Refining internal choice in PEPA
models

Stephen Gilmore* Jane Hillston*
6th August 1996

Abstract

In a previous paper [GHH96] the authors presented a program
development technique for stochastic process algebra models which
was centred on the translation from a model into an abstract program
skeleton which presents the structural and behavioural information
from the model in programming language notation. The intention
of this work, which we continue here, is to support the methodical
development of concurrent programs from stochastic process algebra
specifications of their behaviour and performance.

1 Introduction

When deriving a concurrent program from a stochastic process algebra model
significant care must be taken to achieve the correct treatment of choices in
the model. Choices in a stochastic process algebra model represent abstract
branching in the progress of the system; this branching is resolved by race
conditions which determine the branch to be taken. Choices in the cor-
responding programming language representation are branching statements
such as case statements or, more subtly, non-deterministic branching caused
by the resolution of requests by concurrently active tasks to synchronise and
exchange information. This latter form of choice has been called implicit
choice. Three kinds of activity are found in a stochastic process algebra
model: shared active, shared passive and individual. In general, a choice in
a stochastic process algebra model could involve activities of all three kinds

*Laboratory for Foundations of Computer Science, Department of Computer Science,
The University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ,
Scotland, U.K.



although a particularly problematic case is one with a choice between activ-
ities of the same kind, namely shared active. The difficulty in this case is
that some of the activities are the same named activity although they might
be performed at different rates or lead to different derivatives. We term this
choice between two different forms of the same activity or two different out-
comes, an internal choice. The problems associated with internal choice did
not arise in our earlier paper because we placed a restriction upon choices
to ensure that they were between different activities and our translation to
a programming language representation crucially depended upon this. We
present here one approach to solving the problems associated with internal
choice and explain its significance for the class of stochastic process algebra
models to which our translation can be applied.

Structure of this paper

Our problem is related to the combined use of two formal notations, the
PEPA stochastic process algebra [Hil96b] and the Ada programming lan-
guage [Bar96]. We begin by first summarising the relevant features of these
notations. We then explain the translation process which develops an Ada
program in the form of an abstract program skeleton from a PEPA specifica-
tion. We then go on to explain the problem of internal choice and present an
example where it arises in practice when modelling a simple system compris-
ing a process and an unreliable resource. We explain how our problem can
be solved by an extension of our set of rules used in the translation process
and show that the solution is an acceptable one. The additional rules appear
in Section 5 and the existing rule set appears in the appendix. Section 8
concludes the work and outlines the future directions into which we intend
to extend this work.

2 PEPA

The basic elements of PEPA are components and activities, corresponding to
states and transitions in a Markov process. Each activity has an action type
(or simply type). Activities which are private to the component in which
they occur are represented by the distinguished action type, 7. The duration
of each activity is represented by the parameter of the associated exponential
distribution: the activity rate (or simply rate) of the activity. This parameter
may be any positive real number, or the distinguished symbol T (read as
unspecified). Thus each activity, a, is a pair («, r) where « is the action type
and r is the activity rate.



P == DS; C declarations; component

DS = declaration sequence
D
| D; DS
D = T¥S8 identifier declaration
S = sequential components
7 identifier use
| (A,R).S prefix
| S+S choice
C == concurrent components
C/L hiding, L an identifier set
| SIS co-operation pair
| S Df] C general co-operation
A =7 internal, silent activity
| indiv individual activity
| shared shared activity
R = T unspecified rate
| R real number rate
Z = identifier  alphanumeric sequence
mdiv = a,[,7,...
shared = a,B3,7,...

Figure 1: Grammar for the PEPA subset

PEPA provides a small set of combinators. These allow expressions, or
terms, to be constructed defining the behaviour of components, via the activ-
ities they undertake and the interactions between them. The grammar for
terms in PEPA is given in Figure 1. The components in a co-operation
proceed independently with any activities whose types do not occur in the
co-operation set L (these are individual activities). However, activities with
action types in the set L require the simultaneous involvement of both com-
ponents (these are shared activities). These activities are only enabled in a
synchronisation between P and () on L when they are enabled in both P
and ). The notation P || @ is used when the synchronisation set is empty.

