
Scalable Differential Analysis
of Process Algebra Models

Mirco Tribastone, Stephen Gilmore, and Jane Hillston

Abstract—The exact performance analysis of large-scale software systems with discrete-state approaches is difficult because of the

well-known problem of state-space explosion. This paper considers this problem with regard to the stochastic process algebra PEPA,

presenting a deterministic approximation to the underlying Markov chain model based on ordinary differential equations. The accuracy

of the approximation is assessed by means of a substantial case study of a distributed multithreaded application.

Index Terms—Modeling and prediction, ordinary differential equations, Markov processes.

Ç

1 INTRODUCTION

CONTINUOUS-TIME Markov chains (CTMSs) are an estab-
lished tool for the quantitative analysis of systems, and

a vast body of research in this area has resulted in a wide
variety of techniques for their evaluation, such as efficient
and numerically robust methods for the computation of
transient and steady-state probability distributions [1], [2],
fast simulation algorithms [3], and stochastic model check-
ing [4]. However, as with most discrete-state analysis
techniques, the major drawback is the well-known problem
of state-space explosion (i.e., the number of reachable states
of the chain grows combinatorially with the number of
individuals in the system), which is only partially alleviated
by ingenious research devoted to exploiting symmetries in
the model in order to obtain a smaller (lumped) CTMC
which still preserves most of the information on the
stochastic behavior of the original process (e.g., [5]).

An alternative technique for performance evaluation may
be offered by deterministic models, which use ordinary
differential equations (ODEs) as the underlying mathema-
tical structure. Here the temporal evolution of the population
of inherently discrete entities is approximated in a contin-
uous fashion. As a result, large-scale models are much easier
to handle because the actual population size of the system
under study does not impact on the ODE representation.
Despite their apparently contrasting modeling approach, in
many circumstances it is possible to establish a very useful
relationship of convergence between the stochastic and
deterministic models, where the ODE is interpreted as the
fluid limiting behavior of a family of CTMSs associated with
the model under evaluation and parameterized by a system
factor such as density or concentration [6], [7].

The main contribution of this paper is a novel operational
semantics for the process calculus PEPA, which allows us to

demonstrate this deterministic convergence for population
models expressed in the language. The semantics gives rise to
a compact symbolic representation of the CTMC of the model,
from which it is possible to infer the corresponding ODE
representing its fluid limit. This semantics provides a formal
account of earlier approaches to deterministic interpretations
of PEPA [8] and substantially extends their scope of
applicability by incorporating all of the operators of the
language and removing earlier assumptions on the syntac-
tical structure of the models amenable to analysis.

Population-based modeling is particularly suitable for
capturing the dynamics of large-scale distributed systems
because these usually consist of many independent copies
of components with the same behavior, e.g., tens or
hundreds of threads or processes which deal with requests
from potentially many customers. This paper presents an
example of a three-tier distributed application modeled in
PEPA, on which we conduct a large numerical study to
assess the accuracy of the differential analysis.

Structure of this paper. Section 2 gives an overview of
PEPA, with focus on the main issues regarding large-scale
modeling. Section 3 discusses the population-based opera-
tional semantics and the result of deterministic convergence
is presented in Section 4. Section 5 presents the case study
and a validation study on the accuracy of the approxima-
tion. Section 6 discusses related work and Section 7 gives
concluding remarks.

2 BACKGROUND AND MOTIVATION

Using a running example, this section introduces the
notions of PEPA which will be used extensively throughout
the remainder of the paper. The reader is referred to [9] for
a formal definition. Then, the problem of state space
explosion in the context of PEPA is discussed and the
method of fluid-flow approximation is informally intro-
duced. Table 1 summarizes the main notation and
terminology used in this paper.

2.1 Overview of PEPA

PEPA is a CSP-like process algebra extended with the
notion of stochastically timed activities. It supports the
following operators:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011 1

. The authors are with the Laboratory for Foundations of Computer Science,
School of Informatics, The University of Edinburgh, Informatics Forum, 10
Crichton Street, EH8 9AB, Edinburgh, Scotland, UK.
E-mail: {mtribast, stg, jeh}@inf.ed.ac.uk.

Manuscript received 29 Sept. 2009; revised 3 Mar. 2010; accepted 20 Mar.
2010; published online 1 Sept. 2010.
Recommended for acceptance by S. Donatelli.
For information on obtaining reprints of this article, please send E-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2009-09-0237.
Digital Object Identifier no. 10.1109/TSE.2010.82.

0098-5589/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

Prefix: ð�; rÞ:P denotes a process which performs an
action of type � and behaves as P subsequently. The
activity is associated with an exponential distribution with
mean duration 1=r; r 2 IR>0. (This paper does not deal
directly with passive activities; however, a discussion on
their use is given in Section 4.3.) The set of all the activities
ð�; rÞ in a PEPA model is denoted by Act and the set of all
action types is denoted by A.

Choice: P þQ specifies a component which behaves
either as P or as Q. The activities of both operands are
enabled and the choice will behave as the component which
first completes. For instance, ð�; rÞ:P þ ð�; sÞ:Q behaves as
P (resp., Q) with probability r=ðrþ sÞ (resp., s=ðrþ sÞÞ.

Constant: A ¼def P is used for recursion. Cyclic definitions
are central in the characterization of the underlying CTMC
of a PEPA model.

Cooperation. P ./L Q is the compositional operator of PEPA.

Components P and Q synchronize over the set of action

types in set L; other actions are performed independently.

For example, ð�; r1Þ:ð�; sÞ:P ./
f�g ð�; r2Þ:ð�; tÞ:Q is a composi-

tion of two processes which execute � cooperatively. Then,

they perform actions � and � independently and behave as P

and Q, respectively. Cooperating components need not have

a common view of the duration of shared actions. The

semantics of PEPA specifies that the rate of a shared action is

the slowest of the individual rates of the synchronizing

components, e.g., minðr1; r2Þ in the example above. This

corresponds to the assumption of unbounded capacity [10].

The operator k is sometimes used as shorthand notation for a

cooperation over an empty set, i.e., ./; . The notation S½N �
indicatesN independent copies of a sequential component S

and will be extensively used in the reminder of this paper as

the abbreviated form of

S k S k . . . k S|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
N

:

Hiding: P=L relabels the activities of P with the silent
action � for all types in L. Thus, ðð�; r1Þ:P=f�gÞ ./� ð�; r2Þ:Q
does not cooperate over action � because the process in the
left-hand side of the cooperation performs a transition
ð�; r1Þ to P .

An interesting class of PEPA models comprises those
which can be generated by the two-level grammar

S ::¼ ð�; rÞ:S j S þ S

C ::¼ S j C
./

L
C j C=L;

where the former production defines sequential components
and the latter produces model components. The system equation
designates the model component that defines the environ-
ment which embraces all of the behavior of the system under
study. In the remainder of this paper, system equations are
denoted with constants such as System. Models from this
grammar give rise to a finite underlying CTMC. We consider
these models throughout the remainder of this paper.

Example 1 (PEPA model with cooperation).

p ¼def ð�; pÞ:P 0

p0 ¼def ð�; p0Þ:P

Q ¼def ð�; qÞ:Q0

Q0 ¼def ð�; p0Þ:Q

System1 ¼
def

P ½NP �
./

f�g
Q½NQ�

The model is comprised of two arrays of components,
with initial state P and Q, where each pair ðP;QÞ can
cooperate over the action type�. There areNP instances of
P and NQ instances of Q. P and Q carry out independent
actions � and �, respectively, before returning to the state
in which � may be performed.

Without loss of generality, we assume NP ;NQ > 1. The
derivations that follow in this paper are also valid for
NP ¼ NQ ¼ 1, although this case leads to less insightful and
simpler derivation trees and recursion stacks.

Definition 1. The apparent rate of action � in process P , denoted
by r�ðP Þ, indicates the overall rate at which � can be
performed by P . It is recursively defined as follows:

r�ðð�; rÞ:P Þ ¼
r if � ¼ �
0 if � 6¼ �

�
r�ðP þQÞ ¼ r�ðP Þ þ r�ðQÞ

r�ðP
./

L
QÞ ¼

min r�ðP Þ; r�ðQÞð Þ if � 2 L
r�ðP Þ þ r�ðQÞ if � 62 L

�

r�ðP=LÞ ¼
r�ðP Þ if � 62 L
0 if � 2 L

�

According to this definition, for the array of sequential
components P ½NP �, the apparent rate of � is

r�ðP ½NP �Þ ¼ NPr�ðP Þ; ð1Þ

and this holds for any � 2 A and any NP because all of the
cooperation sets among such components are empty.
Similarly, this additivity holds in general for parallel
compositions of distinct arrays

r�ðP1½N1� k P2½N2� k � � � k PK ½NK �Þ ¼
XK
i¼1

Nir�ðPiÞ: ð2Þ

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

TABLE 1
Notation

The semantics of PEPA is shown in Table 2. Given a PEPA
component P , the operational semantics induces the deriva-

tive set,1 denoted by dsðP Þ, which is the set of the possible

states reachable from P . We use the term local derivative to
indicate a state reachable from a sequential component

(which is itself a sequential component, as can be seen from
the two-level grammar). A derivation graph whose nodes are in

dsðP Þ and arcs in dsðP Þ � Act� dsðP Þ indicates all of the
transitions between each pair of derivatives of P . Arcs are

taken with multiplicity, corresponding to the number of
distinct inference trees which give the same transition.

