
An Efficient Algorithm for
Aggregating PEPA Models

Stephen Gilmore, Jane Hillston, and Marina Ribaudo

AbstractÐPerformance Evaluation Process Algebra (PEPA) is a formal language for performance modeling based on process

algebra. It has previously been shown that, by using the process algebra apparatus, compact performance models can be derived

which retain the essential behavioral characteristics of the modeled system. However, no efficient algorithm for this derivation was

given. In this paper, we present an efficient algorithm which recognizes and takes advantage of symmetries within the model and

avoids unnecessary computation. The algorithm is illustrated by a multiprocessor example.

Index TermsÐPerformance modeling, model aggregation, performance evaluation tools, stochastic process algebras.

æ

1 INTRODUCTION

IN recent years, several Markovian process algebras
(MPAs) have been presented in the literature. These

include PEPA [1], MTIPP [2], and EMPA [3]. As with
classical process algebras, these formalisms allow models of
systems to be constructed which are amenable to functional
or behavioral analysis by a variety of techniques. Addition-
ally, they allow timing information to be captured in those
models and so facilitate performance analysis via the
solution of a Continuous Time Markov Chain (CTMC).

Process algebras have several attractive features: a
facility for high-level definition, compositional structure,
and the existence of formally defined equivalence relations
which can be used to compare models. In the Markovian
context, theoretical results have shown that it is possible to
exploit these equivalence relations at the level of the
model description in order to generate an aggregated
CTMC in a compositional way [4]. This is of great
practical importance because, like all state-based modeling
techniques, MPA models suffer from the state space
explosion problem. Although prototype tools have been
developed for model exploration [5], [6], [7], little work
has been done to exploit to the fullest the potential by
using equivalence relations in order to achieve effective
aggregation and thus to put the theoretic results to
practical use. In this paper, we describe an algorithm to
carry out efficient aggregation and its implementation in
the PEPA Workbench.

Aggregation is a widely used and well-understood
technique for reducing the size of a CTMC used in
performance analysis. The state space of the CTMC is
partitioned into a number of classes, each of which is

treated as a single state in a new derived stochastic
process. If the partition can be shown to have a condition
known as lumpability [8], this new stochastic process will
again be a CTMC and amenable to numerical solution of
a steady state probability distribution via linear algebra.
In the MPA context, the partitioning is carried out using
a formally defined equivalence relation which establishes
behavioral or observational equivalence between states
within a model. The equivalence relation which is
generally discussed in relation to aggregation is called
strong equivalence (for PEPA), Markovian bisimulation (for
MTIPP), or extended Markovian bisimulation equivalence (for
EMPA). However, there are some problems with applying
this equivalence relation/aggregation at the syntax level
in a compositional way. These are discussed in more
detail in Section 5. In this paper, we use a finer
equivalence relation, called isomorphism, which, although
it may result in coarser aggregations, has the advantage
of being readily amenable to the automatic generation of
equivalence classes at the syntax level. Thus, the con-
struction of the complete state space can be avoided and
the aggregated CTMC is constructed directly.

The rest of the paper is structured as follows: In Section 2,
we introduce the PEPA language, its operational semantics,
and aggregation via isomorphism. The algorithm for the
computation of a reduced state space is discussed in
Section 3 and an example is presented in Section 4. Some
cases in which the algorithm cannot achieve the optimal
theoretical partitioning are discussed in Section 5. Section 6
presents some related approaches and, finally, Section 7
concludes the paper presenting some possible future
investigation.

2 PEPA

Performance Evaluation Process Algebra (PEPA) is an
algebraic description technique based on a classical
process algebra and enhanced with stochastic timing
information. This extension results in models which may
be used to calculate performance measures as well as
deduce functional properties of the system. In this section,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 5, MAY 2001 449

. S. Gilmore and J. Hillston are with the Laboratory for Foundations of
Computer Science, The University of Edinburgh, Scotland.
E-mail: {stg, jeh}@dcs.ed.ac.uk.

. M. Ribaudo is with the Dipartimento di Informatica, UniversitaÁ di Torino,
Italy. E-mail: marina@di.unito.it.

Manuscript received 11 May 1998; revised 19 May, 1999; accepted 10 Dec.
1999.
Recommended for acceptance by W.H. Sanders.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 106824.

0098-5589/01/$10.00 ß 2001 IEEE

we briefly introduce PEPA; more detailed information can
be found in [1].

Process algebras are mathematical theories which model
concurrent systems by their algebra and provide apparatus
for reasoning about the structure and behavior of the
model. In classical process algebras, e.g., Calculus of
Communicating Systems (CCS [9]), time is abstracted
awayÐactions are assumed to be instantaneous and only
relative ordering is representedÐand choices are generally
nondeterministic. If an exponentially distributed random
variable is used to specify the duration of each action, the
process algebra may be used to represent a Markov process.
This approach is taken in PEPA and several of the other
Markovian process algebras [2], [3].

The basic elements of PEPA are components and activities,
corresponding to states and transitions in the underlying
CTMC. Each activity is represented by two pieces of
information: the label, or action type, which identifies it,
and the activity rate which is the parameter of the negative
exponential distribution determining its duration. Thus,
each action is represented as a pair ��; r�. We assume that
the set of possible action types, A, includes a distinguished
type, � . This type denotes internal, or ªunknown,º activities
and provides an important abstraction mechanism.

The process algebra notation for representing systems
is wholly based on the use of a formal language. The
PEPA language provides a small set of combinators. These
allow language terms to be constructed which define the
behavior of components, via the activities they undertake
and the interactions between them. The syntax may be
formally introduced by means of the following grammar:

S ::� ��; r�:S j S � S j CS;
P ::� P ./

L
P j P=L j C;

where S denotes a sequential component and P denotes a
model component which executes in parallel. C stands for a
constant which denotes either a sequential or a model
component, as defined by a defining equation. CS stands for
constants which denote sequential components. The com-
ponent combinators, together with their names and inter-
pretations, are presented informally below.

2.1 Prefix, ��; r�:S
The basic mechanism for describing the behavior of a
system is to give a component a designated first action
using the prefix combinator, ª.º. For example, the compo-
nent ��; r�:S carries out activity ��; r�, which has action
type � and an exponentially distributed duration with
parameter r, and it subsequently behaves as S. The set of all
action types is denoted by A. Sequences of actions can be
combined to build up a life cycle for a component. For
example:

Comp �def �error; ��:�repair; ��:Comp:

2.2 Choice, S � S
The life cycle of a sequential component may be more
complex than any behavior which can be expressed using
the prefix combinator alone. The choice combinator
captures the possibility of competition or selection between

different possible activities. The component S1 � S2 repre-
sents a system which may behave either as S1 or as S2. The
activities of both S1 and S2 are enabled. The first activity to
complete distinguishes one of them: The other is discarded.
The system will then behave as the derivative resulting
from the evolution of the chosen component. For example,
the faulty component considered above may also be capable
of completing a task satisfactorily:

Comp �def �error; ��:�repair; ��:Comp � �task; ��:Comp:

2.3 Constant, C

As we have already seen, it is convenient to be able to

assign names to patterns of behavior associated with

components. Constants provide a mechanism for doing

this. They are components whose meaning is given by a

defining equation: e.g., C �def
P , which gives the constant C

the behavior of the component P .

2.4 Cooperation, P ./
L
P

Most systems are comprised of several components which
interact. In PEPA direct interaction, or cooperation, between

components is represented by the combinator ª./
L

.º The set

L, of visible action types (L � A n f�g), is significant
because it determines those activities on which the
components are forced to synchronize. Thus, the coopera-
tion combinator is in fact an indexed family of combinators,
one for each possible cooperation set L. When cooperation is
not imposed, namely for action types not in L, the
components proceed independently and concurrently with
their enabled activities. However, if a component enables an
activity whose action type is in the cooperation set it will
not be able to proceed with that activity until the other
component also enables an activity of that type. The two
components then proceed together to complete the shared
activity. The rate of the shared activity may be altered to
reflect the work carried out by both components to
complete the activity.