If an activity has an unspecified rate in a component, the component is



passive with respect to that action type. This means that the component
does not influence the rate at which any shared activity occurs. The co-
operation combinator associates to the left but brackets may also be used.

A race condition governs the dynamic behaviour of a model whenever
more than one activity is enabled. This has the effect of replacing the non-
deterministic branching of classical process algebra with probabilistic branch-
ing. The probability that a particular activity completes is given by the ratio
of the activity rate to the sum of the activity rates of all the enabled activities.
Any other activities which were simultaneously enabled will be interrupted
or aborted. The memoryless property of the exponential distribution makes
it unnecessary to record the remaining lifetime in either case.

The semantics of PEPA, presented in structured operational semantics
style, are given in [Hil96b]. The underlying labelled multi-transition system
also characterises the Markov process represented by the model. The states
of the system are derivatives. The derivative set of a component is defined
recursively (see [Hil96b] for details).

The derivation graph is a graph in which syntactic terms form the nodes,
and arcs represent the possible transitions between them: the operational
rules define the form of this graph. Since the relation used in the semantic
definition is a multi-relation, the graph is a multigraph. The derivation graph
describes the possible behaviour of any PEPA component and provides a
useful way to reason about a model. It is also the basis of the construction
of the underlying Markov process: a state is associated with each node of
the derivation graph, and the transitions between states are derived from the
arcs of the graph. The transition rate between two components C; and Cj,
denoted ¢(C;, C}), is the sum of the activity rates labelling arcs connecting
node C; to node Cj. This use of the derivation graph is analogous to the

use of the reachability graph in stochastic extensions of Petri nets such as
GSPNs [ACB8&4].

3 Ada

Ada is an imperative programming language which extends Pascal-like lan-
guages with facilities for large-scale programming and real-time and concur-
rent programming. The core language which is used for programming in the
small has blocks such as procedures and functions and commands such as as-
signment, case and conditional statements and a general loop construct which
allows an exit from any point within the body. Support for programming in
the large is provided in the form of the package, which collects together
related definitions of procedures and data types, allowing the programmer to



define an interface which will hide some of these definitions while allowing
others to be accessed by other program units such as procedures and other
packages.

In Ada separate entities within a program may be implemented as tasks.
Multiple instances of a task are created by defining a task type and declaring
task variables of this type. However they have been created, tasks run, at
least conceptually, on separate processors and are independent of each other
as far as resource contention is concerned. Within a task, distinct sections
of sequential behaviour may be packaged into entries: entries in tasks are
parameterised sequences of commands and thus are analogous to procedures
in packages. There are two ways in which tasks interact with each other:

e directly, by message passing in a synchronisation known as a rendez-
vous; or

e indirectly, via shared data which is accessible to both tasks.

Clearly the rendezvous most closely matches cooperation in PEPA. In a
rendezvous one task makes a call to an entry in another task. The shared
activities of the two tasks are described within an accept statement. The
task which will be performing the work is at liberty to decide when to accept
an entry request and when to refuse. If an entry request is being refused, the
caller may decide to dispense with its call and perform other work, perhaps
even if it is only to call on another task instead. The language provides
support for this kind of queueing and reneging via the select statement. A
select statement is sometimes used together with a delay statement.

4 Translating PEPA to Ada

Much of the published work on stochastic process algebras has shown that
they can be used to model existing computer systems, not limited to only
computer software [Hol95, GHHR96]. When developing a novel software-
based system we believe that it is wise for the system developers to expend
effort on checking their designs at an early stage both for behavioural suitab-
ility and for suitable performance. Our preferred approach to this is to first
construct and analyse a stochastic process algebra model.