Ultimately, the derivation graph can be directly mapped

onto a CTMC for performance analysis.
Using Example 1, we now consider how the presence of

arrays of sequential components affects the derivation tree

for a transition and the derivative set of a model
component. By rules S0 and S1, the following two transi-

tions can be inferred for P and Q:

P �!ð�;pÞ P 0; ð3Þ

Q �!ð�;qÞ Q0: ð4Þ

The dynamic behavior of the leftmost component P of the
array can be collected by NP � 1 applications of rule C0. The
first application has the form:

P �!ð�;pÞ P 0

PkP �!ð�;pÞ P 0kP
:

Then, for 1 � i � NP � 2, the other NP � 2 applications are
of type

PkP ½i� �!ð�;pÞ P 0kP ½i�

PkP ½i�kP �!ð�;pÞ P 0kP ½i�kP
:

For i ¼ NP � 2, the conclusion of this rule may be written as

P ½NP � �!
ð�;pÞ

P 0kP ½NP � 1�: ð5Þ

The behavior of the leftmost component Q can be collected
in a similar way, leading to a transition in the form

Q½NQ� �!
ð�;pÞ

Q0kQ½NQ � 1�: ð6Þ

Finally, by applying rule C2 to (5) and (6), we obtain

P ½NP �
./

f�g
Q½NQ� �!

ð�;RÞ

P 0kP ½NP � 1� ./
f�g

Q0kQ½NQ � 1�;
ð7Þ

where, by rule C2,

R ¼ p

r�P ½NP �
q

r�Q½NQ�
minðr�ðP ½NP �; r�Q½NQ�ÞÞ

¼ p

NPr�ðP Þ
q

NQr�ðQÞ
minðNPr�ðP Þ; NQr�ðQÞÞ

¼ p

NPp

q

NQq
minðNPp;NQqÞ ¼

minðNPp;NQqÞ
NPNQ

:

ð8Þ

The conclusion of (7) is not the only transition enabled by

the initial state because each individual component P can

be paired with each component Q to carry out the shared

activity. Hence, P ½NP � ./f�gQ½NQ� enables NP �NQ transitions

to distinct states of type

P k � � � k P k P 0 k P k � � � k P|ffl{zffl}
NP sequential components

./

f�g
Q k � � � k Q k Q0 k Qk � � � kQ|ffl{zffl}

NQ sequential components

;

which only differ in the locations of the components P 0 and

Q0. Since each transition occurs at rate R, the exit rate from

P ½NP � ./f�gQ½NQ� is NP �NQ � R ¼ minðNPp;NQqÞ, and the

factor 1=ðNP �NQÞ is the probability that one pair of

components makes the transition.

2.2 Aggregation and State Representation

If we consider a representative state for all the possible
configurations in which there is one component P 0 andNP �
1 componentsP , this state is isomorphic to each configuration
[9]. Isomorphism was exploited in [11] for exact aggregation
of the underlying CTMC using a state representation (called

TRIBASTONE ET AL.: SCALABLE DIFFERENTIAL ANALYSIS OF PROCESS ALGEBRA MODELS 3

TABLE 2
Markovian Semantics of PEPA (from [9])

1. The term derivative is used in PEPA to denote a reachable state of a
component. It is not to be confused with the notion of derivative in calculus,
which will be used later in this paper for the deterministic interpretation of
the stochastic process underlying a PEPA model.

canonical) in which the local derivatives within an array are
arranged in lexicographical order. In this aggregated CTMC,
the state

P ½NP �
./

f�g
Q½NQ�

has one transition to the representative state

P 0kP ½NP � 1� ./
f�g

Q0kQ½NQ � 1�

with rate minðNPp;NQqÞ.
Further refinement on state-space representation aims at

reducing storage requirements by relying upon two
properties. First, models defined according to the two-level
grammar described above have a static structure of the
compositional operators. As such, this structure need not
be recorded in the state descriptor. Second, if the number
of copies of an array is larger than the size of the derivative
set of the replicated component, then a state representation
with counter variables, called the numerical vector form (NVF)
[8], leads to a more parsimonious data structure for
storage. In the NVF, the state is represented as a vector
of integers; each coordinate is associated with a distinct
local derivative of the sequential components in the system
and it records the number of components exhibiting that
derivative. The state descriptor in the NVF is denoted by
� 2 INd

0, where d is the total number of local derivatives in
the system. For instance, a possible NVF-representation for
the transition in (7) is

ðNP ; 0; NQ; 0Þ ������������!
ð�;minÞðNPp;NQqÞÞ ðNP � 1; 1; NQ � 1; 1Þ; ð9Þ

where, from left to right, the coordinates are assigned to the
local derivatives P , P 0, Q, and Q0.

It is important to point out that a CTMC in the NVF is not
aggregated any more than the CTMC from the same PEPA
model in the canonical form is, as the NVF only operates at
the level of a single state descriptor. In addition, aggregation
via isomorphism only reduces the problem of state-space
explosion—although in most cases it can achieve dramatic
reductions in size; with increasing population levels, the
derivation of the transition system and the solution of the
underlying CTMC will eventually become impractical.

2.3 Deterministic Approximation

State-space explosion may be tackled more effectively by
shifting the focus to an approximate representation in
which the dynamics of inherently discrete components is
given in a continuous fashion. The underlying mathematics
used here is that of ODEs, in which the dependent function
xðtÞ has values in vectors of reals and each of its coordinates
corresponds to the (continuous) population level of a
sequential component in the system (hence, it is the
deterministic counterpart of � in the NVF).

Clearly, a fundamental requisite for such an approxima-
tion is that the ODE be inferred from the PEPA model
statically, i.e., without the explicit enumeration of the entire
state space of the underlying CTMC. Most importantly, the
deterministic interpretation must be made compatible with
the original stochastic treatment so as to justify the
approximation and reason about its accuracy. The former
condition is satisfied by the earlier work on this topic [8] as

the ODE is derived only by inspection of the model
description via the construction of the activity graph, a
structure which records the rates of change of the
population levels when an activity is carried out. In
contrast, the relationship between the ODE and the CTMC
is not investigated, but numerical evidence showing good
agreement is given.

Here we establish this relationship by developing a
structured operational semantics of PEPA by which the
ODE is inferred from a symbolic representation of an
aggregated CTMC in the NVF. The operational semantics
leads to the derivation of generating functions of the CTMC,
i.e., functions of the state descriptor which give the transition
rates to all the reachable states of the system. These functions
are parameterized by action types to keep track of the
additional information about which action type is associated
with a transition. Let l 2 ZZd be the transition jump, i.e., the
transition moves from state � to � þ l. The generating
functions are denoted by ’�ð�; lÞ : IRd ! IR and give the
transition rate for a jump l and an activity of type � 2 A.
Thus, the entry in the generator matrix corresponding to the
transition from � to � þ l, denoted by q�;�þl, can be written as

q�;�þl ¼
X
�2A

’�ð�; lÞ:

The summation across A captures the fact that distinct
action types may contribute to a transition to the same
target state, e.g., ð�; pÞ:P þ ð�; sÞ:P . These transitions are
kept distinct in the labeled transition system of PEPA
because it records the action type as well as the transition
rate, but they collapse onto the same entry in the underlying
generator matrix. We use the notation

’ð�; lÞ �
X
�2A

’�ð�; lÞ;

to indicate the overall contribution to the transition. The
extraction of the generating functions from the PEPA model
usually presents very little computational challenge because
the environment collected via the inference rules in our
operational semantics abstracts away from the (potentially
very large) actual population levels of the system under
study. Using terminology and notation from Kurtz (cf. [6]),
from ’ð�; lÞ it is possible to construct a vector field F :
IRd ! IRd defined as

F ðxÞ ¼
X
l2ZZd

l’ðx; lÞ; ð10Þ

and an associated ODE

dxðtÞ
dt
¼ F ðxðtÞÞ: ð11Þ

This formulation makes it possible to establish a property
of asymptotic convergence for PEPA models. The result
used here states that the solution to a properly defined initial
value problem with (11) is the fluid limiting behavior of a
family of CTMCs in the sense of the following theorem.