For example, the faulty component considered above
may need to cooperate with a resource in order to complete
its task. This cooperation is represented as follows:

System �def
Comp ./

ftaskg
Res:

If the component also needs to cooperate with a repairman
in order to be repaired this could be written as:

System ./

frepairg
Repman

or, equivalently,

�Comp ./

ftaskg
Res� ./

frepairg
Repman:

In some cases, when an activity is known to be carried out
in cooperation with another component, a component may
be passive with respect to that activity, denoted ��;>�. This
means that the rate of the activity is left unspecified and is
determined, upon cooperation, by the rate of the activity in
the other component. All passive actions must be synchro-
nized in the final model.

450 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 5, MAY 2001

If the cooperation set is empty, the two components
proceed independently with no shared activities. We use
the compact notation, P k Q, to represent this case. Thus, if
two components compete for access to the resource and the
repairman, we would represent the system as

��Comp k Comp� ./

ftaskg
Res� ./

frepairg
Repman:

2.5 Hiding, P=L

The possibility to abstract away some aspects of a
component's behavior is provided by the hiding operator
ª/º. Here, the set L of visible action types identifies those
activities which are to be considered internal or private to
the component. These activities are not visible to an external
observer, nor are they accessible to other components for
cooperation. For example, in the system introduced above,
we may wish to ensure that these components have
exclusive access to the resource in order to complete their
task. Thus, we hide the action type task, ensuring that even
when the system is embedded in an environment no other
component can access the task activity of the resource:

System �def ��Comp k Comp� ./

ftaskg
Res�=ftaskg:

Once an activity is hidden, it only appears as the unknown
type � ; the rate of the activity, however, remains unaffected.

The precedence of the combinators provides a default
interpretation of any expression. Hiding has highest
precedence with prefix next, followed by cooperation.
Choice has the lowest precedence. Brackets may be used
to force an alternative parsing or simply to clarify meaning.

2.5.1 Operational Semantics and the Underlying CTMC

The model components capture the structure of the system
in terms of its static components. The dynamic behavior of
the system is represented by the evolution of these
components, either individually or in cooperation. The
form of this evolution is governed by a set of formal rules
which give an operational semantics of PEPA terms. The
semantic rules in the structured operational style of Plotkin
are shown in Fig. 1; the interested reader is referred to [1]
for full details.

The rules are read as follows: If the transition(s) above
the inference line can be inferred, then we can infer the
transition below the line. For one example, the two rules for
choice show that the choice operator is symmetric and
preserves the potential behaviors of its two operands. For
another, the cooperation operator has a special case where
the two cooperands do not synchronize on any activities.
The notation for this case is E k F . In this case, the three
rules would simplify to the two which are shown below.

E !��;r� E0

E k F !��;r� E0 k F
F !��;r� F 0

E k F !��;r� E k F 0
:

These rules capture the intuitive understanding that two
components which do not synchronize on any activities
cannot influence each other's computational state. In the
case of components which do synchronize, the rate of the

resulting activity will reflect the capacity of each component
to carry out activities of that type. For a component E and
action type �, this is termed the apparent rate of � in E,
denoted r��E�. It is the sum of the rates of the � type
activities enabled in E. The exact mechanism used to
determine the rate of the shared activity will be explained
shortly.

As in classical process algebra, the semantics of each
term in PEPA is given via a labeled transition system; in this
case, a labeled multitransition systemÐthe multiplicities of
arcs are significant. In the transition system, a state
corresponds to each syntactic term of the language, or
derivative, and an arc represents the activity which causes
one derivative to evolve into another. The complete set of
reachable states is termed the derivative set of a model and
these form the nodes of the derivation graph (DG) formed by
applying the semantic rules exhaustively. For example, the
derivation graph for the system,

��Comp k Comp� ./

ftaskg
Res� ./

frepairg
Repman;

GILMORE ET AL.: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS 451

Fig. 1. Operational semantics of PEPA.

is shown in Fig. 2, assuming the following definitions:

Comp �def �error; ��:�repair; ��:Comp
� �task; ��:Comp

Res �def �task;>�:�reset; r�:Res
Repman �def �repair;>�:Repman:

For simplicity, in the figure, we have chosen to name the
derivatives with short names si; i � 0 . . . 7; the corre-
sponding complete names are listed in Table 1. Note
that there is a pair of arcs in the derivation graph
between the initial state s0 and its one-step derivative s1.
These capture the fact that there are two distinct
derivations of the activity �task; �� according to whether
the first or second component completes the task in
cooperation with the resource, even though the resulting
derivative is the same in either case.

The timing aspects of component's behavior are not
represented in the states of the DG, but on each arc as the
parameter of the negative exponential distribution govern-
ing the duration of the corresponding activity. The inter-
pretation is as follows: When enabled an activity a � ��; r�
will delay for a period sampled from the negative
exponential distribution with parameter r. If several
activities are enabled concurrently, either in competition
or independently, we assume that a race condition exists
between them. Thus, the activity whose delay before
completion is the least will be the one to succeed. The
evolution of the model will determine whether the other
activities have been aborted or simply interrupted by the state
change. In either case, the memoryless property of the
negative exponential distribution eliminates the need to
record the previous execution time.

When two components carry out an activity in coopera-
tion, the rate of the shared activity will reflect the working
capacity of the slower component. We assume that each
component has a fixed capacity for performing an activity
type �, which cannot be enhanced by working in coopera-
tion (it still must carry out its own work), unless the
component is passive with respect to that activity type. This

capacity is the apparent rate. The apparent rate of � in a

cooperation P ./

f�g
Q will be the minimum of r��P � and

r��Q�. The rate of any particular shared activity will be the

apparent rate of the shared activity weighted by the

conditional probability of the contributing activities in the

cooperating components. The interested reader is referred

to [1] for more details.
The DG is the basis of the underlying CTMC which is

used to derive performance measures from a PEPA model.
The graph is systematically reduced to a form where it can
be treated as the state transition diagram of the underlying
CTMC. Each derivative is then a state in the CTMC. The
transition rate between two derivatives P and P 0 in the DG is
the rate at which the system changes from behaving as
component P to behaving as P 0. It is denoted by q�P; P 0�
and is the sum of the activity rates labeling arcs connecting
node P to node P 0. For example, the state transition
diagram for the CTMC underlying the simple component
model is shown in Fig. 3. Note the arc labeled with rate 2�
between states X0 and X1, representing the derivatives

��Comp k Comp� ./

ftaskg
Res� ./

frepairg
Repman

and

��Comp k Comp� ./

ftaskg
�reset; r�:Res� ./

frepairg
Repman;

respectively.
In order for the CTMC to be ergodic, its DG must be

strongly connected. Some necessary conditions for ergodi-
city, at the syntactic level of a PEPA model, have been
defined [1]. These syntactic conditions are imposed by the
grammar introduced earlier.

2.5.2 Aggregation in PEPA via Isomorphism

Equivalence relations, and notions of equivalence play an
important role in process algebras, and defining useful

452 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 5, MAY 2001

Fig. 2. DG for the multicomponent model (without hiding).

TABLE 1
States of the Derivation Graph of Fig. 2

equivalence relations is an essential part of language
development. For PEPA various equivalence relations have
been defined. These include isomorphism, which captures
the intuitive notion of equivalence between language terms
based on isomorphic derivation graphs, and strong equiva-
lence, a more sophisticated notion of equivalence based on
bisimulation.

Any equivalence relation defined over the state space of
a model will induce a partition on the state space.
Aggregation is achieved by constructing such a partition
and forming the corresponding aggregated process. In the
aggregated process, each partition of states in the original
process forms one state. If the original state space is
fX0; X1; . . . ; Xng, then the aggregated state space is some
fX�0�; X�1�; . . . ; X�N �g, where N � n, ideally N � n. In gen-
eral, when a CTMC is aggregated the resulting stochastic
process will not have the Markov property. However, if the
partition can be shown to satisfy the so-called lumpability
condition, the property is preserved and the aggregation is
said to be exact.

