
Location-Aware Quality of Service

Measurements for Service-Level Agreements

Ashok Argent-Katwala1, Jeremy Bradley1, Allan Clark2, and Stephen Gilmore2

1 Department of Computing, Imperial College, London
2 LFCS, School of Informatics, University of Edinburgh

Abstract. We add specifications of location-aware measurements to
performance models in a compositional fashion, promoting precision in
performance measurement design. Using immediate actions to send con-
trol signals between measurement components we are able to obtain more
accurate measurements from our stochastic models without disturbing
their structure. A software tool processes both the model and the mea-
surement specifications to give response time distributions and quan-
tiles, an essential calculation in determining satisfaction of service-level
agreements (SLAs).

1 Introduction

Accurate performance analysis is essential to the system design process. A system
which does not meet its performance and dependability requirements – crucial
parts of its trustworthiness or performability [1] – is, in practical terms, as unac-
ceptable as a system which does not meet its correctness requirements. Modern
engineered systems are vast and complex and so high-level modelling of these
systems is a vital step in determining that they satisfy necessary service-level
agreements (SLAs). Our attention here is on the quantitative core of such an
SLA, which will typically claim that some percentage of incoming requests will
receive a response from the system within a specified time bound.

Computing performance results is a subtle matter. The location of perfor-
mance measurements in a model can have a dramatic effect on the resulting
performance measurement. In this paper, we show how performance measure-
ments, known as stochastic probes, can be installed in performance models with
increased precision. We show how both the positioning of these probes in the
performance model, and the translation of these probes using immediate transi-
tions, improves the reliability of the measurement which results.

Good practice in performance modelling suggests the use of a compositional
approach [2]. Models are structured by building up co-operations between model
components, defining complex models as the composition of smaller sub-models.
The leading exemplars of languages supporting compositional performance mod-
elling are stochastic process algebras (such as PEPA [2], EMPA [3], the Stochastic
π-calculus [4] and SPADES [5]). In these languages model components are sepa-
rate units of functionality which perform stochastically timed activities and can
be composed. One way to compose model components P and Q is to require

G. Barthe and C. Fournet (Eds.): TGC 2007, LNCS 4912, pp. 222–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Location-Aware Quality of Service Measurements for SLAs 223

them to co-operate on the activities in the set K, allowing them to proceed
independently with any activities not listed in K.

P ��
K Q

Models can be hierarchically structured in this way. Below, we require P and
Q to co-operate on K as before, and we also require R and S to co-operate
on M. Further, we require the composition of P and Q to co-operate with the
composition of R and S on any activities in the set L.

(P ��
K Q) ��

L (R ��
M S)

In process algebras with multi-way synchronisation this hierarchical co-operation
over L can express co-operation between one of P and Q and one of R and S;
or three of these components; or even all four (for activities in K ∩ L ∩M).

Here model components P , Q, R and S represent parts of the system being
modelled and activity sets K, L, and M list the activities performed by these
components in co-operation with others. Compositionality facilitates re-use. In
our schematic example above P and S might even be instances of the same
class of model component (although configured differently by having different
partners to co-operate with, and different co-operation sets to operate under).

Given a hierarchically structured model such as this we can define perfor-
mance measures of interest by adding measurement components which seek to
expose important activity sequences so that they may be conveniently measured.
One use of these would be to compute response time quantiles used in service-
level agreements of the form “97.5% of message sends see an acknowledgement
within 600 milliseconds.”

Such a measurement component is a stochastic probe [6] which can be de-
scribed directly, as model components are, or more conveniently can be generated
from a higher-level description language.

(
(P ��

K Q) ��
L (R ��

M S)
) ��

N Probe

The intention is that a model is not disturbed by the addition of a probe in the
sense that all of the activities which could happen previously can still happen,
and at the same rate as before. Thus if archiving models and results in an
organised store for sharing and re-use [7], models can be stored in a canonical
form and measurement components and their associated results can be stored
separately from these. The relationship between the model and the probe can
also be formally recorded, and made available for later inspection and review.

It is intended that several different probes can be applied to a single model
without needing to alter the model and it is even possible that probes are re-used,
where a single probe is applied to several different models.

In a modelling language which supports multi-way synchronisation (such as
PEPA [2]) probes may observe activities even if those activities are performed
by model components in co-operation (for example, an activity from the set K
performed by both P and Q).

224 A. Argent-Katwala et al.

As introduced in [6], probes are stateful components which can observe ac-
tivities, can count, and can change state to remember that an activity has been
performed. Using these a modeller can check complex service level agreements
such as “97.5% of message sends need two retransmissions or fewer to see an
acknowledgement within 600 milliseconds.”

However, the position of a probe is that of an external observer. The exter-
nal observer has a location-ignorant viewpoint. He is unable to distinguish an
activity α emanating from P ’s location from an activity α emanating from S’s lo-
cation. This impedes the expression of many service level agreements which arise
naturally. For example, “97.5% of sensor message sends need two retransmissions
or fewer to see an acknowledgement from the relay within 600 milliseconds.”