Theorem 1 (cf. [6], Theorem 3.1). Let fXnðtÞg be a family of
density dependent CTMCs, i.e., a sequence of chains with
parameter n 2 IN taking values in ZZd such that the

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

infinitesimal generator entries for XnðtÞ, denoted by q�;�þl, can
be described as

q�;�þl ¼ n’ð�=n; lÞ: ð12Þ

Suppose that:

1. The functions ’ðx; lÞ are continuous.
2. There exists an open set E � IRd and a constant LE 2

IR such that:

a. k F ðxÞ � F ðyÞ < LE k x� y k; x; y 2 E
b. supx2E

P
l2ZZd k l k ’ðx; lÞ <1

c. limk!1 supx2E
P
klk>k k l k’ðx; lÞ ¼ 0

Then, for every solution to the initial value problem of (11)
subject to

xð0Þ ¼ � and xðtÞ 2 E; 0 � t � T

the family fXnðtÞg converges to xðtÞ in the sense that

lim
n!1

Xnð0Þ=n ¼ � ¼)

8" > 0 lim
n!1

IP sup
t�T
k XnðtÞ=n� xðtÞ k > "

� �
¼ 0:

ð13Þ

2.4 Motivating Example

Let us now use Example 1 to illustrate the rationale behind
the approach and give an intuitive interpretation of the
result of convergence. The parametric rates are obtained by
reducing System1 to a much smaller model component,
System01, which disregards the information about the
multiplicities of the replicated components

System01 ¼
def

P f�g
ffl
Q:

The sequential components P and Q in this equation are not
interpreted as single entities, but as representatives of
classes of behavior. The state descriptor in the NVF is
formed by computing the local derivatives of each
sequential component in System01—this procedure is of
negligible computational cost because the behavior of such
components is usually simple, and the state space growth
arises from the interleaving of their concurrent behaviors.

The symbolic population-dependent transitions are in-
ferred from the individual transition rates of a single
component. The operational semantics gives the following
generating function for �:

’� �; �1; 1;�1; 1ð Þð Þ ¼ min p�1; q�3ð Þ; ð14Þ

which intuitively means: If there are �1 components P and
�3 components Q, each being able to perform the shared
action at rate p and q, respectively, then the overall rate of
execution for a shared activity is the minimum (by the
cooperation rule) of the two rates at which the action can be
performed by the populations of the synchronizing
components (by additivity of apparent rate calculation).
This generating function can be used to derive the
transition in (9) for � ¼ ðNP ; 0; NQ; 0Þ. Similarly, since P 0

and Q0 are independent, their behavior is described by the
generating functions

’� �; 1;�1; 0; 0ð Þð Þ ¼ p0�2; ð15Þ

and

’� �; 0; 0; 1;�1ð Þð Þ ¼ q0�4: ð16Þ

The nonzero elements of the jump vector indicate which
classes are involved in the transition. With regard to the
shared actions, all sequential components are subjected to
change in their population levels because of the transitions
of the single components (3) and (4) which record a decrease
of P and Q and a corresponding increase of P 0 and Q0.

The generating functions (14), (15), and (16) are used to
compute the vector field

F ðxÞ ¼
X
l2ZZd

l’ðx; lÞ ¼ ð�1; 1� 1; 1Þmin px1; qx3ð Þ

þ ð1;�1; 0; 0Þp0x2 þ ð0; 0; 1;�1Þq0x4:

The associated ODE model (11), in components, is

dx1ðtÞ
dt

¼ �min ðpx1ðtÞ; qx3ðtÞÞ þ p0x2ðtÞ;

dx2ðtÞ
dt

¼ min ðpx1ðtÞ; qx3ðtÞÞ � p0x2ðtÞ;

dx3ðtÞ
dt

¼ �min ðpx1ðtÞ; qx3ðtÞÞ þ q0x4ðtÞ;

dx4ðtÞ
dt

¼ min ðpx1ðtÞ; qx3ðtÞÞ � q0x4ðtÞ:

ð17Þ

The intuition behind this approach can be built by
comparing, for example, the generating function (14) and
the summands of (17) of kind minðpx1ðtÞ; qx3ðtÞÞ. Equa-
tion (14) states that, in any given state of the chain, there
is a unitary decrease in the population levels of
components P and Q every 1=minðp�1; q�3Þ time units on
average. It is possible to approximate such a discrete change
in a continuous fashion. Letting xðtÞ be the state descriptor
in this continuous state-space, the change in the population
count of P over a finite time interval �t is

x1ðtþ�tÞ ¼ x1ðtÞ �min
�
px1ðtÞ; qx3ðtÞ

�
�t:

Rearranging this equation and taking the limit �t! 0 gives
the ODE

dx1

dt
¼ �min ðpx1ðtÞ; qx3ðtÞÞ:

This equation gives only a partial account of the system
dynamics (and it corresponds to the first summand of
dx1ðtÞ=dt in (17)). A similar equation may be written for x3ðtÞ,
corresponding to the first summand of dx3ðtÞ=dt in (17). The
increase in the population counts of P 0 and Q0 by the same
value is expressed with the same rate being present in
dx2ðtÞ=dt and dx4ðtÞ=dt, but with opposite sign. The other
summands in (17) may be obtained from analogous inter-
pretations of the generating functions (15) and (16).

A family of CTMCs fXnðtÞg can be systematically
associated with a PEPA model by taking a density vector,
denoted by � 2 INd

0, which is interpreted as giving the relative
proportions between the distinct sequential components. By
letting � ¼ ðNP ; 0; NQ; 0Þ, the sequence of CTMCs is such that
the initial population levels are multiples of �, i.e.,

Xnð0Þ ¼ n�; forall n:

TRIBASTONE ET AL.: SCALABLE DIFFERENTIAL ANALYSIS OF PROCESS ALGEBRA MODELS 5

This corresponds to increasingly large initial population
levels as a function of n. For instance, X1ðtÞ represents the
original aggregated CTMC, X2ðtÞ is the CTMC underlying
the model with initial state P ½2NP � ./f�gQ½2NQ�, and so on.
Since, by construction, limn!1Xnð0Þ=n ¼ �, the result of
convergence (13) intuitively states that, asymptotically, a
sample path of the CTMC XnðtÞ may be well approximated
by nxðtÞ, over any finite time interval, where xðtÞ is the
solution to the initial value problem of the ODE (17) with
xð0Þ ¼ �. A pictorial representation of this result is given in
Fig. 1, which shows that the ODE is a closer approximation
to sample paths of XnðtÞ=n for increasingly large n, with
excellent accuracy at n ¼ 1;000.

3 POPULATION-BASED SEMANTICS

3.1 Preliminary Definitions

The interpretation of a PEPA model against the population-
based structured operational semantics begins with con-
sidering a system equation which does not record the
multiplicities of independent replicated sequential compo-
nents. Any PEPA component may be compacted in such a
way. Here we use isomorphism to establish whether two
distinct sequential components are equivalent—this notion
requires that the derivation graphs of the two components
be equal.

Definition 2 (Reduced Context). The reduced context of a
PEPA component P , denoted by redðP Þ, is recursively defined
as follows:

redðð�; rÞ:P Þ ¼ ð�; rÞ:P
redðP þQÞ ¼ P þQ

red A ¼def P
� 	

¼ redðP Þ

redðP ./
L

P 0Þ

¼

redðP Þ;
if L ¼ ; ^ P ¼ P 0
^ P; P 0 are sequential components

redðP Þ ./L redðP 0Þ; otherwise

8>><
>>: redðP=LÞ

¼ redðP Þ=L:

The reduced context considers one representative single
sequential component P in place of the cooperation P k P 0
if the two cooperating processes are isomorphic sequential
components. Thus, because of this equivalence relation
between these components, the first case for the cooperation
operator in Definition 2 could also read redðP 0Þ. Clearly, the
two arrays P ½NP � and Q½NQ� in Example 1 are recursively
reduced to single sequential components P and Q, respec-
tively, and

redðSystem1Þ ¼ P
./

f�g
Q; ð18Þ

as illustrated above. Notice that the same context
reduction (18) would be obtained if the system equation
was replaced with

ðP ½NP �KP �kP 0½KP �Þ
./

f�g
ðQ½NQ �KQ�kQ0½KQ�Þ; ð19Þ

for any 1 � KP � NP and 1 � KQ � NQ. Indeed the ðNP �
KP Þ components of type P would be reduced to P as before.
Furthermore, the cooperation P k P 0 would be reduced to P
as well since P and P 0 are isomorphic because they are two
local derivatives of the same sequential component. Similar
arguments hold for the isomorphism between Q and Q0.
Therefore, the two model equations will give rise to the
same underlying ODE although with two different initial
value problems, as determined by the population levels
specified in the equations.