When the model considered is derived from a process
algebra such as PEPA it is possible to establish useful
algebraic properties of the equivalence relation used. The
most important of these is congruence. An equivalence
relation is a congruence with respect to the operators of the
language if substituting an equivalent component within a

model expression gives rise to an equivalent model; e.g., if

P is equivalent to P 0, then P ./
L
Q is equivalent to P 0 ./

L
Q.

When a congruence is used as the basis for aggregation in a

compositional model, the aggregation may be carried out

component by component, thus avoiding the construction

of the complete state space because the aggregated

component will be equivalent to the original. Nevertheless,

this approach is applied at the semantic level of the model

and necessitates the expansion and subsequent partitioning

of relevant state spaces. Moreover, the reduced model

produced in this way may not be as compact as would be

achieved by aggregating the complete model directly,

making a further application of aggregation necessary. In

this case, the application is to the model consisting of the

aggregated components.
Both isomorphism and strong equivalence are congruence

relations that can be used as the basis for exact aggregation of
PEPA models, based on lumpability [4]. In either case, the
relation is used to partition the state space (possibly
compositionally) and, consequently, the underlying CTMC.

Each such equivalence class forms one state in the
aggregated state space. In the algorithm which we are
presenting here, we use the isomorphism relation: The use of
strong equivalence for the same purpose is discussed in
Section 5.

The use of the isomorphism relation may seem surpris-
ing since the more powerful bisimulation-style equivalence
relations are one of the attractive features of process
algebras and are often cited as one of the benefits of these
formal languages. In contrast, isomorphism has received
little attention in the literature. In part, this is because in
classical process algebra the objective is to use an
equivalence relation to determine when two agents or
system descriptions exhibit the same behavior. In stochastic
process algebra, greater emphasis is placed on using
equivalence relations to partition the derivation graph of
the model in order to produce an aggregation resulting in a
smaller underlying Markov process. It has been shown that
PEPA's strong equivalence relation is a powerful tool for
aggregation in this style, always resulting in a lumpably
equivalent Markov process [1]. However, we believe that, in
many instances, isomorphism can also be useful for this
purpose. Since it is a more discriminating notion of
equivalence, it may give a finer partition and thus less
aggregation than strong equivalence. On the other hand, as
we will show, it may be detected at the syntactic level of the
system description without the recourse to the semantic
level which is necessary to detect strong equivalence in
general. Thus, a reduced derivation graph is generated
without the need to construct the original derivation graph.

In the following section, we present the algorithm which
exploits isomorphism, while, in Section 6, we discuss its
relation to other work on automated aggregation.

3 ALGORITHM

The algorithm for computing the reduced derivation graph
of a PEPA model begins by preprocessing a model which
has been supplied by the modeler. The purpose of this
preprocessing is to reexpress the model in a more
convenient form for the production of the aggregated
derivation graph. The aggregated derivation graph has at
its nodes, equivalence classes of PEPA terms, rather than
single syntactic expressions. During the preprocessing step,
the PEPA syntax is systematically replaced and the model
expression is converted into a vector form, which is then
minimized and converted into its canonical form. Every
distinct PEPA expression maps to a distinct vector form, but
equivalent (isomorphic) expressions will have the same
canonical representation.

Once this preprocessing is complete, the generation of
the reduced derivation graph can begin. This process
alternates between generating all of the one-step derivatives
of the present state and compacting these in order to group
together derivatives which have the same canonical
representation.

The algorithm proceeds on the assumption that the
model supplied is in reduced named norm form. In the named
form representation, each derivative of each sequential
component is explicitly named. In the norm form, the model
is expressed as a single model equation which consists of

GILMORE ET AL.: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS 453

Fig. 3. CTMC underlying the multicomponent model.

cooperations of sequential components governed by hiding
sets. In the reduced form, all cooperation and hiding sets have
been reduced by removing any redundant elements. If the
supplied model is not in this form, the necessary restructur-
ing is carried out before the algorithm is applied. The
functions used to achieve this carry out routine checks on
the validity of the model supplied and the modifications
that they make are completely transparent to the modeler.

We now proceed to describe these steps in more detail.

3.1 Restructuring the Model

During the application of the algorithm, it is convenient to
have intermediate derivatives in the model bound to
identifiers. We generate these identifiers as we decompose
the defining equations for each sequential component. For
example, if the defining equation is

Comp �def �error; ��:�repair; ��:Comp � �task; ��: Comp;
we introduce a name for the intermediate derivative by
replacing this single equation by the following pair of
equations:

Comp �def �error; ��: Comp0 � �task; ��: Comp;
Comp0 �def �repair; ��: Comp:

Once this has been done for each sequential component the
model is said to be in named form.

As described in Section 2, a PEPA model consists of a
collection of defining equations for sequential components
and model components. One of the model components is
distinguished by being named as the initial state of the
model. The definition of this component may refer to other
model components, defined by other equations. We wish to
eliminate uses of model components from that definition in
order to reduce it to a normed form in which the only
identifiers used are those of sequential components. We
proceed by back-substituting the model component defini-
tions into the defining equation of the distinguished
component. For example, the pair of equations

Config �def
System ./

frepairg
Repman;

System �def
Comp ./

ftaskg
Res

will become

Config �def
Comp ./

ftaskg
Res ./

frepairg
Repman:

We continue this process until it converges to a definition of
a normed model equation which consists only of cooperations
of sequential components governed by hiding sets.

If the cooperation or hiding sets in a model definition
contain unnecessary or redundant elements, the equiva-
lence classes formed by the algorithm may not be optimal.
We can, in some circumstances, improve the subsequent
performance of the algorithm by removing redundant
elements from these sets before the algorithm is applied.
Furthermore, the presence of redundant elements in
cooperation or hiding sets can be regarded as a potential

error on the part of the modeler; consequently, the modeler
is warned of any reduction.

We have previously presented efficient algorithms for
computing the sets of activities (Act) which are performed
by PEPA model component [10] and we use these to reduce
to the minimum the size of cooperation and hiding sets in
the following way:

P ./
L
Q e> P ./

L0

Q where L0 � L \ �Act�P � [Act�Q��;
P=L e> P=L0 where L0 � L \ Act�P �:

This reduction is applied systematically throughout the
normed model equation. This operation is bounded in
complexity by the size of the static representation of the
input PEPA model. There is no hidden cost here of a
traversal of the state space which is generated by the
dynamic exploration of the model.

3.2 Preprocessing: Vector Form, Minimization,
Canonicalization

The vector form of a model expression represents the model
in the most suitable form for our aggregation algorithm
because it is amenable to efficient calculation of its
canonical form. Here, we present the vector form as a
vector of sequential components with decorated brackets
denoting the scope of these sets. We use subscripted
brackets to delimit a cooperation set and superscripted
angle brackets to delimit hiding sets.

In the implementation, these vectors are represented by
linked lists which provide for efficient manipulation when
forming canonical representatives. Reordering and rearran-
gement of the representations of components in the vector
forms can then be achieved by safe, statically-checked
pointer manipulation, thereby avoiding the overhead of the
repeated copying of data values which would be incurred
by the use of an array-based representation.

Definition 1 (Vector Form). For a model expression, we define
the vector form inductively over the structure of the
expression: let M;N be expressions and C be a constant
denoting a sequential component.

1. vf �M ./
L
N� � �vf M; vf N�L:

2. vf �M=L� � Lhvf Mi:
3. vf �C� � C:

In the following, we write P to denote a vector
�P1; . . . ; Pn�.

As with the normed model equation, the vector form
representation contains within a single expression all of the
information about the static structure of the model. It
records the name of the current derivative of each of the
sequential components in addition to the scope of the
cooperation and hiding sets which are in force. The vector
form alone is not sufficient to allow us to compute the
derivation graph of the model: The defining equations for
the sequential components are also needed.