In the case where we are interested in the activities of P and not those of S
one solution could be to move the probe inside the model so that we can focus
on P .

(
((P ��

N ProbeP) ��
K Q) ��

L (R ��
M S)

)

This would be effective in this case but if instead any of the activities performed
by other components (say, S) influence the state of the probe then the probe is
at the wrong place in the composed model to observe them. To remedy this we
could add another probe to S and have both of these slave probes report to a
master which combines their reports appropriately.

(
((P ��

N ProbeP) ��
K Q) ��

L (R ��
M (S ��

O ProbeS))
) ��

T
ProbeMaster

The addition of these probes is an automated procedure performed on an input
model without probes. The modeller need not see the version of the model ex-
panded by the addition of the measurement components and can consider this
just to be an intermediate form produced before state-space derivation (in a
manner similar to unfolding a coloured Petri net).

The position of ProbeP allows it to send to the ProbeMaster the control message
“P performed α” on seeing an activity α performed by P . Similarly the position
of ProbeS allows it to send to the ProbeMaster the control message “S performed
α” on seeing an activity α performed by S. Model components Q and R could
be probed in exactly the same way.

In a purely Markovian process algebra such as PEPA there is a fundamental
difficulty with the above design; all activities are timed, and so a rate must be
associated with the control messages. The duration of these control messages
would then be added to the duration of the model activities occurring in the
passage from the start state to the final state. This would interfere with the
passage time calculation being made and lead to inaccurate numerical results
being produced. We could try to repair this by assigning control messages a rate
several orders of magnitude higher than any already in the model but this would
not entirely solve the problem because the infinite support of the exponential
distribution means that there is a possibility that “fast” control messages are
occasionally beaten by “slow” model activities, leading to the master probe being
out-of-step with the model description. Even if this problem does not arise the

Location-Aware Quality of Service Measurements for SLAs 225

widely-separated values for the rate constants would very likely lead to stiffness
problems in the numerical solution of the underlying Markov chain.

We address this problem by using high-priority immediate actions for the
control messages (whereas the process algebra model being probed contains only
low-priority exponentially timed activities). Instantaneous control messages flow
from the slave probes to the master probe, sending the control signal needed
without perturbing the passage-time measurement taking place.

The idea of extending high-level Markovian modelling languages with imme-
diate actions is not new. Stochastic Petri nets were extended to Generalised
Stochastic Petri nets in [8] by incorporating immediate transitions and distin-
guishing between tangible and vanishing states. Neither is the use of immediate
actions with stochastic process algebras new. The languages EMPA [3], MoD-
eST [9], SM-PEPA [10] and SPADES [5] all support immediate actions.

The novelty in the present paper is the introduction of immediate actions in a
structured way which facilitates the development of a powerful query language
for Markovian models which is an extension of the language proposed in [11]. We
first present the ideas from the existing query language then show the location-
aware extension together with an example. We have implemented the query
language in a new software tool.

The query language which we propose for Markovian models can be used
as an alternative to logics such as CSL used in the stochastic model-checking
approach [12]. One feature which may be of benefit to users is that our query lan-
guage offers features such as activity counting and location-identification which
cannot be expressed directly in a CSL formula. The technology which underpins
both styles is the same: transient analysis of a continuous-time Markov chain.

2 Stochastic Probes

In assessing service level agreements it is often convenient to measure from the
observation of one of a set of “start” activities to an occurrence of one of a further
set of “stop” activities. For example, (a:start | b:start), c+, (x :stop | y:stop). From
this a master probe is generated with two distinct states for running and for
stopped as described in [6]. The probe begins stopped and moves to running if it
observes any of the start activities. Since the master probe must cooperate with
the model over the start and stop activities it must be capable of performing
these in both states. (“(a,�)” passively observes the timed activity a.)

ProbeMaster
stopped

def= (a,�).ProbeMaster
running + (b,�).ProbeMaster

running

+ (x,�).ProbeMaster
stopped + (y,�).ProbeMaster

stopped

ProbeMaster
running

def= (x,�).ProbeMaster
stopped + (y,�).ProbeMaster

stopped

+ (a,�).ProbeMaster
running + (b,�).ProbeMaster

running

The master probe synchronises with the whole model (including the observation
probe) over the start and stop activities but not any other activities which the
probe may perform, in our case c.

226 A. Argent-Katwala et al.

(Model ��
{a,b,c,x,y} ProbeObs

1) ��
{a,b,x,y} ProbeMaster

stopped

The start and stop activities are used as communications from the observation
probe to the master probe. Whenever an a or b activity is performed the obser-
vation probe signals to the master probe to begin measurement and conversely
for stop activities.

