a 106 seconds time series analysis. We considered a maximum number of users
N = 100, requesting service according to a flash crowd-like effect at rate λ = 20.
Server download capacity cs was set to 0.001, and client upload capacity μc = cs/30.

Figure 7 (a) shows a time series plot of the number of client uploading to the server
and Figure 7 (b) the initial burstiness of requests. Figure 7 (c) plots service durations
for different server bandwidths (i.e., cs = 0.01, 0.02, and 0.1) and Figure 7 (d) plots
service durations for different values of N , when cs = 0.1 and μc = cs/30.

Commentary on the results: We note that the system requires a significant amount of
time to get every client request completed. Earlier we outlined a series of assumptions
about the model setup which included the optimistic assumptions of absence of failure
of various kinds, and did not include the possibility of users aborting long-running file
uploads only to restart them again later. Since unsuccessful file transfers (of whatever
kind) will only tend to delay things more we can safely interpret the results presented

SENSORIA Process Calculi for Service-Oriented Computing 47

 0

 20

 40

 60

 80

 100

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

C
lie

nt
 U

pl
oa

di
ng

Time (s)

(a) Evolution of the number of
clients uploading

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

C
lie

nt
 U

pl
oa

di
ng

Time (s)

(b) Flash crowd effect in DECMS

 0

 20

 40

 60

 80

 100

 1000 10000 100000 1e+06

C
lie

nt
 U

pl
oa

di
ng

Time (s)

100MB
50MB
10MB

(c) Time series for different server
bandwidths

 0

 50

 100

 150

 200

 1000 10000 100000 1e+06

C
lie

nt
 U

pl
oa

di
ng

Time (s)

200 clients
100 clients

50 clients

(d) Time series for different num-
ber of users

Fig. 7. Scalability analysis of the e-learning case study

above as saying that even in this very optimistic setting the system is impractical for use
and that an alternative design must be tried to support the expected number of student
users.

5 Concluding Remarks

In this paper we have presented some of the first results of the SENSORIA project on
software Engineering for Service-oriented Overlay Computers. We have focused on
process calculi for service-oriented computing and informally explained the session-
oriented general purpose calculus SCC for service description, the three layered cal-
culus SOCK inspired by the Web Services protocol stack (WSDL, WS-BPEL, SOAP),
and a technique for scalability analysis using the stochastic process calculus PEPA.

But these results represent only a small part of the SENSORIA project. In addition, the
SENSORIA project is developing a comprehensive service ontology and a (SENSORIA)
Reference Modelling Language (SRML) [16] for supporting service-oriented modelling
at high levels of abstraction of “business” or “domain” architectures (similar to the aims
of the service component architecture SCA [31]). Other research strands of SENSORIA

comprise a probabilistic extension of a Linda-like language for service-oriented com-
puting [8], stochastic extensions of KLAIM [30], and beta-binders [15].

48 M. Wirsing et al.

SENSORIA addresses qualitative analysis techniques for security and control of re-
source usage. A first step towards a framework for modelling and analysing security and
trust for services includes trust management and static analysis techniques for crypto-
protocols [26,36], security issues on shared space coordination languages [20], secure
service composition [1], techniques for ensuring constraints on interfaces between ser-
vices [29], and autonomic security mechanisms [23]. The results for control resource
usage by services range from a flow logic for resource access control [20] and model
checking properties of workflow processes [24] to type systems for confining movements
of data and processes [13] and for composing incomplete software components [2].

Moreover, SENSORIA is developing a model-driven approach for service-oriented
software engineering (see also [35]) and a suite of tools and techniques for deploying
service-oriented systems and for re-engineering of legacy software into services. By
integrating and further developing these results SENSORIA will achieve its overall aim:
a comprehensive and pragmatic but theoretically well founded approach to software
engineering for service-oriented systems.

References

1. Bartoletti, M., Degano, P., Ferrari, G.: Security Issues in Service Composition. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 1–16. Springer, Heidelberg
(2006)

2. Bettini, L., Bono, V., Likavec, S.: Safe and flexible objects with subtyping. SAC 2005 4(10),
5–29 (2005)

3. Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based for-
malisms. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Proceedings of ECAI
2006, 17th European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence
and Applications, vol. 141, pp. 63–67. IOS Press, Amsterdam (2006)

4. Bloch, B., Curbera, F., Goland, Y., Kartha, N., Liu, C.K., Thatte, S., Yendluri, P., Yiu, A.:
Web services business process execution language version 2.0. Technical report, WS-BPEL
TC OASIS (2005), http://www.oasis-open.org/

5. Bonchi, F., Koenig, B., Montanari, U.: Saturated semantics for reactive systems. In: Pro-
ceedings of LICS 2006, 21st Annual IEEE Symposium on Logic in Computer Science, IEEE
Computer Society, Los Alamitos (to appear, 2006)

6. Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins, F., Monta-
nari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V., Zavattaro, G.: SCC: a service centered
calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 38–57. Springer, Heidelberg (2006)

7. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F., Thatte,
S., Winer, D.: Simple Object Access Protocol (SOAP) 1.2. W3C Recommendation (June 24,
2003), http://www.w3.org/TR/SOAP/

8. Bravetti, M., Zavattaro, G.: Service Oriented Computing from a Process Algebraic Perspec-
tive. Journal of Logic and Algebraic Programming 70(1), 3–14 (2006)

9. Bruni, R., Ferrari, G., Melgratti, H., Montanari, U., Strollo, D., Tuosto, E.: From theory
to practice in transactional composition of web services. In: Bravetti, M., Kloul, L., Zavat-
taro, G. (eds.) Formal Techniques for Computer Systems and Business Processes. LNCS,
vol. 3670, pp. 272–286. Springer, Heidelberg (2005)