Because it is generated directly from the full model
equation, the vector form may include some redundancies.
Hence, we include a preprocessing step which is carried out
to reduce the vector form generated by a straightforward
translation of the model equation to the vector form which

454 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 5, MAY 2001

will be used for the remainder of the state space explora-
tion. This step consists of generating the minimal representa-
tion of the vector form, which is minimal with respect to the
number of brackets needed to record the scope of the
cooperation and hiding sets. As we will see, reducing the
number of brackets in the vector form may have significant
impact on the aggregation which can be achieved. Thus, we
can perform the following simplifications:

1. Elimination of redundant cooperation brackets: This
arises when we have a component such as

Q ./
L
�P ./

L
R�. The vector form of this component

would be �Q; �P;R�L�L. When contiguous brackets
have the same decoration in this way, the inner one
can be eliminated. In this example, this results in
�Q;P;R�L.

2. Elimination of redundant hiding brackets: This would
arise whenever hiding brackets are contiguous
regardless of their decoration. For example, if we
had a component �P=L�=K its vector form would be
KhLhP ii. This would be reduced to K[LhP i.

From the minimal vector form, we reduce the model
representation to its canonical form. We can choose an
arbitrary ordering on component termsÐone suitable
ordering is lexicographic ordering. We denote this ordering
by P � Q or Q > P . We denote the canonicalisation
function by C. We insert a component P into a vector P
using IPP. The definitions of these functions are shown in
Definition 2. The definitions are not complex, but we
include them here for completeness and in order to prevent
there appearing to be any hidden complexity in their
definitions.

Definition 2 (Canonicalization and insertion). These are the
definitions of the canonicalisation function C and the insertion
function I . There are three cases in the definition of each of
these functions.

1. CC � C:
2. CLhP i � L hCP i:
3. C�P1; . . . ; Pn�L � ICP1

� � � ICPn��L:
1. IP ��L � �P �L:
2. IP �P1; . . . ; Pn�L � �P; P1; . . . ; Pn�L if P � P1:
3. IP �P1; . . . ; Pn�L � IP1

IP �P2; . . . ; Pn�L if P > P1:

3.3 Generating the Aggregated Derivation Graph

The previous preprocessing steps have been applied to the
input PEPA model in order to facilitate the subsequent
application of the aggregation algorithm. Before preproces-
sing, the model was represented by a PEPA expression.
This represented an individual (initial) state and contained
all the information necessary for its dynamic evolution.
After the preprocessing steps have been performed, the
expression is reduced to a canonical, minimal vector form,
which retains only information about the state structure of
the model and represents an equivalence class of states.
Thus, this canonical vector form is a reduced representation
in two senses. First, the information about the dynamic
behavior, cooperation sets, and hiding sets, which is
common to all states of the model, is factored out and

stored separately. Second, each canonical vector form may

in fact represent a number of equivalent model states which

would have distinct vector forms.
Generating the reduced derivation graph now proceeds

via the following two steps which are carried out alternately

until the state space has been fully explored.

1. Derivation: Given the vector form, the objective is to
find all enabled activities and record them in a list,
paired with the vector form of the corresponding
derivative. This is done by recursing over the static
structure of the current derivative. At the lowest
level, the sequential components are represented
simply as a derivative name. At this point, the
defining equations are used to find the activity, or
set of activities, which are enabled by the derivative.
We can identify three cases:

. Individual activities which are not within the
scope of a hiding operator are recorded directly
with the resulting derivative.

. Individual activities which are within the scope
of a hiding operator are recorded as � actions
with the appropriate rate together with the
resulting derivative.

. Activities which are within the scope of a
cooperation set are compared with the enabled
activities of the other components within the
cooperation. If there is no matching activity the
individual activity is discarded; otherwise, as
above, the activity is recorded together with the
resulting vector form.

2. Reduction: Carrying out the derivation may have
given rise to vector forms which are not canonical.
Moreover, several of the (activity, vector form) pairs
may turn out to be identical once the vector form is
put into canonical form. In this case, the multiplicity
is recorded and only one copy is kept.

These two steps have to be repeated until there are no

elements left in the set of unexplored derivative classes.
In the remainder of this section we present these steps

more formally, but we first introduce some notation for

describing the formulation and manipulation of vectors and

vector forms.

. Given a vector P, we write �Pi 2 P : �� to denote the
subvector of those elements of P which satisfy the
predicate �. When the vector P is obvious from the
context we shall omit it, writing �Pi : �� as an
abbreviation.

. We write P�Pi :� P 0i � to denote the vector obtained
from P by substituting P 0i for Pi.

. When S is a subvector �S1; . . . ; Sn�, and S0 similarly,
we write P�S :� S0� as an abbreviation for P�S1 :�
S01� � � � �Sn :� S0n�. Note that we only use vector
substitution between vectors with the same number
of elements.

The rules which govern the derivation step of the

algorithm are shown in Fig. 4. The rule for Constant

formally states that at the lowest level defining equations

are used to find the activity or activities which can be

GILMORE ET AL.: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS 455

inferred from a derivative name. The two rules for hiding

correspond to the first two cases identified above. The most

complex rules are those for cooperation, the third case

above. We examine these in more detail.
The first rule states the condition under which a number

of identical activities, ��; r�, give rise to derivatives which

have identical canonical forms. For this to be the case, the

activity ��; r� must be enabled by one or more component

Pi of P. Moreover, for each such possible activity, the vector

form of the resulting derivative is always the same when

canonicalized. Formally,

Pi !��;r� P 0i ^ CP 0i � C�;
where � is an arbitrary element of the vector S0, say its first

element S01. Note that the equation CP 0i � CS01 does not

imply that P 0i and S01 are equal, only that they are in the

same equivalence class because they have equal canonical

forms. The vector S0 is defined as the subvector consisting

of those derivatives which may potentially change via an

��; r� activity.

S0 � �P 0i : Pi !��;r� P 0i �:
Having now formed a vector S satisfying these conditions

for the activity ��; r�, we can compute the rate at which the

component performs this activity and evolves to the

canonical representative of the derivatives as jSj � r since

the total rate into the equivalence class will be the sum of the
rates of the individual activities which may make the move.

In the case where only one of the elements of the vector
performs an activity �, the complication due to the
consideration of multiplicities does not arise and the rule
simplifies to be equivalent to the following:

Pi !��;r� P 0i
PL !��;r� C�PL�Pi :� P 0i ��

�� =2 L�:

The complexity in the second rule for cooperation is due
to the need to calculate the rate at which the subvector of
components in cooperation performs the activity. Here also
there is a simpler case where the vector is of size two. This
special case of the rule affords easier comparison with the
operational semantics of PEPA, as presented in Fig. 1.

P1 !��;r1�
P 01 P2 !��;r2�

P 02

�P1; P2�L !
��;R� C�P 01; P 02�L

�� 2 L�:

The rate R of the activity which is performed in cooperation
is computed from the individual rates r1 and r2 as in the
corresponding cooperation rule in Fig. 1.

3.4 Implementation

The state space reduction algorithm has been added to the
PEPA Workbench [5], the modeling package which imple-
ments the PEPA language and provides a variety of
solution and analysis facilities for PEPA models.

The algorithm is presented in pseudocode form in Fig. 5
and Fig. 6. The driving force of the algorithm is provided by
the procedure vfderive which, given a derivative of the
model, finds its enabled transitions using the function
cderiv and calls itself on the resulting derivative. The
function cderiv carries out the canonicalization of the one-
step derivatives which it has produced using the function
derivatives. This function has different cases depending on
the structure of the vector form being handled, each
reflecting the appropriate rule(s) in the semantics. For
example, in the case of a choice, the list of possible
derivatives consists of the list of derivatives of the second
component of the choice appended to the list of derivatives
of the first. The derivatives of a vector of cooperating
components are computed by using the function
cooperations to derive transitions and the function
disallow to enforce that activities of types in a cooperation
set are not carried out without a partner. We make use of a
function lookup to retrieve the definitions of component
identifiers from the environment. Finally, the function
update takes a set of elements and a procedure and returns
a set in which each element has been modified by the
procedure.