This will not work for a location-aware probe. The purpose of applying the
probe to only a part of the larger model was that the probe could then ignore
any of the “start” or “stop” activities performed by other parts of the model
with which the current measurement is unconcerned. Instead of cooperating with
the master probes over the “start” activities (a and b) and the “stop” activities
(x and y), the probe can instead send immediate control messages (start and
stop) to the master probe to say that the activities of interest have been observed.
By using immediate actions as the control messages the observation probe may
communicate with the master probe in a private manner which also does not
affect the model being observed.

ProbeObs
1

def= (a,�).start.ProbeObs
2 + (b,�).start.ProbeObs

2

+ (c,�).ProbeObs
1

+ (x,�).ProbeObs
1 + (y,�).ProbeObs

1

ProbeObs
2

def= (a,�).ProbeObs
2 + (b,�).ProbeObs

2

+ (c,�).ProbeObs
3

+ (x,�).ProbeObs
2 + (y,�).ProbeObs

2

ProbeObs
3

def= (a,�).ProbeObs
3 + (b,�).ProbeObs

3

+ (c,�).ProbeObs
3

+ (x,�).stop.ProbeObs
1 + (y,�).stop.ProbeObs

1

The master probe is altered so that instead of observing the model (including
the observation probe) performing a, b, x and y actions it observes only start
and stop communication events.

ProbeMaster
stopped

def= start.ProbeMaster
running + stop.ProbeMaster

stopped

ProbeMaster
running

def= stop.ProbeMaster
stopped + start.ProbeMaster

running

The names start and stop are labels in the regular expression syntax of probes.
Because these now turn into communication signals, the labels can be generalised
to include any names that the user wishes. In this way multiple observation
probes may be attached to various portions of the model. Their communication
signals are distinct labels so these probes avoid name clashes. Generally a control
probe will cooperate over the whole model and interpret all of the communication
signals from localised observation probes.

Location-Aware Quality of Service Measurements for SLAs 227

3 Location-Aware Stochastic Probes

This example illustrates the need for location-aware probes. The model is that of
a simple client server system. The key point is that there are two indistinguish-
able servers available to respond to each of the three indistinguishable clients
and the problem is correctly matching requests and responses.

Client idle
def= (request , λ).Clientwaiting

Clientwaiting
def= (response,�).Client idle

Server idle
def= (request ,�).Servercomputing

Servercomputing
def= (compute, π).Server responding

Server responding
def= (response, ρ).Server idle

System def= Client idle [3] ��L Server idle [2]
where L = {request , response}

Suppose one wishes to measure the expected response time, that is the time taken
from a particular client making a request to that client receiving a response. A
probe component is added to the model which passively observes all request and
response activities flipping between running and stopped states appropriately.
The desired measurement can then be taken to be the expected time for the
probe component to be in the running state. So for our model a first attempt at
a measurement of response time may be to add the probe in this fashion:

System def= (Client idle [3] ��L Server idle [2]) ��
L Probe (3.1)

This global probe over-estimates the performance of the system because it mea-
sures the time from some client’s request to whenever either of the servers re-
sponds. In particular it may measure the time between one client’s request and
the response which corresponds to an earlier request performed by another client.

The reason that the global probe does not work as we would expect it is due
to the fact that it cannot distinguish between identical actions performed by
separate components. Additionally the probe only observes start actions when it
is in the stopped state. For this reason when the model performs more than one
start action before a stop action is encountered, the probe will still be running.

Figure 1 depicts the error that the response from Server [2] to Client [2] is
paired with the request from Client [3] to Server [1]. This measurement error
occurs due to the use of a location unaware probe.

To fix this problem, the probe can be location-aware. Instead of cooperating
with the entire system, the probe cooperates only with a single Client process.
Writing (‖) to denote cooperation over the empty set the system is:

System def=
(
(Client idle ��

L Probe) ‖ Client idle [2]
) ��

L Server idle [2] (3.2)

The graph in Figure 2 shows the difference in measurement between the local
probe from (3.2) and the global probe from (3.1). The graph plots the measured

228 A. Argent-Katwala et al.

�

�
�

�
�

Probe
Client [1] Client [2] Client [3] Server [1] Server [2] running stopped

request

request

response

request

response

Fig. 1. Diagram showing the trace of a run with a faulty global probe

time since a request action against the probability that the probe has cooperated
over a response action. From this graph the error of the global probe is apparent.
The line plotted for the probe is above that of the local probe indicating that
the probability of observing a response activity is higher.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

ba
bi

lit
y

Time

Comparison of a global and local probe measurement

global Probe
local Probe

Fig. 2. Graph showing the flawed measurement taken from a global probe versus the
true measurement obtained from a local probe

4 Impact on Aggregation

Modelling formalisms founded on Continuous-Time Markov Chains (CTMCs)
suffer from the well-known problem of state-space explosion whereby the number
of states of the model as a whole may be as large as the product of the number
of states of each of the model components. Model aggregation [13] battles this
state-space growth by exploiting symmetries in the model to reduce the number
of states in the state-space. This is done by replacing several strongly equivalent
states with a canonical representative of them, and adjusting the outgoing rates
accordingly. Aggregation based on strong equivalence induces a lumpable [14]

Location-Aware Quality of Service Measurements for SLAs 229

partition of the state-space which preserves performance measures. The proof of
this result appears in [2]. The definition of the strong equivalence relation is also
found there.