It is worthwhile pointing out that Definition 2 also allows
for two or more instances of a sequential component to
appear in the reduced context of a PEPA model. For
example, we have that

redðP ½NP �
./

f�g
Q½NQ�kP ½N 0P �Þ ¼ P

./

f�g
QkP:

This supports the intuitive observation that the leftmost
array of P components will behave differently from the
rightmost array. In this instance, the action � of the former
array is executed in cooperation with a Q component,
whereas it is an independent action with regard to the latter
array because of the empty cooperation set.

In the remainder of this paper, we consider a PEPA
model for which the reduced context, hereinafter denoted
by M, is already known. This minimal form contains the
necessary information to determine the state descriptor in
NVF, and is analogous to a Petri net without any marking.

Definition 3 (Numerical Vector Form). Let NC be the number
of distinct sequential components inM. LetCi be the derivative
set of the ith component, i ¼ 1; 2; . . . ; NC , and letNi be its size,
i.e., Ni ¼ jCij. Let Ci;j denote the jth derivative of the
ith component, j ¼ 1; 2; . . . ; Ni. The state descriptor in the
NVF, denoted by � 2 INd

0, d ¼
PNC

i¼1 Ni, assigns a coordinate,
denoted by �i;j, to each local derivative Ci;j and indicates the
number of copies in the system which exhibit that derivative.

Definition 4 (Initial State of the CTMC). The initial state of
the CTMC is denoted by � 2 INd

0 and gives an initial
population level �i;j
 0 to each local derivative Ci;j. Without
loss of generality, we exclude the case in which all of the
derivatives of a sequential component are set to 0, by
subjecting � to the condition

PNi

k¼1 �i;k > 0, for all i.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

Fig. 1. x1ðtÞ, i.e., the solution to the ODE (17) giving the time-course
evolution of the density of component P in Example 1. One realization of
the scaled Markov chain XnðtÞ=n over the first three time units becomes
closer to the deterministic estimate as n increases. Parameter set:
p ¼ 1:0, p0 ¼ 0:5; q ¼ 2:0, q0 ¼ 4:0, � ¼ ð2; 0; 1; 0Þ.

Sometimes the element �i;j is conveniently referred to by a
single subscript �k, i.e., we assume an implicit mapping of
each sequential component Ci;j to a coordinate 1 � k � d in
the population vector. For instance, with regard to Example 1,
NC ¼ 2, C1 ¼ fP; P 0g, and C2 ¼ fQ;Q0g. Furthermore, we use
the following mappings: C1;1 7! P , C1;2 7! P 0, C2;1 7! Q,
C2;2 7! Q0. Assuming the same ordering as in (9), the initial
state in Example 1 is ðNP ; 0; NQ; 0Þ, whereas it is ðNP �
KP ;KP ;NQ �KQ;KQÞ in (19).

As with the Markovian interpretation, at the core of this
semantics is the notion of apparent rate. Here this concept is
modified to take into account the interpretation of the
reduced context described above.

Definition 5 (Parametric Apparent Rate). Consider a processP
composed of sequential components Ci;j. The parametric
apparent rate of action type � in component P , denoted by
r?�ðP; �Þ, defines the overall rate at which the action type � can
be performed by component P as a function of the population
sizes � of the sequential components of the system:

r?�
�
P
./

L
Q; �

�
¼

min
�
r?�ðP; �Þ; r?�ðQ; �Þ

�
if � 2 L

r?�ðP; �Þ þ r?�ðQ; �Þ if � 62 L

(

r?�ðP=L; �Þ ¼
r?�ðP; �Þ if � 62 L
0 if � 2 L

�

r?�ðCi;j; �Þ ¼
XNi

k¼1

r�ðCi;kÞ�i;k:

The first two cases are structurally and syntactically
similar to their counterparts in the Markovian semantics,
r�ðP ./L QÞ and r�ðP=LÞ. For a sequential component of the
reduced context, the definition of parametric apparent rate
exploits the property in (1) that it can be expressed as the
product of the population size and the apparent rate of a
single sequential component. In addition, the behavior of
the other derivatives in the same derivative set of Ci;j is
taken into account because of the interpretation of M. As
already discussed, each sequential component in M
represents an array of identical components, evolving
through the local derivatives Ci;k, 1 � k � Ni. In any state
of the CTMC there may be one or more components
exhibiting each such derivative. These components will
compete to participate in a shared action �, and the
probability that the action is completed by each derivative
will be proportional to the population level of that
derivative and the individual rate of execution. Thus, the
apparent rate calculated in this manner reflects the potential
contribution to the action by any concurrent sequential
component. As observed in (2), the summation is legitimate
due to the property of additivity which holds for the
apparent rates for noncooperating components.

The set of functions generated by r?�ð�; �Þ is denoted by
F ¼ ½IRd�!IR
0�, a function space with values in the
nonnegative reals because passive actions are not allowed.

3.2 Structured Operational Semantics

The population-based parametric structured operational
semantics for PEPA is shown in Table 3. Let C be the set of
PEPA processes composed by Ci;j. Let L be the labeling
alphabet, i.e., L ¼ A� F . The rules induce a parametric

multitransition system, ðC;L;!?Þ;!?� C � L � C, which re-
cords the multiplicity of a transition between two compo-
nents. As with the Markovian semantics of PEPA, this
requirement is necessary in order to calculate the transition
rates correctly.

The rule for sequential components S?0 constructs the
relationship between the two semantics. The premise is a
transition of the Markovian semantics for a single
sequential component. By construction of C the right
hand side of the transition is in the same derivative set,
i.e., Ci;j�!

ð�;rÞ
Ci0;j0) i ¼ i0. Such a transition is said to be

promoted to an inference for the population-based seman-
tics—the premise describes the behavior of a single
sequential component, whereas the conclusion gives the
collective dynamics of the population of components Ci;j.
This population evolves at an overall rate which is the
product of the individual rate and the number of
components exhibiting this local derivative.

The other rules are syntactically similar to their counter-
parts in the Markovian semantics. However, in all cases the
derivations carry as rates functions of F instead of reals.
The following derivation tree gives a transition for the
shared activity with regard to the reduced context of
Example 1.

TRIBASTONE ET AL.: SCALABLE DIFFERENTIAL ANALYSIS OF PROCESS ALGEBRA MODELS 7

TABLE 3
Population-Based Parametric Structured Operational

Semantics of PEPA

Transitions are denoted by the symbol �!? to distinguish them from the
Markovian transitions in PEPA which carry reals instead of functions.

P �!ð�;pÞ P 0

P��������!?
ð�;p�1;1Þ

P 0
S?0

Q �����!ð�;qÞ Q0

Q�������!
ð�;q�2;1Þ

?Q0
S?0

P ./
f�gQ ���������!

�;min p�1;1;q�2;1ð Þð Þ
?P 0 ./f�gQ

0
C?

2: ð20Þ

The following two examples present cases which could
not be handled by the deterministic interpretation of [8].
The rules for cooperation can be used to derive the rate for
shared actions which can be performed by two distinct local
derivatives of the same sequential component, as shown by
P in the following.

Example 2. (Distinct Local States Enabling the Same

Activity Type).

�1;1 P ¼def ð�; pÞ:P 0

�1;2 P 0 ¼def ð�; p0Þ:P 00

�1;3 P 00 ¼def ð�; p00Þ:P
�2;1 Q ¼def ð�; qÞ:Q0

�2;2 Q0 ¼def ð�; q0Þ:Q
System2 ¼def P ½NP � ./f�gQ½NQ�

(Alongside the process definitions are the corresponding

coordinates in the population vector.) The local deriva-

tives P and P 00 perform the shared action at parametric

rate �1;1p and �1;3p00 , respectively. Similarly, the parametric

rate for Q is �2;1q. Rule C?
2 says that each local state

evolves at a rate which is weighted by their relative

probabilities of execution, i.e., �1;1p=ð�1;1pþ �1;3p00 Þ and

�1;3p00=ð�1;1pþ �1;3p00 Þ.
Rules C?

0 and C?
1 allow two distinct sequential compo-

nents not to cooperate over the set of shared action types, as

illustrated by the following example.

Example 3. (Implicit Choice).

�1;1 P ¼def ð�; pÞ:P 0

�1;2 P 0 ¼def ð�; p0Þ:P
�2;1 R ¼def ð�; rÞ:R0

�2;2 R0 ¼def ð�; r0Þ:R
�3;1 Q ¼def ð�; qÞ:Q0

�3;2 Q0 ¼def ð�; p0Þ:Q
System3 ¼def ðP ½NP �kR½NR�Þ ./f�gQ½NQ�:

Components P and R may both perform an activity of

type �, although the system equation does not enforce

synchronization between them because their cooperation

set is empty. In our semantics, two deduction trees for � can

be inferred which represent the interactions between

components P and Q, and R and Q. The deduction tree

for the interaction between P and Q is

P���!
ð�;pÞ

P 0

P �������!
ð�;p�1;1Þ

? P 0
S?0

PkR����!
ð�;p�1;1Þ

?P 0kR
C?