The modification to the PEPA Workbench required the
alteration of the data structure which is used to represent
PEPA models as an abstract syntax tree within the Work-
bench. The representation of cooperations between pairs of
components was generalized to extend to lists of compo-
nents. If the PEPA model which is submitted for processing
does not contain any structure which can be exploited by
the state space reduction algorithm then this change is

456 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 5, MAY 2001

Fig. 4. Operational semantics of vector form.

invisible to any user of the Workbench. However, if the

PEPA model does contain either repeated components, or

other structure which can be exploited, then the benefits

become apparent to the user of the Workbench in terms of

reduced time to generate the CTMC representation of the

model and in terms of the matrix of smaller dimension

required for its storage, once the model gets above a certain
size (see Table 3).

4 EXAMPLE

In this section, we show how the algorithm works on an
example. We consider a multiprocessor system with a

GILMORE ET AL.: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS 457

Fig. 5. Pseudocode for the Algorithm 1. Fig. 6. Pseudocode for the Algorithm 2.

shared memory, we derive the corresponding PEPA model,
and then the underlying derivation graphs, both ordinary
and aggregated. Some alternatives to our approach are
discussed in Section 5 and introduced by means of small
variants of the same example.

4.1 Multiprocessor system

Consider a multiprocessor system with a shared memory.
Processes running on this system have to compete for access
to the common memory: To gain access and to use the
common memory they need also to acquire the system bus
which is released when access to the common memory is
terminated; for simplicity, the bus will not be explicitly
represented in the following. Processes are mapped onto
processors. The processors are not explicitly represented
but they determine the rate of activities in the associated
processes, i.e. all processes have the same functional
behavior, but actions progress at different speeds depend-
ing on the processor on which they are running and the
number of processes present on the processor. It is the
modeler's responsibility to select rates appropriately.

A protocol which is not completely fair, but simply
prevents one processor from monopolising the memory,
might impose that after each access of a processor to the
memory, some other processor must gain access before the
first can access again. A process running on the ith
processor is represented as Pi:

Pi �def �think; �i�:�geti; g�:�use; �i�:�rel; r�:Pi:
In this case, in order to impose the protocol, the memory is
modeled as remembering which processor had access last.
Access for this processor is disabled.

Memi �def
XN
j � 1
j 6� i

�getj;>�:�use;>�:�rel;>�:Memj:

If there are ni processes running on the ith processor, the
system is modeled by the following expression:

Sys �def �P1 k � � � k P1|���������{z���������}
n1

k � � � k PN k � � � k PN|����������{z����������}
nN

� ./

fgeti;use;relg
Memk:

Note that in the cooperation set of this model expression,
and throughout the remainder of the paper, we write geti as
a shorthand for geti j 1 � i � N . We assume that the starting
state of the system excludes access of an arbitrary processor,
number k. The vector form of the model Sys, derived
applying the equations of Definition 1, has the following
form:

��P1; . . . ; P1; . . . ; PN; . . . ; PN�;;Memk�fgeti;use;relg:
We now show an example derivation of the state space of
Sys, both ordinary and aggregated. For simplicity, we
consider a smaller system Sys0 in which we have only two
processors and only two replicas of the same process
running on each processor. The simplified system is thus
specified as

Sys0 �def �P1 k P1 k P2 k P2� ./

fget1;get2;use;relg
Mem1:

We can expand the derivatives of the processes Pi, for

i � 1; 2, and of the memory Mem1 as follows:

Pi �def �think; �i�:P 0i
P 0i �def �geti; g�:P 00i
P 00i �def �use; �i�:P 000i
P 000i �def �rel; r�:Pi

Mem1 �def �get2;>�:Mem01
Mem01 �def �use;>�:Mem001
Mem001 �def �rel;>�:Mem2

Mem2 �def �get1;>�:Mem02
Mem02 �def �use;>�:Mem002
Mem002 �def �rel;>�:Mem1 :

4.1.1 Complete Derivation Graph

The complete derivation graph of Sys0 computed using the

PEPA Workbench [5] with the aggregation algorithm

switched off, has 96 states and 256 transitions. A portion

of this graph is shown in Fig. 7. To make the drawing easier

to understand, we have chosen to name the derivatives with

short names si or s�i depending on whether the state has

been completely expanded (si) or not (s�i) (i.e., whether all

its one-step derivatives are also represented). The vector

forms corresponding to the derivatives are listed in Table 2:

Each row contains the name of the state and the

corresponding vector form. Moreover, it contains informa-

tion on whether the vector form is canonical or not, and the

name of the state which represents the corresponding

canonical vector form.

458 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 5, MAY 2001

Fig. 7. Ordinary derivation graph of Sys0.

4.1.2 Aggregated Derivation Graph

The aggregated derivation graph, computed using the

PEPA Workbench with the aggregation algorithm

switched on, has 42 states and 88 transitions. A portion

of this graph is shown in Fig. 8 and can be compared

with the one of Fig. 7.
The PEPA model Sys0 has been constructed according to

the algorithm: The sequential components defining the

processes and the memory are composed by means of the

cooperation operator to obtain the model equation. All the

derivatives have been explicitly named and we can use the

model equation to generate the vector form of the model

which does not have redundant brackets, and therefore no

elimination is required.
At this point, the aggregated state space can be

obtained by considering canonical vector forms only as

shown in the graph of Fig. 8 in which only a subset of

the states of Table 2, those corresponding to the canonical

vector forms, is explicitly outlined. The names of the

nodes are again si or s�i and the integer numbers in
round brackets close to them specify the number of
equivalent states they represent. These numbers can be
computed by considering the number of replicas of the
same process in the model equation and the numbers of
equal derivatives in each vector form. As an example, let
us consider the state s10 which corresponds to the vector
form ��P1; P

0
1; P2; P

0
2�;;Mem1�L. This state represents four

equivalent derivatives. This number can be computed by
dividing the product of the factorial of the numbers of
the repeated instances of components by the product of
the factorial of the numbers of identical derivatives in the
vector form.

n � 2! � 2!

1! � 1! � 1! � 1! � 1!
� 4:

More generally, the formula could be expressed as follows:

n � n1! � � �nN !

�n1;1! � � �n1;k1
!� � � � �nN;1! � � �nN;kN !� ;

where ni, for i � 1; 2; . . . ; N , is the number of processes

running on the same processor and ni;j are the numbers of

equal derivatives of Pi, such that
Pkj

j�1 ni;j � ni.
The multiplicities of the arcs are also represented and

indicate the number of arcs which have been folded
together. The fact that a single arc represents one or more
activities of the same type is reflected in the rate of the
action that labels the arc itself. For instance, the model
evolves from the state s1 to the states s3 by executing an
action think with a rate 2�1 because whenever the model is

GILMORE ET AL.: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS 459

TABLE 2
States, Representatives, and Vector Forms

for L � fget1; get2; use; relg

Fig. 8. Aggregated derivation graph of Sys0.

in state s1, i.e., �P1 k P1 k P2 k P2� ./

fget1;get2;relg
Mem1, two

activities �think; �1� are concurrently enabled.
Notice that the aggregation we obtain corresponds to

finding permutations of the same components within
brackets. This form of aggregation is pictorially represented
in Fig. 8 by flattening equivalent nodes of the derivation
graph of Fig. 7 onto the same plane.

4.2 Timings

We ran different configurations of the multiprocessor
system on a Pentium III machine with clock frequency of
500 MHz and 128 MBytes of memory. The times recorded in
Table 3 take into account both CPU time and the time
necessary for file I/O.