Aggregation depends on replication of components in that each component C
in an array of N copies of C, C[N], is considered to be interchangeable. With
a location-aware measurement component we are able to isolate one of these
copies and make it no longer interchangeable with the others. An inevitable
consequence of this is that aggregation will now be less productive (because
there are now effectively only N −1 copies of the component, and so symmetries
which existed before have now been broken).

In the worst case, isolating a model component in this way may decrease
the profit from aggregation to the point where the model is no longer solvable
because its memory requirements exceed those of the machine on which the
analysis is taking place. We view this as an inescapable cost of the more accu-
rate identification of model components afforded by location-aware measurement
components.

5 Communicating Stochastic Probes

This example expands upon the first to show the need for immediate commu-
nication between location-aware probes. We wish to analyse the impact of the
breakdown of a server on the response time. In order to measure this our model
from before is enhanced with the possibility for servers to break down. Once
a server has broken down it must be repaired before it can continue to service
client requests.

Server idle
def= (request ,�).Server responding

+ (break , κ).Serverbroken

Server responding
def= (response, ρ).Server idle

Serverbroken
def= (repair , ν).Server idle

System def= Client idle [3] ��L Server idle [2]
where L = {request, response}

In this example the Client processes include a local working activity.

Client idle
def= (work , μ).Client requesting

Clientrequesting
def= (request , λ).Clientwaiting

Clientwaiting
def= (response,�).Client idle

Suppose we wish to determine the response time if the client is ready to make
the request when at least one of the servers is currently broken. One way to do
this is to insist that the probe observes the work activity from the probed client
after observing a break activity from one of the servers and without observing a
repair activity. Note that a repair activity may take place after the work activity
has been observed by the probe and the measurement begun.

230 A. Argent-Katwala et al.

We require one probe which is attached to a single client, a further probe
which is attached to one of the servers, and a master probe which combines the
communication messages from the two local probes.

Clients def=
(
(Client idle ��

L ProbeClient
stopped) ‖ Client idle [2]

)

Servers def=
(
(Server idle ��

M ProbeServer
stopped) ‖ Server idle

)

System def=
(
(Clients ��

L Servers) ��
N ProbeMaster

stopped

)

where L = {work , response}
M = {break , repair}
N = {clientWork , clientRes , in, out}

The local server probe is attached to one of the servers and sends a signal to the
master probe whenever the local server breaks down or is repaired.

ProbeServer
stopped

def= (break ,�).in .ProbeServer
broken

+ (repair ,�).out .ProbeServer
stopped

ProbeServer
broken

def= (repair ,�).out .ProbeServer
stopped

+ (break ,�).in .ProbeServer
broken

When the local client probe passively observes a work activity in one of the
clients it sends a communication message to the master probe. Upon observing
a response activity it sends a message again.

ProbeClient
stopped

def= (work ,�).clientWork .ProbeClient
run

ProbeClient
run

def= (response,�).clientRes.ProbeClient
stopped

The master probe then receives the communication from the two local probes
and connects together the logic to determine whether or not the measurement
should begin. It has three states. In the first state, ProbeMaster

stopped , it waits for
a communication message indicating that one of the servers is broken. When
this occurs it moves on to the second state. In the second state, ProbeMaster

waiting ,
there is at least one server broken hence should the probe local to the client
send a message indicating that a measurement may begin (that is, the client has
performed a work action) then the master probe will indeed begin measurement
by entering the third state ProbeMaster

running . In this state the only message of interest
is one from the client probe to indicate that it has observed a response activity
which causes the measurement to terminate. Note that it is not the case that
every clientWork activity will cause measurement to start and neither is it the
case that every clientRes activity will cause measurement to stop.