0
Q�!
ð�;qÞ

Q0

Q����!
ð�;q�3;1Þ

?Q0
S?0

ðPkRÞ ./f�gQ ����!
ð�;r0ð�ÞÞ

? ðP 0kRÞ ./f�gQ0
C?

2;

where

r0ð�Þ ¼ p�1;1

r?�ðPkR; �Þ
q�3;1

r?�ðQ; �Þ
minðr?�ðPkR; �Þ; r?�ðQ; �ÞÞ

¼ p�1;1

p�1;1 þ r�2;1
minðp�1;1 þ r�2;1; q�3;1Þ:

The deduction tree for the transition,

ðPkRÞ ./
f�g

Q ����!ð�;r00ð�ÞÞ
?ðPkR0Þ ./

f�g
Q0;

can be similarly inferred in the obvious way, where

r00ð�Þ ¼ p�2;1

p�1;1 þ r�2;1
minðp�1;1 þ r�2;1; q�3;1Þ:

Notice that r0ð�Þ þ r00ð�Þ ¼ minðp�1;1 þ r�2;1; q�3;1Þ, which
represents the total activity rate for �.

3.3 Parametric Derivation Graph

All of the inference trees presented in the previous section are
concerned with the derivation of transitions from the initial
stateM. However, this information is not sufficient to obtain
the behavior of the entire system under consideration,
because the derivatives of the initial state under the
Markovian semantics only give the first-step behavior of
the process. The collective behavior of the system is
represented by the notions of derivative set and derivation
graph of M in the population-based semantics, which are
defined in a similar way to their counterparts in the
Markovian semantics.

Definition 6 (Parametric Derivative Set). The parametric
derivative set ofM, denoted by ds?ðMÞ, is the smallest set of
PEPA components which satisfies the following conditions:

. M2 ds?ðMÞ,

. If P 2 ds?ðMÞ and there exists P ���!?
ð�;rð�ÞÞ

P 0, then
P 0 2 ds?ðMÞ.

Notice that the indicator function can be applied to each
P 2 ds?ðMÞ because it is a composition through the
combinators of PEPA of sequential components Ci;j, each
of which has the coordinate ði; jÞ in the NVF by Definition 3.
We use the following notion of indicator function to obtain
the local states exhibited by a derivative in ds?ðMÞ.
Definition 7 (Indicator Function). Let 1i;j 2 INd

0 denote a
vector whose elements are all zero except for the coordinate
corresponding to the derivative Ci;j, which is set to one. Let
P 2 ds?ðMÞ. The indicator of P , denoted by indðP Þ, returns a

vector whose nonzero elements correspond to the indices in the
population vector of the sequential components in P . It is
defined as follows:

indðCi;jÞ ¼ 1i;j;

indðA ¼def P Þ ¼ indðP Þ;

indðP ./
L
QÞ ¼ indðP Þ þ indðQÞ;

indðP=LÞ ¼ indðP Þ:

For instance, in Example 1 we have that indðP ./
f�gQÞ ¼

ð1; 0; 1; 0Þ.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

The derivative set ds?ðMÞ is of crucial importance for the
development of the population-based semantics. Each
derivative P 2 ds?ðMÞ identifies a specific kind of behavior,
i.e., the interactions amongst the sequential components
when they exhibit the local states indicated by indðP Þ. For
instance, in Example 1 the semantics will give transitions
for the generic state

ðP ½�1;1�kP 0½�1;2�Þ
./

f�g
ðQ½�2;1�kQ0½�2;2�Þ; ð21Þ

although the component P ./
f�gQ subsumes information only

about the transitions between the �1;1 components in state P
and the �2;1 components in state Q. As observed above (cf.
(8)), the transition between each such pair of sequential
components can be expressed parametrically as a function
of their population levels and the behavior of the individual
sequential components involved. The other kinds of
behavior which are simultaneously enabled by (21) are
obtained by the other elements of ds?ðMÞ.

In Example 1, the inference tree in (20) implies

P 0 ./f�gQ
0 2 ds?ðMÞ. The transitions from this component

are concerned with the interactions between the �1;2

components exhibiting state P 0 and the �2;2 components in

state Q0. These can be obtained from the following two

inference trees:

P 0 �!
ð�;p0 Þ

P

P 0����!
ð�;p0�1;2Þ

? P

P 0 ./f�gQ
0 ���!
ð�;p0�1;2Þ

? P ./
f�gQ

0
; ð22Þ

Q0���!ð�;q
0 Þ
Q

Q0����!
ð�;q0�2;2Þ

?Q

P 0 ./f�gQ
0 ����!
ð�;q0�2;2Þ

?P 0 ./f�gQ
: ð23Þ

The construction of the parametric derivative set is

completed by the inference of the transitions for P ./
f�gQ

0

and P 0 ./f�gQ:

Q0 �!
ð�;q0 Þ

Q

Q0����!
ð�;q0�2;2Þ

? Q

P ./
f�gQ

0 ���!
ð�;q0�2;2Þ

?P ./
f�gQ

; ð24Þ

P 0��!
ð�;p0 Þ

P

P 0����!
ð�;p0�1;2Þ

?P

P 0 ./f�gQ ����!
ð�;p0�1;2Þ

?P ./
f�gQ

: ð25Þ

Finally, the notion of parametric derivation graph encom-
passes the complete behavior of the system.

Definition 8 (Parametric Derivation Graph). Given a
parametric derivative set ds?ðMÞ, the parametric derivation
graph of M, denoted by D?ðMÞ, is a labeled directed
multigraph ðV ;AÞ with vertices V 2 ds?ðMÞ and arcs A 2
ds?ðMÞ � L � ds?ðMÞ where the number of occurrences of
an arc, denoted by m, is equal to the number of distinct
inference trees for a transition.

The inference trees (20), (22), (23), (24), and (25) give rise
to the parametric derivation graph depicted in Fig. 2 (each
arc has multiplicity one).

3.4 Extraction of the Generating Functions

The arcs of the parametric derivation graph can be used

to construct the generating functions of the underlying

population-based CTMC, as straightforwardly as the

derivation graph in the original semantics gives rise to

the underlying Markov process. An arc P ���!?
ð�;rð�ÞÞ

P 0 2 A
implies a generating function in the form ’�ð�; lÞ ¼
m � rð�Þ, where m is the multiplicity of the arc and the

jump vector l indicates the sequential components whose

population levels change due to the transition. The jump

vector is taken from the inspection of the source and

target components of the transition. The population levels

of sequential components in the source component are

subjected to a decrease by one (cf. (9)). Correspondingly,

the population levels in the target component are

increased by the same quantity. This is captured by the

following definition.

Definition 9 (Extraction of the Generating Functions). Let
M be a PEPA model with parametric derivative graph
D?ðMÞ. The generating functions of the underlying popula-
tion-based CTMC are as follows:

’�ð�; lÞ ¼
m � rð�Þ if 9P ���!ð�;rð�ÞÞ

? P 0 2 A and
l ¼ 0d � indðP Þ þ indðP 0Þ

0 otherwise;

8><
>:

where 0d is the zero-vector in ZZd.

It is possible to verify that the generating functions
derived according to this definition coincide with those
formulated in (14)-(16) for Example 1. Notice that two
distinct transitions in the parametric derivation graph may
give rise to the same generating functions. For instance, (22)
and (25) imply the generating function (15). However, both
transitions express the same kind of behavior, i.e., the
possibility for components of kind P 0 to perform action �,
regardless of the states of the components in the right hand
side of the cooperation. As discussed in Section 2, the fact
that the components exhibiting states Q and Q0 are not
involved in this transition is reflected by their correspond-
ing elements in the jump vector being equal to zero. This
property emerges from the calculation of the jump vector in

TRIBASTONE ET AL.: SCALABLE DIFFERENTIAL ANALYSIS OF PROCESS ALGEBRA MODELS 9

Fig. 2. Parametric derivation graph of Example 1.

Definition 9, as any sequential component which is present
in both sides of a transition is such that the negative entry
�1 (due to the presence in the lhs) cancels out the positive
entry þ1 (due to the presence in the rhs) in the component’s
corresponding coordinate. (A similar remark can be applied
to the symmetric case of (23) and (24), which define the
same function (16).)

4 FLUID LIMIT OF THE CTMC

This section is concerned with verifying that the popula-
tion-based semantics satisfies the conditions of Theorem 1.

4.1 Density Dependency

In order to prove (12), we begin by proving the following
property for parametric apparent rates.

Lemma 1. Let r?�ðP; �Þ be the parametric apparent rate of action
type � in process P . For any n 2 IN and � 2 A,

r?�ðP; �Þ ¼ n � r?�ðP; �=nÞ:

Proof. We proceed by structural induction over Definition 5.
For the base case, we have that

r?�ðCi;j; �Þ ¼
XNi

k¼1

r�ðCi;kÞ�i;k ¼ n
XNi

k¼1

r�ðCi;kÞ�i;k=n ¼

¼ n � r?�ðP; �=nÞ:

The inductive step follows by observing that density
dependency is preserved by the functions min and
summation. tu
This lemma is used to prove that the same property is

enjoyed by the parametric rates which label the transitions
in the new semantics.