If there is a single component Pi running on each
processor, no aggregation is possible and the execution
times of the basic and the modified Workbench are almost
the same. As soon as we add replicas of the same process,
the state space aggregation becomes apparent as well as the
reduction in the execution times, particularly when the size
of the model grows.

5 ALTERNATIVE AGGREGATIONS

In this section, we illustrate some cases in which our
algorithm, or indeed any syntactic approach, cannot achieve
the optimal theoretical partitioning. In particular, we show
how greater aggregation could be achieved in some
circumstances if strong equivalence was used to generate
partitions instead of isomorphism. Note, however, that
these cases rely on quite strong conditions on apparently
unrelated activity rates. It is not clear that such conditions
occur with sufficient frequency in real models to justify the
additional complexity needed to implement an approach
based on strong equivalence.

The strong equivalence relation is a more sophisticated
notion of equivalence, in the bisimulation style, based on
observed behavior. In general, in a process algebra, two
terms are considered bisimilar if their externally observed
behavior appears to be the same. Strong equivalence
assumes that both the action type and the apparent rate of
each activity is observable. Informally, two PEPA compo-
nents are strongly equivalent if their total conditional
transition rates to strongly equivalent terms are the same
for all action types.

The conditional transition rate from P to P 0 via an action
type � is denoted by q�P; P 0; ��. This is the sum of the
activity rates labeling arcs connecting the corresponding
nodes in the DG which are also labeled by the action type �.
The conditional transition rate, thus is the rate at which a
system behaving as component P evolves to behaving as
component P 0 as the result of completing an activity of
type �. If we consider a set of possible derivatives S, the
total conditional transition rate from P to S, denoted q�P;S; ��,
is equal to

q�P;S; �� �
X
P 02S

q�P; P 0; ��:

The definition can thus be formally stated as follows:

Definition 3. Let T denote the set of all language terms,
or derivatives. An equivalence relation over derivatives,
R � T � T , is a strong equivalence if whenever �P;Q� 2 R
then for all � 2 A and for all S 2 T =R,

q�P;S; �� � q�Q;S; ��:
We say that P and Q are strongly equivalent, denoted by
P � Q if �P;Q� 2 R for some strong equivalence R, i.e.,

� �
[
fR j R is a strong equivalenceg:

Two of the following examples demonstrate the use of
strong equivalence for aggregation. However, in the first
example, we show how the abstraction operator may be
used at a higher syntactic level in the model and introduce
symmetries between components which appear quite
distinct in their defining equations. These symmetries rely
on the context in which the components are placed,
something not currently captured by our algorithm.

In [11], Ribaudo distinguishes between two forms of
aggregation which can be found using strong equivalence.
Horizontal aggregation arises from the interleaving of the
activities of similarly behaved components. This aggrega-
tion takes advantage of repeated instances of the same

460 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 5, MAY 2001

TABLE 3
Execution Times of the Basic and Modified Workbench

pattern of behavior within the overall model structure. The
aggregation found using our algorithm may be termed a
horizontal aggregation. In contrast, vertical aggregation arises
when there are repeated patterns of behavior within a single
component. In the second example presented below, a
variant of the multiprocessor model is considered in which
a horizontal aggregation can be found using strong
equivalence, although isomorphism would regard the
components as distinct. Finally, we give an example where
a vertical aggregation is possible with strong equivalence
but not with isomorphism and, consequently, not with our
syntactic approach.

5.1 Aggregation via Abstraction

The facility to hide or abstract action types within a
PEPA model is designed to give the modeler the freedom
to construct components in detail to ensure that their
behavior is accurately represented but to subsequently
restrict the visible action types to only those relevant to
the current modeling study. For example, in the model of
the multiprocessor presented in the previous section, the
modeler may choose to hide all the geti actions. In terms
of capturing the correct behavior of the protocol, it was
important that these action types were distinguished; but,
in terms of the complete model, they may all be regarded
as internal � actions.

Hiding all of these activities introduces strong symme-
tries into the model in terms of its functional behavior.
Moreover, if we find that the processes which are running
on different processors share the same timing character-
istics, i.e., �i � �j and �i � �j for all i 6� j, then the
symmetries are apparent in all aspects of the model's
behavior. Only one process can access the memory at any
timeÐand, for the subsequent memory access, its host
processor is excludedÐbut the processes on all other
processors behave equivalently. This means that we need
only consider two classes of processes, those excluded and
those eligible for access, regardless of their placement on
processors. Once the geti activities are all hidden it is no
longer possible to identify from these processes which type
of process is operating.

For example, consider the multiprocessor with three
processors, and two processes running on the first, one on
the second and two on the third. Then, if we regard the
system immediately after the process P2 has completed an
access to the memory and when one other process is
waiting for access, the behavior of the system is isomorphic
regardless of whether the waiting process is on processor 1
or processor 3, i.e., all the following states are isomorphic:

��P 01 k P1 k P2 k P3 k P3� ./
L
Mem2�=fgetig

� ��P1 k P 01 k P2 k P3 k P3� ./
L
Mem2�=fgetig

� ��P1 k P1 k P2 k P 03 k P3� ./
L
Mem2�=fgetig

� ��P1 k P1 k P2 k P3 k P 03� ./
L
Mem2�=fgetig:

Although these states are equivalent by isomorphism,
our algorithm would not place them within a single
partition but into two: one consisting of the first two states
and one consisting of the second pair. This is because the
processes operating on different processors have distinct

names and distinct actions getiÐthis is necessary in order to
ensure the correct functioning of the protocolÐand the
syntactic form of minimization that we use cannot
recognize that in some contexts P1 and P3 will behave
equivalently.

This could be regarded as a penalty for the richness of
the language. For example, the analogous situation does not
arise in Petri net-based models because there is no notion of
abstraction or hiding.

5.2 Horizontal Aggregation via Strong Equivalence

Isomorphism is a strict structural equivalence: There must
be a one-to-one relationship between both derivatives and
activities. The observation-based strong equivalence is not
so strict. Although corresponding derivatives must be
capable of the same action types at the same apparent
rates, how these are implemented as activities in the
derivatives may differ as the following example demon-
strates.

Suppose that on processor 1 two different types of
process may be running. The first is identical to the process
P1 discussed in Section 4.1. The second has a similar pattern
of behavior but has two alternative local computations
between accesses to the common memory. The process �P1 is
represented below:

P1 �def �think; �1�:P 01
P 01 �def �get1; g�:P 001
P 001 �def �use; �1�:P 0001

P 0001 �def �rel; r�:P1

�P1 �def �think; �11�: �P 01
� �think; �12�: �P 01

�P 01 �def �get1; g�: �P 001
�P 001 �def �use; �1�: �P 0001

�P 0001 �def �rel; r�: �P1:

If the rates of the think activities are such that �1 �
�11 � �12, then �P1 is strongly equivalent to P1, although the
two are clearly not isomorphic. Thus, if we consider the
system

�P1 k �P1 k P2 k P2� ./
L
Mem2;

our algorithm will distinguish the derivatives

�P 001 k �P 01 k P 02 k P 02� ./
L
Mem02

and

�P 01 k �P 001 k P 02 k P 02� ./
L
Mem02;

whereas a partitioning based on strong equivalence would
consider them to be equivalent. In this case, the state
space aggregated by our algorithm will have 64 states
whereas aggregation based on strong equivalence would
result in 42 states.