ProbeMaster
stopped

def= in.ProbeMaster
waiting

+ clientWork .ProbeMaster
stopped

+ clientRes.ProbeMaster
stopped

ProbeMaster
waiting

def= clientWork .start .ProbeMaster
running

Location-Aware Quality of Service Measurements for SLAs 231

+ out .ProbeMaster
stopped

+ clientRes.ProbeMaster
waiting

ProbeMaster
running

def= clientRes.stop.ProbeMaster
stopped

+ out .ProbeMaster
running

For the purposes of explanation the probes defined here have been given as
though directly written by the user. However in general such probes are specified
using a regular expression-like syntax. They are then automatically attached to
the model at the appropriate place. To reproduce the full model with the probes
attached the following three probe specifications would be given:

1. Client :: (work : clientWork , response : clientReq)
2. Server :: (break : in , repair : out)
3. (in , clientWork : start)/out , clientRes : stop

The first two probes specify a location to which the probe should be attached,
Client and Server respectively. The final probe is the master probe and will
be attached to the whole model and hence does not require a location. The
syntax /out specifies that the whole of the probe to the left must be observed
without observing an out signal. Should one occur during the sequence then
the probe is reset. We analysed this model with the probes given and with
two other configurations. The results are shown in the graph in Figure 3. The
line labelled “maybe” is the model analysing from a clientWork message to a
clientRes message regardless of the state of the servers at that time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

not broken
maybe

one broken

Fig. 3. Graph showing the change of completion of a client’s request depending on the
state of the servers

6 Worked Example: Wireless Sensor Network

As a worked example, we present a model of a lossy wireless sensor network.
The network consists of a set of SensorBots which monitor the environment and

232 A. Argent-Katwala et al.

report key events across the network. The bots both take measurements and
route traffic from other bots in the network. In routing traffic either from other
bots or itself, a bot has a simple send-acknowledge mechanism for sending traffic
to a nearest-receiving bot. If an ack is not received, the bot enters a backoff
phase before retrying, and repeats this until an ack is received.

SensorBot def= (monitor , rmon).SensorBot
+ (monitorActive, rmonA).SensorBotSend
+ (messageIn ,�).SensorBotRelay
+ (messageIn ,�).SensorBotProcess

SensorBotProcess def= (ackOut , rack).(think , rthink).SensorBot
SensorBotSend def= (messageOut , rmsgOut).SensorBotWait
SensorBotWait def= (ackIn ,�).SensorBot

+ (timeout , rtimeout).SensorBotRetrySend
SensorBotRetrySend def= (backoff , rbackoff).SensorBotSend

+ (giveup, rgiveup).SensorBot
SensorBotRelay def= (ackOut , rack).SensorBotSend

Each SensorBot is symmetrically described and is either involved in: monitoring
events, SensorBot ; processing a received event notification from another bot,
SensorBotProcess ; sending a message, SensorBotSend ; waiting for an ack from
another bot that received its message, SensorBotWait ; resending a message after
a backoff period, SensorBotRetrySend ; or relaying a message across the sensor
network, SensorBotRelay .

The SensorBots communicate over an unreliable wireless network that com-
prises a number of channels:

UnreliableChannel def= (messageOut ,�).UnreliableChannelMsg
+ (ackOut ,�).UnreliableChannelAck

UnreliableChannelMsg def= (messageIn , rnetDelay).UnreliableChannel
+ (messageLose , rmsgLose).UnreliableChannel

UnreliableChannelAck def= (ackIn , rnetDelay).UnreliableChannel
+ (messageLose , rmsgLose).UnreliableChannel

A channel can relay a message from one bot to another bot, by picking up a
messageOut action and transmitting a messageIn action to a receiver bot. A
similar process transmits acknowledgement messages. What makes this network
unreliable is that there is a probability that any given message may be lost,
where the probability of loss is determined by:

rmsgLose

rmsgLose + rnetDelay

Finally, the whole sensor network comprises B bots connected by the unreli-
able wireless network of C channels, as described by;

Location-Aware Quality of Service Measurements for SLAs 233

SensorNet def= SensorBot [B] ��
L

UnreliableChannel [C]

where L = {ackIn , ackOut ,messageIn ,messageOut}.
This is a simplistic protocol, where it is for instance possible for one bot to

acknowledge the message that another bot received. The system probabilisti-
cally guards against this, by incorporating a quick timeout mechanism. If the
sending bot does not hear an acknowledgement within a short window, it backs
off and retries later. If it does hear an acknowledgement, it assumes that this
was the response for its message. Given the power constraints involved in sensor
networks, this type of simplistic mechanism is not an unreasonable way to con-
serve sensor battery-life. If guaranteed message sending is required, then a more
sophisticated protocol could be deployed.

6.1 Location Probe Measurements

In this model the measurement in which we may be interested is the length of
time a sensor can expect to wait for an acknowledgement. This model is distinct
from the earlier “Client–Server” style of model in that each sensor acts as both a
“Client” and a “Server”. Since in this case the response is the acknowledgement
that the message has been routed onwards and the sender can continue its mon-
itoring operations. In the traditional “Client–Server” style of model it is clear
that as we increase the number of “Client” components without increasing the
number of “Server” components the response-time for each individual “Client”
should worsen. In the distributed setting of the sensor net, because each addi-
tional “Client” (or SensorBot) also becomes a “Server” it is less clear how the
addition of SensorBot components will affect the response-time for each indi-
vidual SensorBot . With each additional SensorBot there is a further “Server”
which may respond to the individual measured SensorBot . However in addition
there is an additional “Client” component which may compete not only for the
“Server” components but also for the resource components modelled here by the
unreliable network channels.