Lemma 2. If P���!ð�;rð�ÞÞ
? Q, then, for any n 2 IN,

rð�Þ ¼ n � rð�=nÞ.
Proof. We prove this by structural induction over the

structured operational semantics in Table 3. The base case
S?0 is obvious. The less straightforward case is that of rule
C?

2 where the rate function does not carry over to the
conclusion. Combining the induction hypothesis on r1ð�Þ
and r2ð�Þ and the previous lemma for r?�ðP; �Þ and r?�ðQ; �Þ:

rð�Þ ¼ r1ð�Þ
r?�ðP; �Þ

r2ð�Þ
r?�ðQ; �Þ

minðr?�ðP; �Þ; r?�ðQ; �ÞÞ

¼ n � r1ð�=nÞ
n � r?�ðP;�=nÞ

n � r2ð�=nÞ
n � r?�ðQ;�=nÞ

�min n � r?�ðP;�=nÞ; n � r?�ðP; �=nÞ
� �

¼ r1ð�=nÞ
r?�ðP; �=nÞ

r2ð�=nÞ
r?�ðQ; �=nÞ

� n �minðr?�ðP; �=nÞ; r?�ðP; �=nÞÞ ¼ nrð�=nÞ:
ut

Observing that ’ðx; lÞ is a summation of functions which
satisfy the previous lemma, the following proposition holds.

Proposition 1. Let M be a PEPA model with generating
functions ’ðx; lÞ derived according to Definition 9. The
elements of the generator matrix are such that they verify (12).

4.2 Lipschitz Continuity

Observing that Lipschitz continuity is preserved by
summation, in order to verify that the vector field (10) is
Lipschitz it suffices to prove that any parametric rate
generated by the semantics is Lipschitz. This property will
be used to satisfy condition 2a of Theorem 1. As with
density dependence, we check that the property holds for
apparent rates.

Lemma 3. Let r?�ðP; �Þ be the parametric apparent rate of action
type � in process P . There exists a constant L 2 IR such that
for all x; y 2 IRd, x 6¼ y,

kr?�ðP; xÞ � r?�ðP; yÞk
kx� yk � L:

Proof. This is proven by using the supremum norm kxk ¼
maxijxij and structural induction over the Definition 5.

Base case:

kr?�ðCi;j; xÞ � r?�ðCi;j; yÞ ¼
XNi

k¼1

r�ðCi;kÞðxi;k � yi;kÞ

�
XNi

k¼1

r�ðCi;kÞkx� yk:

Inductive Step:
Case r?�ðP L

ffl
Q;�Þ ¼ minðr?�ðP;�Þ; r?�ðQ;�ÞÞ, � 2 L, fol-

lows because the minimum of two Lipschitz functions
(by the induction hypothesis) is also Lipschitz.

Case r?�ðP L
ffl
Q;�Þ ¼ r?�ðP;�Þ þ r?�ðQ;�Þ, � 62 L. This is

Lipschitz with constant L ¼ LP þ LQ, where LP and LQ
are the Lipschitz constants of P and Q, respectively,
which exist by the induction hypothesis.

Case r?�ðP=L;�Þ. The function 0 is Lipschitz. The other
case follows by the induction hypothesis. tu

Lemma 4. If P���!ð�;rðxÞÞ
? P

0, then rðxÞ � r?�ðP; xÞ.
Proof. We prove this by structural induction. The most

interesting case is that of cooperation.
Rule C?

0 (Rule C?
1 is symmetric):

rðxÞ ¼ r1 � r?�ðP; xÞ

� r?�ðP; xÞ þ r?�ðQ; xÞ � r?� P L
ffl
Q; x

� 	
:

Rule C?
2:

rðxÞ ¼ r1ðxÞ
r?�ðP; xÞ

r2ðxÞ
r?�ðQ; xÞ

minðr?�ðP; xÞ; r?�ðQ; xÞÞ

� 1 � 1 �minðr?�ðP; xÞ; r?�ðQ; xÞÞ � r?� P L
ffl
Q; x

� 	
:

ut

By combining Lemmas 3 and 4, by structural induction
over the semantic rules,

Proposition 2. If P���!ð�;rðxÞÞ
? P

0, then rðxÞ is Lipschitz continuous.

These results establish that the parametric rates are
globally Lipschitz in IRd. Thus, in Theorem 1, Condition 1 is
satisfied and 2a holds for any open E � IRd.

Theorem 2. Let xðtÞ, 0 � t � T , satisfy the initial value problem
_x ¼ F ðxðtÞÞ, xð0Þ ¼ �, specified from a PEPA model according

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

to (10) and Definition 4. Let fXnðtÞg be a family of CTMCs

with parameter n 2 IN generated according to Definition 9 and

let Xnð0Þ ¼ n � �. Then,

8" > 0 lim
n!1

IP sup
t�T
kXnðtÞ=n� xðtÞk > "

� �
¼ 0:

Proof. This proof is only sketched here because it relies
heavily on the theory developed in [6], which is not fully
reported here due to space limitations. This proof is
based on verifying that the conditions of Theorem 1 are
satisfied for any PEPA model. The main technical
difficulty consists in finding an open set E � IRd such
that the hypotheses of the theorem are verified, in
particular that it holds xðtÞ 2 E, 0 � t � T . However,
according to the proof of Theorem 1 provided in [6], this
is a sufficient condition to prove that there exists � > 0
such that, for every n,

En \ y 2 IRd : inf
t�T
ky� xðtÞk � �

� �
2 E; ð26Þ

where En ¼ f�=n : � is a state of XnðtÞg (cf. [6, Theo-
rem 2.11], of which Theorem 1 is a specialization for

density-dependent chains). However, observe that for
any PEPA model, the trajectory of XnðtÞ is bounded

because, for all n, the sum of the population levels of all
components in all states is constant; in particular, it is

equal to the sum of the initial population levels, i.e.,

Xd
k¼1

�k ¼ n
Xd
k¼1

�k:

Letting � ¼
Pd

k¼1 �k and recalling that �i
 0, 1 � i � d,

we have that

0 � �i
n
�
Pd

k¼1 �k
n

� �:

Thus, for any PEPA model, (26) is verified for any � if E

is the smallest open set which contains fy 2 IRd : 0 �
yi � �; 0 � i � dg. tu

4.3 Discussion

The result of convergence discussed above only holds for

models with active synchronization. The original seman-
tics of PEPA also allows passive activities, whose rate is
denoted by the symbol >. Informally, the meaning of a

passive component is that the rate is determined by some
other (active) cooperating component. For instance, repla-

cing the definition of Q with Q ¼def ð�;>Þ:Q0 in Example 1
yields a model in which the rate of � is determined by P

only. According to the arithmetic of passive rates
presented in [9], the analog of (8) in this case is

Rpas ¼
p

NPp

>
NQ>

minðNPp;NQ>Þ ¼
p

NQ
;

which would suggest a similar transition to (9) in the NVF
of type

ðNP ; 0; NQ; 0Þ ���!
�;NP pð Þ ðNP � 1; 1; NQ � 1; 1Þ: ð27Þ

However, unlike (9), this transition is enabled if NQ ¼ 0,
which leads to a meaningless state of the chain because one
component is negative. Instead, the presence of passive
components can be correctly captured by the following
generating function (see also [12] for a similar treatment):

’� �; �1; 1;�1; 1ð Þð Þ ¼ �1p if �2 6¼ 0
0 if �2 ¼ 0

�
However, such a function is clearly discontinuous, hence it
does not satisfy one condition for the applicability of
Kurtz’s theorem (in fact, the existence and uniqueness of the
solution is not even guaranteed by the condition of
Lipschitz continuity on the vector field).

Our semantics can be extended in order to accommodate
passive rates. With respect to this example, the strategy
consists in using a continuous generating function
’�ð�; ð�1; 1;�1; 1ÞÞ ¼ �1p and defining an exit time for the
ODE, i.e., by setting T of Theorem 2 as T ¼ infft : x1ðtÞ >
0 ^ x3ðtÞ ¼ 0g. Thus, solutions to the ODE are accepted until
the deterministic process is in such a state that there are
active components capable of carrying out the shared
actions but there are no cooperating passive components
(notice that if x1ðtÞ ¼ 0, the shared activity is not enabled,
regardless of the population level x3ðtÞ).

Our approach can also incorporate the alternative
treatment presented in [13], in which a model with passive
cooperation is translated into an equivalent one with active
synchronization, yielding better results with regard to the
agreement with the underlying Markov process. Thus, a
model with passive synchronization may be subjected to
this transformation process before our deterministic seman-
tics is applied.