5.3 Vertical Aggregation via Strong Equivalence

We can identify a second source of aggregation which can
be achieved by strong equivalence but which is not
captured by our algorithm: so-called vertical aggregation.
Here, we illustrate the vertical aggregation case by means of
another variant of the multiprocessor example. We consider
a process which, after the use of the memory, can detect an
error. If this is the case, it does not return directly to the

GILMORE ET AL.: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS 461

initial state; instead, it must complete a recovery action and
repeat the access to the memory. For this new process, the
expansion of derivatives could be as follows:

Pi �def �think; �i�:P 0i
P 0i �def �geti; g�:P 00i
P 00i �def �use; �i�:P 000i
P 000i �def �rel; �1ÿ p� � r�:Pi � �rel; p� r�:P 0000i
P 0000i �def �recover; i�:P 0i ;

where p is the probability that an error occurs. The
derivation graph of such a process Pi is shown in Fig. 9a.
Now, we suppose that the action types think and recover
are hidden and become internal to the component.
Moreover, we assume that �i � i. If this is the case,
the derivatives Pi and P 0000i are strongly equivalent, and
we can aggregate them to form the macrostate �Pi�.
Similarly, we combine the arcs labeled �rel; �1ÿ p� � r�
and �rel; p� r� into a single arc labeled �rel; r� connecting
P 000i and �Pi� (see Fig. 9b).

Clearly, this form of aggregation relies on the informa-
tion about the operational behavior of the component
represented in the derivation graph. It cannot be detected

by the purely syntactic means used in our algorithm.
Approaches based on bisimulation style equivalences, such
as strong equivalence, work at the semantic rather than the
syntactic level. Thus, in general, they are not comparable to
our approach.

6 RELATED WORK

The exploitation of symmetries in order to achieve the
aggregation of performance models is a well-explored topic.
Several automated approaches have been described in the
literature. In this section, we give a brief account of some of
the work that has appeared in the context of stochastic Petri

nets and stochastic process algebras and explain how that
work relates to our own. In each case, the objective is to
generate a partitioning of the original CTMC which satisfies
the condition of lumpability.

The closest approach to our own is the work on a class of
stochastic colored Petri nets called Stochastic Well-formed

Nets (SWN) [12]. Stochastic Petri nets (SPN) [13] have been
extensively used for the functional analysis and perfor-
mance evaluation of distributed systems. Their modeling

primitives consist of places and (timed) transitions, repre-
senting system states and system events, respectively. Just

as in PEPA, in order to analytically solve an SPN model, the
associated stochastic process must be derived by computing

the set of reachable states (markings). Moreover, just as in

PEPA, for realistic systems the computation of the state
space can often lead to models whose size makes them

intractable.
In order to tackle this problem, SWNs allow the

construction of a parametric representation of a system.
This is achieved by folding similar subnets and by adding
a color structure to distinguish tokens that, after the
folding, belong to the same place. The nets are restricted
in terms of the possible color domains for places and
transitions and in terms of the possible color functions.
These restrictions allow symmetric structures within the
model to be exploited for solution purposes. In particular,
these structures are automatically detected and the
reduced state space is constructed without recourse to
the complete state space. The reduction is obtained
through the concept of symbolic marking [12].

Informally, a symbolic marking corresponds to an

equivalence class of ordinary markings sharing the same

characteristics. In fact, the ordinary markings in the same
equivalence class enable the same set of transitions, whose

firings lead to new ordinary states which are still

equivalent, i.e., belong to the same symbolic marking.
Starting from a symbolic representation of the initial

marking, a symbolic reachability graph is constructed via a

symbolic firing rule. Each symbolic marking is represented
in a minimal, canonical form. Note that unlike our

algorithm in which minimization is carried out only in the

preprocessing, in the SWN case minimization has to be
repeated after each symbolic derivation step. The symbolic

reachability graph is used to generate a reduced CTMC and

it has been proved [14] that it is lumpably equivalent to the
original CTMC. Thus, the same performance estimates can

be computed with a lower computational cost.
Another Petri net-based approach has been developed in

the context of Stochastic Activity Networks (SAN) [15]. This

formalism incorporates features of both SPNs and queuing

models and makes use of compositional operators, similar
to those found in process algebras. The primitives of the

formalism are places, and activities (equivalent to Petri nets

transitions), which may be guarded by input gates repre-
senting enabling rules and output gates representing com-

pletion rules. Once submodels have been constructed

representing the components of the system, they may be
combined using the replication and join operations. The

replication operator captures the case of a system contain-

ing two or more identical subsystems. The join operator
combines SAN submodels of different types. Use of these

operators makes symmetries within the model explicit and,
so, facilitates a compact representation of the state space.

The structure of a composed SAN is represented by a
directed tree with different types of nodes. Leaf nodes
capture the distinct SAN submodels, i.e., the basic elements
to which the construction operators apply. Internal nodes
with one child are replication nodes; their child being the

462 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 5, MAY 2001

Fig. 9. Derivation graphs of Pi.

submodel to be replicated. Internal nodes with two or more
children are join nodes; the children representing the
submodels to be joined together.

From this tree, a state representation is automatically
extracted that is minimal, in the sense that, states which
differ only by a permutation of repeated components are
grouped together into a single combined state. Each such
state is represented by recording, for each replication node,
the number of replicated SANs in each possible submodel
marking, and for each join node, a vector of the markings of
each joined submodel. In addition, each state maintains
information about the desired performance variable [15] but
this is outside the scope of this paper. There are clear
parallels between this state representation and our vector
form discussed in Section 3.2.

The other work concerning the aggregation of stochastic
process algebra models is developed almost entirely at the
semantic level. In this approach, well-known graph
partitioning algorithms are used to reduce the labeled
transition system underlying the process algebra model
[16], [4]. In [17], a more syntactic approach is taken but this
is on an ad hoc basis without a corresponding tool
implementation. Equational laws derived from Markovian
bisimulation, which is equivalent to strong equivalence, are
used to obtain state space reduction of a MTIPP model. This
is achieved by term rewriting based on judicious applica-
tion of the laws. However, although good results can be
obtained on particular models, no set of term rewriting
rules, which can be used for aggregation purposes, have
been found.

In some approaches, good results have been obtained by
modifying and restricting the combinators of the language
to make symmetries more explicit and disallowing difficult
cases. For example, in [18], a symmetric parallel composi-
tion operator, denoted fn!PgS is used to capture the case of
n-ary parallel composition of identical replicas, all synchro-
nising on actions in S. This operator provides a means of
expressing a number of replicated copies of a process but it
cannot express the synchronization of repeated copies over
different synchronization sets. The operational semantics of
the new operator is consistent with the usual parallel
composition but a reduced state space is produced. This can
be regarded as the SPA equivalent of the SAN approach
outlined above. States which differ only by a permutation of
replicated submodels are treated as equivalent.

Earlier work on MTIPP took a similar approach in terms
of altering the combinators of the language. In [19], a
replication operator, here denoted !nS P , has the same
informal semantics as fn!PgS above. Hiding and the usual
general parallel composition operator are removed from the
language. The distinction of this approach is that a
denotational matrix semantics is given rather than the more
usual operational semantics. Using this approach, the
infinitesimal generator matrix of the CTMC is constructed
directly. Moreover, Rettelbach and Siegle show that the
transition matrix resulting from the semantics are minimal
with respect to Markov chain lumpability (i.e., the matrices
do not have subsets of equivalent states). The disadvantages
of both these approaches are that they require the modeler
to adhere to a new set of combinators and this form of

cooperation does not allow different synchronization sets
among replicas of the same component. The techniques do

not appear to have been automated. In contrast, our

algorithm works transparently with the PEPA language,
taking advantage of whatever symmetries are present in the

model submitted to the PEPA Workbench by the user.