To measure the response-time for a single SensorBot component we wish to
measure between occurrences of the activity messageOut – the SensorBot has
sent a message to be delivered – and the activity ackIn – the SensorBot has
received an acknowledgement that the message has been relayed/accepted. To
achieve this we cannot attach a global-probe component to the entire model as
this will not distinguish the occurrences of messageOut activity and the ackIn
activity performed by separate SensorBot components. We therefore attach a
probe to a single SensorBot component. The probe itself waits for an occurence
of the messageOut activity to start the measurement and an occurrence of the
ackIn activity to end it. This is written down in our probe language as:

SensorBot :: (messageOut : start, ackIn : stop)

Figure 4 shows the cumulative distribution functions for the model as we
vary the number of SensorBot and UnreliableChannel components. These

234 A. Argent-Katwala et al.

results suggest that increasing the number of SensorBot components always
improves the response-time. The number of channels may act as a bottleneck in
the network and hence increasing the number of channels likewise improves the
response-time. Therefore in the “Client–Server” style of model increasing the
number of “Servers” is the only way to increase the performance of the system.
However in the distributed network increasing either the “peers” or the resources
(channels) leads to an improvement in the number of messages relayed.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

B=2,C=1
B=2,C=2
B=3,C=1
B=3,C=2
B=3,C=3
B=4,C=1
B=4,C=2

Fig. 4. Graph showing the cdf from ’msgOut’ to ’ackIn’ for the sensor net model varying
the numbers of sensors and channels

7 Design

An extended Markovian process algebra with immediate actions is a step on
the way towards the more ambitious goal of an extended process algebra with
general distributions. We first explain the relationship between this algebra and
immediate actions and then explain the relationship between immediate actions
and probes.

7.1 Immediate Actions and SM-PEPA

Semi-Markov PEPA [10] (SM-PEPA), is a version of PEPA that allows general
distributions as well as exponential distributions from the standard PEPA model.
The syntax for SM-PEPA is given below:

P ::= (a[n], D).P P + P P ��
L

P P/L A (7.3)

where:
D ::= λ ω : L(s) (7.4)

where λ is the standard PEPA exponential rate parameter:

λ ∈ IR+ ∪ {r� | r ∈ Q, r > 0}

Location-Aware Quality of Service Measurements for SLAs 235

The action a is annotated with a priority n ∈ IN (where a larger n indicates a
higher priority). SM-PEPA introduces a notion of priority-enabling where an ac-
tion is priority-enabled only if it is enabled in the normal PEPA sense and there
are no higher priority actions that are enabled at the same time. The D variable
indicates a duration, either an exponential rate or a weighted general distri-
bution. The general distribution is specified in terms of its Laplace transform
for numerical convenience. The weights, ω, are used to select probabilistically
between concurrently priority-enabled generally-distributed actions.

The use of priorities in activities (action-duration pairs) is restricted so that
within a particular priority level, either Markovian activities are available (con-
taining standard PEPA) or generally-distributed activities are. This prevents
the simultaneous racing of exponential and generally-distributed distributions.
A detailed semantics for SM-PEPA can be found in [10].

The immediate transition model required for use with stochastic probes can
be derived from a subset of SM-PEPA; it uses a similar approach as that
used in generalised stochastic Petri nets (GSPNs) [15]. For this purpose only
two priority levels are required, level 1 for Markovian activities and level 2
for immediate actions. We use the standard PEPA prefix notation (a, λ).P
to mean (a[1], λ).P in SM-PEPA and the enhanced immediate prefix notation
(a, immediate).P to mean (a[2], 1 : 1).P . This gives each immediate transition
equal weight (although we avoid simultaneous enabling of immediate actions in
our use of probes here). Where user-defined weighting of immediate transitions
is useful, (a, ω : immediate).P is translated to (a[2], ω : 1).P . The immediate
transition aspect is represented by the Laplace transform, L(s) = 1.

7.2 Immediate Actions and Probes

In working with immediate actions together with timed activities we need to
clarify how these interact. The first design decision to resolve is with respect to
the relative priority of actions and activities.

Priority: Immediate actions have priority over timed activities.

It is necessary to impose this requirement, as in GSPNs, so as to avoid potential
problems associated with infinite re-enabling of timed and immediate activities.
The priorities are obtained from the mapping to SM-PEPA, described earlier.

The second design decision relates to the names of immediate actions and
timed activities.

Separation: Actions and activities have different names.

Concretely, we never have (α, r) and α in the same model. Similarly we never
find (α,�) and α in the same model. Co-operation in PEPA is based on the
matching of names and so we have the following consequence from this design
decision.

Homogeneity: Actions and activities do not co-operate.