5 CASE STUDY

In this section, we apply the population-based semantics of
PEPA to a more complex PEPA model. We carry out
numerical tests to assess the agreement between the
deterministic approximation and the stochastic process.

5.1 Three-Tier Distributed Application

The model, shown in Fig. 3, describes a three-tier distributed
application. The process definitions prefixed with Cl:
indicate the client behavior, which performs a synchronous
request to the system and interposes some thinking time
between successive requests. Clients communicate with
server components, denoted by the prefix Sr:, over the
shared action types request and reply. The component Sr: Wait
illustrates two classes of request. Upon receiving a request,
the information is retrieved via a database query with
probability pfresh; conversely, the server uses some cached
data with probability 1� pfresh, modeled as a reply without
access to the database. A server may also incur some
recoverable error, which requires retrieving information
from the database in order to be able to accept further
requests. When a database query is executed, the server
checks whether the information is up-to-date. With prob-
ability 1� pok, this check fails and the server forces an update
of the data set, by performing the action $write. A database
server thread, denoted by the prefix Db:, is modeled as a
two-state component. The state Db:Wait exposes the two
operations provided to the clients, while the state Db:Update

TRIBASTONE ET AL.: SCALABLE DIFFERENTIAL ANALYSIS OF PROCESS ALGEBRA MODELS 11

models some internal action which needs to be taken after
every operation. The system also comprises a robot compo-
nent, denoted by the prefix Rb:, describing the behavior of a
program which routinely writes to the database after
gathering some data (modeled via the state Rb:Gather).

This model employs all of the operators of the language

and features forms of interactions which were not allowed

in earlier approaches to deterministic approximation. In

particular, the following features were not supported in [8]:

. Sequential components participating in shared activ-
ities may specify distinct local rates (e.g., rc:request and
pfreshrs:request).

. Two distinct local derivatives of the same sequential
component may perform the same action type (e.g.,
Sr:Fresh and Sr:Repair).

. Two distinct sequential component may compete for
the same shared activitiy (e.g., Sr:Write and Rb:Write).

. Support for hiding (e.g., here, read and write need not
be seen by the client components).

The use of large population levels in models of this

kind is justified by interpreting each distinct sequential

component as a distinct process or thread of execution.

Thus, Cl : Request½Nc� indicates the total workload on the

system, and the use of parallel composition expresses

independence among the clients. Sr : Wait½Ns� is the

thread pool instantiated for the application server. Simi-

larly, Db : Wait½Nd� is the thread pool provided by the

database. Note that this model of concurrency is in
agreement with actual policies implemented by most
web and database servers.

In practice, it is not unusual to have applications with
hundreds of clients or multithreaded servers with large
pool sizes. However, such large-scale systems are difficult
to analyze due to usually rapid state space growth. For
instance, Table 4 shows the state space sizes in the NVF up
to a maximum population size of 10. Clearly, explicit state-
space enumeration makes the analysis intractable for
scenarios with larger population sizes. An alternative
approach in order to avoid onerous storage requirements
consists of employing stochastic simulation. However, if, on
the one hand, this reduces memory complexity dramati-
cally, on the other it usually involves long execution times
to compute a statistically significant number of samples.

5.2 Numerical Results

The validation tests were conducted on the following
reduced model MApp obtained from SystemApp:

MApp ¼ Cl : Request
./

frequest;replyg
ððSr : WaitkRb : GatherÞ

./

fread;writeg
Db : WaitÞ=fread; writeg:

A set of 200 randomly generated instances was constructed
by drawing the values of the rate parameters from uniform
distributions in �0; 50� and the values of the probabilities
pfresh and pok from uniform distributions in �0; 1½. The initial
densities of the local derivatives which do not appear in
MApp were set to zero. The remaining densities were chosen
at random between one and eight. Each model instance
implies a family of CTMCs fXnðtÞg and the corresponding
ODE. The dynamics of the Markov processes at n ¼ 1,
n ¼ 10, n ¼ 50, and n ¼ 100 were compared against the
solution to the ODE. As an indicative measure of the quality
of the approximation, the percentage relative errors
between the expected value of the scaled Markov process
XnðtÞ=n and the deterministic trajectory xðtÞ were calcu-
lated for each coordinate i of the NVF at any given time
point, according to the following equation:

%ErrorinðtÞ ¼
IE
�
Xi
nðtÞ=n

� xiðtÞ

IE
�
Xi
nðtÞ=n

�����

������ 100: ð28Þ

The results discussed in this section are provided for
t ¼ 20:0, arbitrarily chosen as a representative time point of
the process since similar behavior can also be observed for
other time points. The analyses were conducted using the
Pepato library, available from the PEPA Eclipse Plug-in
software package [14]. For the sake of consistency,
Gillespie’s stochastic simulation algorithm (cf. [3]) was
employed for all values of n, although in principle the
CTMCs for n ¼ 1 could be solved numerically given their
relatively small state space sizes. The simulations were

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

Fig. 3. PEPA model of a three-tier distributed application.

TABLE 4
State-Space Sizes for the Three-Tier Application Model

terminated when the 95 percent confidence intervals were
within 5 percent of the statistical averages. The ODEs were
numerically integrated using a fifth-order Runge-Kutta
solver.

The validation results are reported in Table 5. Each
coordinate of the population vector behaves quantitatively
differently. For instance, the deterministic estimates of the
database and robot components are significantly more
precise than the other sequential components. Nevertheless,
in general the average approximation errors, as well as their
variance across the validation set, decrease with n. These
results also indicate that the deterministic approximation is
sufficiently accurate for most practical purposes even at
relatively low population levels. In particular, the scale
factors n
 10 correspond to model instances with realisti-
cally sized pool sizes, i.e., hundreds of clients and server
threads. In these cases, the ODE solutions behave very well
on average, with worst-case situations which give accep-
table errors. Furthermore, as already observed in [8], ODE
analysis is much less expensive than CTMC analysis—in
this study the numerical integration of the ODE was found
to be about four orders of magnitude faster, executing in
tens of milliseconds on average.

As with any empirical assessment of this kind, the
accuracy and the execution runtimes are specific to the
validation data set under consideration. The ranges of
the model parameters were arbitrarily chosen in this study.
Different ranges (or different model structures) may lead to
particularly problematic (or particularly good) cases. More-
over, some parameter sets may give rise to stiff differential
equations which are difficult to integrate with explicit
numerical solvers. Future work shall be concerned with
these issues. A promising line of research seems to be, in the
context of PEPA, the use of theoretical error probability
bounds of density-dependent chains [15]. For a numerical
investigation into the quality of the approximation of stiff
large-scale models, the interested reader is referred to [16].

6 RELATED WORK

The earlier work on the deterministic approximation of
Markovian PEPA is due to Hillston [8]. In addition to the
syntactical restrictions to the language discussed in
Section 5.1, another major difference between our work

and [8] concerns methodological aspects. Instead of an
operational semantics for the language, [8] presents an
algorithm for automatic generation of the ODE based on
static inspection of the PEPA description which is not
related to a corresponding CTMC. An alternative determi-
nistic interpretation of PEPA in the style of [8] has been
proposed in [17] for applications to epidemiology, albeit
still with the aforementioned restrictions. The use of
differential equations as the underlying mathematics of
PEPA first appeared in the context of computational system
biology in [18], where the authors present a methodology
for the extraction of differential equations using a semantics
called the reagent-centric view. This approach deviates
significantly from the original interpretation of PEPA—
most notably, the semantics of synchronization captures the
biologically interesting mass action kinetics as opposed to
the standard notion of bounded capacity. Furthermore, unlike
our approach, a sequential component does not represent a
single entity of the system; rather, it is the abstraction of a
concentration level of a species. This accomplishes an
orthogonal goal with respect to ours, as the semantics
associates a sequential component with an entire popula-
tion instead of a single entity. Bounded capacity and mass
action kinetics semantics for fluid models are merged in
[19], in which a slight extension to the cooperation
operation is provided to model signaling pathways which
exhibit both kinds of reaction laws. An important contribu-
tion of this work is that the Markov process generated from
the pathway-centric style of [20] is shown to converge in the
limit to the underlying ODE by using Kurtz’s results [6].
Density dependency and the interpretation of the ODE as
the fluid limit of Markov process is also investigated in [21],
in which some assumptions on the syntactical structure of
the PEPA models are not removed and the generation of
ODE is described algorithmically.

Apart from the context of PEPA, Cardelli has investigated
the relationship between the deterministic and the discrete-
state representation of the Chemical Ground Form, a process
algebra designed for the modeling of chemical reactions [22].
In [23], Bortolussi and Policriti investigate the differential
approximation of models of biochemical models using the
stochastic Concurrent Constraint Programming process algebra.