10. Buscemi, M.G., Montanari, U.: Cc-pi: A constraint-based language for specifying service
level agreements. In: Proc. ESOP’07, volume to appear of LNCS (2007)

http://www.oasis-open.org/
http://www.w3.org/TR/SOAP/

SENSORIA Process Calculi for Service-Oriented Computing 49

11. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and Orchestra-
tion: a synergic approach for system design. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 228–240. Springer, Heidelberg (2005)

12. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and Orchestration
conformance for system design. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION
2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg (2006)

13. De Nicola, R., Gorla, D., Pugliese, R.: Confining data and processes in global computing
applications. Science of Computer Programming 63(1), 57–87 (2006)

14. De Nicola, R., Katoen, J.-P., Latella, D., Massink, M.: STOKLAIM: A Stochastic Extension
of KLAIM. TR 2006-TR-01, ISTI (2006)

15. Degano, P., Prandi, D., Priami, C., Quaglia, P.: Beta-binders for biological quantitative ex-
periments. In: ENTCS - Proceedings of QAPL, 4th Workshop on Quantitative Aspects of
Programming Languages, 2006 (to appear, 2006)

16. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A formal approach to service component architecture.
In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 193–
213. Springer, Heidelberg (2006)

17. Gilmore, S., Hillston, J.: The PEPA Workbench: A Tool to Support a Process Algebra-based
Approach to Performance Modelling. In: Haring, G., Kotsis, G. (eds.) Computer Performance
Evaluation. LNCS, vol. 794, pp. 353–368. Springer, Heidelberg (1994)

18. Guidi, C., Lucchi, R.: Mobility mechanisms in service oriented computing. In: Gorrieri, R.,
Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 233–250. Springer, Heidelberg
(2006)

19. Guidi, C., Lucchi, R., Busi, N., Gorrieri, R., Zavattaro, G.: SOCK: a calculus for service
oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp.
327–338. Springer, Heidelberg (2006)

20. Hansen, R.R., Probst, C.W., Nielson, F.: Sandboxing in myKlaim. In: The First Internat.
Conference on Availability, Reliability and Security, ARES 2006 (2006)

21. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Second In-
ternational Conference on the Quantitative Evaluation of Systems, Torino, Italy, September
2005, pp. 33–43. IEEE Computer Society Press, Los Alamitos (2005)

22. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University
Press, Cambridge (1996)

23. Koshutanski, H., Martinelli, F., Mori, P., Vaccarelli, A.: Fine-grained and history-based ac-
cess control with trust management for autonomic grid services. In: Proceedings of the 2nd
International Conference on Automatic and Autonomous Systems (ICAS’06), Silicon Valley,
California, July 2006, IEEE Press, Orlando (2006)

24. Kovács, M., Gönczy, L.: Simulation and formal analysis of workflow models. In: Bruni,
R., Varro, D. (eds.) Proc. of the Fifth International Workshop on Graph Transformation and
Visual Modeling Techniques. ENTCS, Elsevier, Amsterdam (2006)

25. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. In: Proc.
of ESOP’07, volume to appear of LNCS (2007)

26. Martinelli, F., Petrocchi, M.: A uniform framework for the modeling and analysis of secu-
rity and trust. In: Proc. of 1st Workshop on Information and Computer Security- ICS 2006.
ENTCS, Elsevier, North-Holland (to appear, 2006)

27. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Inform. and Com-
put. 100(1), 1–40 (1992)

28. Misra, J., Cook, W.R.: Computation orchestration: A basis for wide-area computing. Journal
of Software and Systems Modeling (to appear, 2006)

29. Nielson, H.R., Nielson, F.: Data flow analysis for CCS. Festschrift dedicated to Reinhard
Wilhelm’s 60. birthday (2006)

50 M. Wirsing et al.

30. De Nicola, R., Katoen, J.P., Latella, D., Massink, M.: STOKLAIM: A Stochastic Extension
of KLAIM. TR 2006-TR-01, ISTI (2006)

31. SCA Consortium. Service Component Architecture, version 0.9. Specification, 2005 (Last
visited: June 2006), download.boulder.ibm.com/ibmdl/pub/software/dw/
specs/ws-sca/SCA White Paper1 09.pdf

32. SENSORIA. Software Engineering for Service-Oriented Overlay Computers. Web site at
http://www.sensoria-ist.eu

33. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow pat-
terns. Distributed and Parallel Databases 14(1), 5–51 (2003)

34. W3C. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl

35. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M., Knapp, A., Koch, N., Schroeder, A.:
Semantic-Based Development of Service-Oriented Systems. In: Najm, E., Pradat-Peyre, J.F.,
Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 24–45. Springer, Heidel-
berg (2006)

36. Zunino, R., Degano, P.: Handling exp, × (and timestamps) in protocol analysis. In: Aceto,
L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp. 413–427.
Springer, Heidelberg (2006)

http://www.sensoria-ist.eu
http://www.w3.org/TR/wsdl

	SENSORIA Process Calculi for Service-Oriented Computing
	Introduction
	Sensoria
	Aim and Approach of Sensoria
	The E-Learning and Course Management Case Study

	Core Calculi for Service-Oriented Computing
	A Session-Oriented Process Calculus for Service-Oriented Systems
	SOCK: Service Oriented Computing Kernel

	Stochastic Analysis of Nonfunctional Properties of Service-Oriented Systems
	An Application: Scalability Analysis
	Setup of the Model
	Model Analysis
	Numerical Results

	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