236 A. Argent-Katwala et al.

That is, from the semantics of SM-PEPA, we disallow co-operation between
immediate actions and timed activities. We use different terms for the two kinds
of name-matching, saying that components co-operate on timed activities and
synchronise on immediate actions.

We use immediate actions to report on the occurrence of a timed activity. For
this reason timed activities must precede immediate actions.

Pursuit: In each model component every immediate action must be preceded
by a timed activity.

We consider Markovmodels with non-deterministic choice not to be well-specified.
This concern has been thoroughly studied previously with generalised stochastic
Petri nets and stochastic activity nets [16]. Immediate actions have a default
weight (of 1) thus α.P + β.Q expresses a weighted probabilistic choice between
performing action α and continuing as P or performing action β and continuing
as Q where each of these outcomes is equally likely. Syntactically α.P +β.Q is an
abbreviation for (α, immediate).P +(β, immediate).Q and a 3:2 weighted choice
is written as (α, 3 : immediate).P + (β, 2 : immediate).Q.

Finally, the purpose of immediate actions in this context of stochastic probes
is to send control signals between measurement components in the model. For
this reason, we disallow individual occurrences of immediate actions; these must
form a synchronisation point between measurement components.

Synchronisation: Each immediate action must be performed as a synchroni-
sation event between two (or more) components.

Immediate actions may not be performed by one component individually. Thus,
for example, we will never see (τ, immediate) in a model, because components
cannot synchronise on the silent τ action.

It would be possible to avoid the need to use immediate actions, or indeed
measurement components entirely, if we altered or rewrote the model to allow a
particular passage-time calculation. We are not willing to do this. Customising
the model in this way would injure its potential for re-use. Further, making visible
at the top level particular start and stop activities at the beginning and end of
the passage of interest may require context-sensitive renaming of activities and
the introduction of choices between distinguished names, with a corresponding
adjustment in the rates at which these activities are performed. Clearly there is
great potential for human error here, even assuming that the modeller is willing
to customise the model for just the measure of current interest.

Instead of handing the problem of adjusting the model to the modeller, we
would rather automate the process to allow instrumentation of the model for
location-aware service-level calculations. Introducing immediate actions allows
us to do this.

8 Implementation

We have implemented the facility to describe location-aware probes as a com-
panion to the software tool ipc, The Imperial PEPA Compiler [17]. This tool

Location-Aware Quality of Service Measurements for SLAs 237

probe := location :: R A local probe
| R A global probe

location := processId Attach to a single process
| processId[n] Attach to an array of processes
| Component Detailed component location description
| Cooperation Detailed cooperation location description

R := action Observe an action
| R : label Send a signal on matching R
| R1, R2 R1 followed by R2

| R1 | R2 R1 or R2

| R∗ zero or more R
| R+ one or more R
| R{n} n R sequences
| R{m, n} between m and n R sequences
| R? one or zero R
| R/a R without observing an a

Fig. 5. The grammar for probe specification in ipc

generates compiled representations of PEPA models in a form suitable for in-
put to the Hydra response-time analyser, the most recent release of the DNA-
maca Markov chain analyser [18]. Although we have concentrated here mostly
on passage-time computation, ipc also supports the computation of steady-state,
transient and counting measures as described in [11].

The new software tool developed for this work is part of the ipclib suite, a
collection of tools for the specification and evaluation of complex performance
measures over Markovian process algebra models. These, and other software
tools required, can be downloaded from http://www.dcs.ed.ac.uk/pepa.

Probes are defined using a regular-expression-like syntax fully explained in [6].
A probe specification is given by the grammar in Figure 5. The location part
specifies where to attach the probe to the model system equation. The processId
and processId [n] terms specify the location of the probe where that uniquely de-
fines the location, otherwise the Component and Cooperation syntax are defined
in Figure 6.

Where there are a number of choices for a given location, we can pick an
individual component or cooperation using the syntax in Figure 6, for instance,
by its numeric position. For example, the “third component called P” in the
following system is underlined:

(P ��
K P) ��

L (P ��
M P).

The “offering” keyword means that the component, or one of its derivatives,
offers the action. We can place a probe at the “component offering go, stop” to
measure the component using some actions the probe expects to see. This lets
us use the same measurement description across a range of models.

238 A. Argent-Katwala et al.

Component := [nth] component Choosing a particular component
[named] [offering] [coop]

Cooperation := [nth] cooperation Choosing a particular cooperation
[overactions] [involving]

nth := nth Select a particular numbered match
| nth to last
| last

named := called ProcessID With a particular name
offering := offering [only] Actions Performing certain actions

| not offering Actions
coop := cooperatingoveractions In a particular cooperation

[with Component]
overactions := over Actions Cooperating over certain actions
involving := involving Component Partner component description

Fig. 6. The grammar for probe placement

We can also distinguish between different instances of a component, based on
how it cooperates with its neighbours. For example, the “component called P co-
operating over b with component called Q” is underlined: (P ��

{a} Q) ��
L

(Q ��
{b} P).