TRIBASTONE ET AL.: SCALABLE DIFFERENTIAL ANALYSIS OF PROCESS ALGEBRA MODELS 13

TABLE 5
Comparison between the Expected Value of the Markov Process and the ODE Solution at Time t ¼ 20:0

For each value of n and each coordinate in the NVF are listed the average percentage relative errors and the 5th and 95th percentiles across the
validation set of 200 randomly generated model instances.

A general modeling framework which exploits results
of asymptotic convergence of stochastic processes to a
differential-equation model is that of mean-field analysis
(cf. [24] and the bibliography therein). Similarly to our
approach, it infers the collective (continuous) dynamics of
a system from the description of a single participating
object, which evolves through a (discrete) set of states.
Mean-field analysis lends itself well to situations in which
all objects have the same behavior—indeed, it has been
employed in performance studies of peer-to-peer protocols
[25], [26]—and it easily allows for the modeling of
communication between components of the same kind.
Such a form of interaction is not available within the fluid-
flow framework of PEPA because at its core is the notion
of independence among components of an array. How-
ever, the semantics of our approach can be more readily
used in cases where distinct kinds of interacting objects are
to be considered.

7 CONCLUSIONS

This paper has presented a formal semantic account of the
deterministic approximation of the stochastic process
algebra PEPA, encompassing previous work on this topic
and substantially extending the applicability to models with
arbitrary structure. The modeling paradigm of PEPA is
suited to capturing the behavior of software systems
consisting of interactions between replicated components,
as may be the case in multiprocess applications serving
many customers. The result of asymptotic convergence
relates the (computationally easy) solution of an underlying
ODE to the Markov process obtained from the same process
algebraic description, guaranteeing that the differential
trajectory is an exact approximation. Furthermore, numer-
ical tests on a model of a large three-tier distributed
application gave confidence on the applicability of this
analysis in realistically sized large-scale models.

ACKNOWLEDGMENTS

This work has been partially supported by the EU-funded
project SENSORIA, IST-2005-016004. Jane Hillston is sup-
ported by EPSRC ARF EP/c543696/01.

REFERENCES

[1] W. Stewart, Introduction to the Numerical Solution of Markov Chains.
Princeton Univ. Press, 1994.

[2] A.L. Reibman and K.S. Trivedi, “Numerical Transient Analysis of
Markov Models,” Computers and Operations Research, vol. 15, no. 1,
pp. 19-36, 1988.

[3] D.T. Gillespie, “Exact Stochastic Simulation of Coupled Chemical
Reactions,” The J. Physical Chemistry, vol. 81, no. 25, pp. 2340-2361,
1977.

[4] M.Z. Kwiatkowska, G. Norman, and D. Parker, “Stochastic Model
Checking,” SFM, M. Bernardo and J. Hillston, eds., pp. 220-270,
Springer 2007.

[5] P. Buchholz, “Exact and Ordinary Lumpability in Finite Markov
Chains,” J. Applied Probability, vol. 31, no. 1, pp. 59-75, 1994.

[6] T.G. Kurtz, “Solutions of Ordinary Differential Equations as
Limits of Pure Markov Processes,” J. Applied Probability, vol. 7,
no. 1, pp. 49-58, Apr. 1970.

[7] M. Mitzenmacher, “The Power of Two Choices in Randomized
Load Balancing,” PhD dissertation, Department of Computer
Science, Univ. of California, 1996.

[8] J. Hillston, “Fluid Flow Approximation of PEPA Models,” Proc.
IEEE Second Int’l Conf. the Quantitative Evaluation of Systems,
pp. 33-43, Sept. 2005.

[9] J. Hillston, A Compositional Approach to Performance Modelling.
Cambridge Univ. Press, 1996.

[10] J. Hillston, “The Nature of Synchronisation,” Proc. Second Int’l
Workshop Process Algebras and Performance Modelling, pp. 51-70,
Nov. 1994.

[11] S. Gilmore, J. Hillston, and M. Ribaudo, “An Efficient Algorithm
for Aggregating PEPA Models,” IEEE Trans. Software Eng., vol. 27,
no. 5, pp. 449-464, May 2001.

[12] J. Bradley, S. Gilmore, and J. Hillston, “Analysing Distributed
Internet Worm Attacks Using Continuous State-Space Approx-
imation of Process Algebra Models,” J. Computer and System
Sciences, vol. 74, no. 6, pp. 1013-1032, Sept. 2008.

[13] R.A. Hayden and J.T. Bradley, “Evaluating Fluid Semantics for
Passive Stochastic Process Algebra Cooperation,” Performance
Evaluation, vol. 67, no. 4, pp. 260-284, 2010.

[14] M. Tribastone, A. Duguid, and S. Gilmore, “The PEPA Eclipse
Plug-In,” Performance Evaluation Rev., vol. 36, no. 4, pp. 28-33, Mar.
2009.

[15] R. Darling and J. Norris, “Differential Equation Approximations
for Markov Chains,” Probability Surveys, vol. 5, pp. 37-79, 2008.

[16] M. Tribastone, “Relating Layered Queueing Networks and
Process Algebra Models,” Proc. First Joint WOSP/SIPEW Int’l Conf.
Performance Eng., pp. 183-194, 2010.

[17] S. Benkirane, J. Hillston, C. McCaig, R. Norman, and C. Shank-
land, “Improved Continuous Approximation of PEPA Models
through Epidemiological Examples,” Electronic Notes in Theoretical
Computer Science, vol. 229, no. 1, pp. 59-74, 2009.

[18] M. Calder, S. Gilmore, and J. Hillston, “Automatically Deriving
ODEs from Process Algebra Models of Signalling Pathways,” Proc.
Computational Methods in Systems Biology, 2005.

[19] N. Geisweiller, J. Hillston, and M. Stenico, “Relating Continuous
and Discrete PEPA Models of Signalling Pathways,” Theoretical
Computer Science, vol. 404, nos. 1/2, pp. 97-111, 2008.

[20] M. Calder, S. Gilmore, and J. Hillston, “Modelling the Influence of
RKIP on the ERK Signalling Pathway Using the Stochastic Process
Algebra PEPA,” Trans. Computational Systems Biology, vol. 4230,
pp. 1-23, 2006.

[21] J. Ding and J. Hillston, “Convergence of the Fluid Approximation
of PEPA Models,” Proc. Seventh Workshop Process Algebra and
Stochastically Timed Activities, 2008.

[22] L. Cardelli, “On Process Rate Semantics,” Theoretical Computer
Science, vol. 391, no. 3, pp. 190-215, 2008.

[23] L. Bortolussi and A. Policriti, “Stochastic Concurrent Constraint
Programming and Differential Equations,” Electronic Notes Theo-
retical Computer Science, vol. 190, no. 3, pp. 27-42, 2007.

[24] M. Benaı̈m and J.-Y.L. Boudec, “A Class of Mean Field Interaction
Models for Computer and Communication Systems,” Performance
Evaluation, vol. 65, nos. 11/12, pp. 823-838, 2008.

[25] A. Chaintreau, J.-Y.L. Boudec, and N. Ristanovic, “The Age of
Gossip: Spatial Mean Field Regime,” SIGMETRICS/Performance,
J.R. Douceur, A.G. Greenberg, T. Bonald, and J. Nieh, eds.,
pp. 109-120, 2009.

[26] R. Bakhshi, L. Cloth, W. Fokkink, and B. Haverkort, “Mean-Field
Analysis for the Evaluation of Gossip Protocols,” Proc. IEEE Sixth
Int’l Conf. Quantitative Evaluation of Systems, pp. 247-256, 2009.

Mirco Tribastone received the computer en-
gineering degree from the University of Catania,
Italy, in 2005. He is currently working toward the
PhD degree in the School of Informatics at the
University of Edinburgh. He is the lead devel-
oper of the PEPA Eclipse Plug-in Project, which
supports a range of qualitative and quantitative
analysis methods for PEPA. His principal inter-
ests are in the quantitative evaluation of com-
puter systems using analytical models.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

Stephen Gilmore joined the University of
Edinburgh as a lecturer in October 1990, was
then promoted to senior lecturer, and is now a
reader in the School of Informatics. He was the
Edinburgh site leader for the Sensoria project,
which developed performance models of large-
scale systems and service-oriented computing.
He is a coinvestigator with Jane Hillston on the
Signal project using stochastic process algebra
for biochemical signaling pathway analysis.

Jane Hillston received the PhD degree in
computer science in 1994 from the University
of Edinburgh, where she is currently working as
a professor of quantitative modelling. Her
principal research interests are in the use of
stochastic process algebras to model and
analyze dynamic systems. She was awarded
the first Roger Needham Award in 2004 by the
British Computer Society in recognition of her
work on PEPA. She was elected to fellowship of

the Royal Society of Edinburgh in 2007.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TRIBASTONE ET AL.: SCALABLE DIFFERENTIAL ANALYSIS OF PROCESS ALGEBRA MODELS 15