7 CONCLUSIONS AND FURTHER WORK

We have shown how the existence of isomorphisms

between terms in the derivation graph of a stochastic

process algebra model can be exploited to aggregate the
state space of the model. Our algorithm for this collapses

the derivation graph at each model state and does not

require a costly computation of bisimulation equivalence
between components of the model. We have found it to be

applicable in situations where the full derivation graph is

too large even to be generated [20]. Further, we believe that
many of the models which occur in practice would contain

symmetries of the types which can be exploited by

isomorphism. However, against these advantages, our
algorithm cannot be guaranteed to achieve the maximum

possible aggregation for all models.
Generating an aggregated derivation graph will allow for

a faster computation of the steady state probability
distribution of the CTMC which corresponds to a PEPA

model. In this paper, we have not discussed the influence of

aggregation on the interpretation of this probability dis-
tribution in terms of the given PEPA model. When

examining the steady state distribution in order to
determine performance factors, such as throughput and

utilization, the PEPA modeler must now select sets of

model states of interest via the description of canonical
representatives in the state space. This is an added reason

for choosing to aggregate with isomorphism instead of with

bisimulation because the formation of a canonical repre-
sentative of an isomorphism class is simpler. However, the

full investigation of this issue remains as further work.
Our work has been influenced by earlier work on SWN

[21]. However, we stress that significant adjustments to the
approach have been necessary for the development of the

algorithm for SPA: It is not a straightforward translation of

results. Nevertheless, we feel that there is considerable
benefit to be gained from studying the relationship between

formalisms with the objective of importing ideas and, when

appropriate, techniques from one to the other.

ACKNOWLEDGMENTS

This collaboration took place due to the British Council/
MURST project ªRom/889/94/9: An Enhanced Tool-Set for

Performance Engineers.º S. Gilmore is supported by the

ªDistributed Commit Protocolsº grant from the EPSRC and
by Esprit Working group FIREworks. J. Hillston is

supported by the ESPRC ªCOMPAº grant.
The authors would like to thank the anonymous referees

for helpful comments on an earlier version of this paper and
to thank Graham Clark for implementation work on the

PEPA Workbench.

GILMORE ET AL.: AN EFFICIENT ALGORITHM FOR AGGREGATING PEPA MODELS 463

REFERENCES

[1] J. Hillston, A Compositional Approach to Performance Modelling.
Cambridge Univ. Press, 1996.

[2] N. GoÈtz, H. Hermanns, U. Herzog, V. Mertsiotakis, and M.
Rettelbach, ªStochastic Process Algebras,º Quantitative Methods in
Parallel Systems, F. Baccelli, A. Jean-Marie, and I. Mitrani, eds.,
pp. 3±17, 1995.

[3] M. Bernardo and R. Gorrieri, ªA Tutorial on EMPA: A Theory of
Concurrent Processes with Nondeterminism, Priorities, Probabil-
ities and Time,º Theoretical Computer Science, vol. 202, nos. 1±2,
pp. 1±54, 1998.

[4] J. Hillston, ªCompositional Markovian Modeling Using a Process
Algebra,º Proc. Second Int'l Workshop Numerical Solution of Markov
Chains, Jan. 1995.

[5] S. Gilmore and J. Hillston, ªThe PEPA Workbench: A Tool to
Support a Process Algebra Based Approach to Performance
Modeling,º Proc. Seventh Int'l Conf. Modelling Techniques and Tools
for Computer Performance Evaluation, pp. 353±368, May 1994.

[6] M. Bernardo, W.R. Cleaveland, S.T. Sims, and W.J. Stewart,
ªTwoTowers: A Tool Integrating Function and Performance
Analysis of Concurrent Systems,º Proc. IFIP Joint Int'l Conf. Formal
Description Techniques and Protocol Specification, Testing, and
Verification, 1998.

[7] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M.
Siegle, ªCompositional Performance Modeling with TIPP Tool,º
Proc. Int'l Conf. Modelling Techniques and Tools for Computer
Performance Evaluation, R. Puigjaner, ed., Sept. 1998.

[8] J.G. Kemeny and J.L. Snell, Finite Markov Chains. Princeton, N.J.:
Van Nostrand, 1960.

[9] R. Milner, Communication and Concurrency. Prentice Hall, 1989.
[10] S. Gilmore, J. Hillston, and D.R.W. Holton, ªFrom SPA Models to

Programs,º Proc. Fourth Ann. Workshop Process Algebra and
Performance Modelling, M. Ribaudo, ed., pp. 179±198, July 1996.

[11] M. Ribaudo, ªOn the Aggregation Techniques in Stochastic Petri
Nets and Stochastic Process Algebras,º The Computer J., Special
Issue Proc. Third Int'l Workshop Process Algebras and Performance
Modelling, S. Gilmore and J. Hillston, eds., vol. 38, no. 7, pp. 600±
611, Dec. 1995.

[12] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad,
ªStochastic Well-Formed Coloured Nets for Symmetric Modeling
Applications,º IEEE Trans. Computers, vol. 42, no. 11, Nov. 1993.

[13] M.K. Molloy, ªPerformance Analysis Using Stochastic Petri Nets,º
IEEE Trans. Computers, vol. 31, no. 9, pp. 913±917, Sept. 1982.

[14] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad,
ªStochastic Well-Formed Coloured Nets and Multiprocessor
Modeling Applications,º High-Level Petri Nets, Theory and Applica-
tion, K. Jensen and G. Rozenberg, eds., 1991.

[15] J.F. Meyer and W.H. Sanders, ªReduced Base Model Construction
Methods for Stochastic Activity Networks,º IEEE J. Selected Areas
in Comm., vol. 9, no. 1, pp. 25±36, Jan. 1991.

[16] H. Hermanns and U. Herzog, ªCompositional Nets and Composi-
tional Aggregation,º Performance Models for Discrete Event Systems
with Synchronisations: Formalisms and Analysis Techniques, G. Balbo
and M. Silva, eds., vol. 2, pp. 553±582, 1998.

[17] H. Hermanns, U. Herzog, and V. Mertsiotakis, ªStochastic Process
Algebras as a Tool for Performance and Dependability Model-
ling,º Proc. IEEE Int'l Computer Performance and Dependability
Symp., pp. 102±111, 1995.

[18] H. Hermanns and M. Ribaudo, ªExploiting Symmetries in
Stochastic Process Algebras,º Proc. 12th European Simulation
Multiconference, 1998.

[19] M. Rettelbach and M. Siegle, ªCompositional Minimal Semantics
for the Stochastic Process Algebra TIPP,º Proc. Second Process
Algebra and Performance Modelling Workshop, M. Rettelbach and
U. Herzog, eds., 1994.

[20] J. Hillston and L. Kloul, ªPerformance Investigating of an On-Line
Auction System,º Concurrency and Computation: Practice and
Experience, vol. 13, pp. 23±41, 2001.

[21] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad, ªOn
Well-Formed Coloured Nets and Their Symbolic Reachability
Graph,º Proc. 11th Int'l Conf. Application and Theory of Petri Nets,
June 1990. Reprinted in High-Level Petri Nets: Theory and
Application, K. Jensen and G. Rozenberg, eds., 1991.

Stephen Gilmore received both the BSc and the
PhD degrees from the Queen's University of
Belfast in Northern Ireland. He currently holds a
lectureship in computer science at The Univer-
sity of Edinburgh where he is a member of the
Laboratory for Foundations of Computer Science
and an associate member of the Institute for
Computing Systems Architecture. His interests
include the development of tools to support the
performance modeling process. His personal

web page with information on research projects and copies of his
published papers can be found at http://www.dcs.ed.ac.uk/~stg.

Jane Hillston received the BA and MSc
degrees in mathematics from the University of
York and Lehigh University, respectively. After a
brief period working in industry, she joined the
Department of Computer Science at the Uni-
versity of Edinburgh as a research assistant in
1989. She received the PhD degree in computer
science from that university in 1994. Since 1995,
she has been a lecturer in computer science and
a member of the Laboratory for Foundations of
Computer Science. Her principal research inter-

ests are in the use of process algebras to model computer systems and
the investigation of issues of compositionality with respect to Markov
processes.

Marina Ribaudo graduated with a degree in
computer science from the University of Torino
(Italy) in 1990 and she obtained a PhD degree in
computer science from the same University in
1995. Since July 1995, she has been a
researcher in the Computer Science Department
of the University of Torino. Her current research
interests are in the area of performance evalua-
tion of computer systems, mainly in the fields of
stochastic process algebras and stochastic Petri
nets. Her PhD thesis examines the relationships

existing between these two formalisms.

464 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 5, MAY 2001