9 Conclusions

By adding location-awareness to probe specifications, we give the performance
modeller the flexibility to identify model components within the model for selec-
tive instrumentation. We have shown that this can have a marked effect on the
results produced when compared with an approach using only a single external
observer, as used in previous work. By enhancing the probe translation to use
immediate transitions, we can capture the response time of interest exactly with
no introduction of error from the measurement activities of the probe.

In adding these features we have found it necessary to increase the expres-
siveness of the probe specification language. In doing this we have endeavoured
to maintain a simple language syntax. The more straightforward the language
which can be used to describe service-level agreements, the lower the barrier
to entry to their use, allowing practitioners to access sophisticated performance
evaluation technology and apply it at low cost. Our efforts here have been to
design a concise, yet clear, mechanism for adding measurement components to
model components in a way that improves the precision of the measurement
specification and the accuracy of the result.

Acknowledgements. Ashok Argent-Katwala and Jeremy Bradley are supported
by PerformDB, under EPSRC grant, EP/D054087/1. Allan Clark and Stephen
Gilmore are supported by the EU FET-IST Global Computing 2 project SENSO-
RIA (“Software Engineering for Service-Oriented Overlay Computers” (IST-3-
016004-IP-09)). The Hydra response-time analyser was developed by Will Knot-
tenbelt and Nick Dingle of Imperial College, London.

Location-Aware Quality of Service Measurements for SLAs 239

References

1. Meyer, J.F.: On evaluating the performability of degradable computing systems.
IEEE Transactions on Computers C-29(8), 720–731 (1980)

2. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

3. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes
with non-determinism, priorities, probabilities and time. Theoretical Computer
Science 202, 1–54 (1998)

4. Priami, C.: Stochastic π-Calculus. The Computer Journal 38(6), 578–589 (1995)
5. Strulo, B., Harrison, P.G.: Spades – A process algebra for discrete event simulation.

J. Logic Computation 10(1), 3–42 (2000)
6. Argent-Katwala, A., Bradley, J.T., Dingle, N.J.: Expressing performance require-

ments using regular expressions to specify stochastic probes over process algebra
models. In: Proceedings of the Fourth International Workshop on Software and
Performance, Redwood Shores, California, USA, pp. 49–58. ACM Press, New York
(2004)

7. AESOP performance modelling group: PerformDB performance model database,
Imperial College London (2007), http://performdb.org

8. Marsan, M.A., Conte, G., Balbo, G.: A class of generalised stochastic Petri nets
for the performance evaluation of multiprocessor systems. ACM Transactions on
Computer Systems 2(2), 93–122 (1984)

9. D’Argenio, P.R., Hermanns, H., Katoen, J.-P., Klaren, R.: MoDeST – A mod-
elling and description language for stochastic timed systems. In: de Luca, L.,
Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001.
LNCS, vol. 2165, pp. 87–104. Springer, Heidelberg (2001)

10. Bradley, J.T.: Semi-Markov PEPA: Modelling with generally distributed actions.
International Journal of Simulation 6(3-4), 43–51 (2005)

11. Argent-Katwala, A., Bradley, J.T.: Functional performance specification with
stochastic probes. In: Horváth, A., Telek, M. (eds.) EPEW 2006. LNCS, vol. 4054,
pp. 31–46. Springer, Heidelberg (2006)

12. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007)

13. Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA
models. IEEE Transactions on Software Engineering 27(5), 449–464 (2001)

14. Kemeny, J., Snell, J.: Finite Markov Chains. Van Nostrand (1960)
15. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling

with Generalized Stochastic Petri Nets. John Wiley, Chichester (1995)
16. Deavours, D.D., Sanders, W.H.: An efficient well-specified check. In: Proceedings

of PNPM 1999: the 8th International Workshop on Petri Nets and Performance
Models, Zaragoza, Spain, IEEE Computer Society Press, Los Alamitos (1999)

17. Bradley, J., Dingle, N., Gilmore, S., Knottenbelt, W.: Derivation of passage-time
densities in PEPA models using ipc: The Imperial PEPA Compiler. In: Kotsis, G.
(ed.) Proceedings of the 11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems, University
of Central Florida, October 2003, pp. 344–351. IEEE Computer Society Press, Los
Alamitos (2003)

18. Knottenbelt, W.: Generalised Markovian analysis of timed transition systems. Mas-
ter’s thesis, University of Cape Town (1996)

http://performdb.org

	Location-Aware Quality of ServiceMeasurements for Service-Level Agreements
	Introduction
	Stochastic Probes
	Location-Aware Stochastic Probes
	Impact on Aggregation
	Communicating Stochastic Probes
	Worked Example: Wireless Sensor Network
	Location Probe Measurements

	Design
	Immediate Actions and SM-PEPA
	Immediate Actions and Probes

	Implementation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