In moving from a stochastic process algebra model to an efficiently ex-
ecuting program in a programming language we expect that at times we
shall have to consider the relationships between different versions of the sys-
tem specification and between different intermediate designs for the system
software. When we are comparing specifications, we have an assembly of



different algebraic relations [Hil96b] which can be deployed either manually
or mechanically. We appreciate that it is perhaps unrealistic to expect to
manipulate large software components within complex systems in the same
fashion. Thus when we compare the relative performance of versions of the
system software we will automate this process as much as is possible. Thus
we will typically be comparing versions of the system software which are
instrumented with additional software monitoring.

In order to be able to make a small modification to the specification and
to assess the impact of this modification on the associated program it is
necessary to automate also some part of program development. We have
chosen to automate the implementation of concurrently executing compon-
ents at the level of an abstract Ada program. The abstract program has
the same static task structure and dynamic patterns of synchronisation and
communication as the finished system but represents computation only by
delays which reflect the expected time to execute the relevant operations. An
example which illustrates the form of abstract program which is produced
by our translation process appears in Figure 2. Notice that the buffer task
which is generated does not include the variable declaration, assignments and
parameter passing which would appear in the finished implementation. This
software development work is to be performed separately later. Instrument-
ation which is automatically added to the generated Ada program has been
omitted from the figure.

5 Internal choice

We now present an example where internal choice is used in a stochastic
process algebra model of a simple concurrent system. A similar example is
considered in [Hil96a].

Our system is composed of a professor using a printer. The printer is
unreliable and will occasionally jam with probability p. When the printer
jams it remains unavailable for use until it is repaired by the professor’s
secretary. More generally, the model represents the use of a resource—in
our case, the printer—accessed in the second phase of a two-phase process—
in our case, the professor. Generally the ‘secretary’ could be a ‘repairman’
which is perhaps a daemon process running with low priority. The two-
phase process and the repair process never interact directly*. The stochastic

*This is somewhat unrealistic in the case of the professor and her secretary but let us
simply say that we are not modelling the other interaction here. Nor, of course, are we
modelling the other important duties which the secretary will perform in the course of his
working day.



Buffer ' (Put,r).(Get,r).Buffer
Producer = (Put, T).Producer

Consumer = (Get, T).Consumer

Producer P Buffer B Consumer

{Put } {Get }
*
task body Buffer is task body Producer is
begin begin
loop loop
accept Put do Buffer.Put;
delay (1.0/r); end loop;
end Put; end Producer;
accept Get do
delay (1.0/r); task body Consumer is
end Get; begin
end loop; loop
end Buffer; Buffer.Get;
end loop;

end Consumer;

*

task body Buffer is
V: ltem;
begin
loop
accept Put(X: in Item) do
V=X,
end Put;
accept Get(X: out Item) do
X:=V;
end Get;
end loop;
end Buffer;

Figure 2: Sample PEPA input, intermediate Ada output and final imple-
mentation of the Buffer task



Professor = (write,ry).(print, T).Professor

print, (1 — p) X o). Printer +
print, p X ry).Jammed_Printer

Printer =

Jammed_Printer = (unjam, T).Printer

Secretary = (unjam,rs).Secretary

(
(
(
def (
(
(

System = (Professor || Secretary) B Printer

where S = { print, unjam }

Figure 3: A system with an unreliable resource

process algebra model of the system is shown in Figure 3.

The occurrence of an internal choice in this model is within the Printer
component. When the professor uses the printer she does so without knowing
whether or not this use will cause it to jam and require repair. From the
perspective of the professor this seems to be an internal choice made by the
printer after it had been begun printing.

Our previous translation could not process this example because it rep-
resented such choices using an Ada select statement with the initial activ-
ities of the various alternatives in the selection. These alternatives must
be distinct and in consequence our translation cannot provide a program-
ming language representation for any stochastic process algebra models with
internal choices. To address this problem we exploit the fact that our pro-
gramming language representation separates rate information from activity
types. There are two reasons why this was done:

1. the same activity may be performed at different rates at different occa-
sions perhaps representing a more costly version of an operation which
invokes garbage collection or re-balances an internal data structure;

2. there is an silent activity which has a rate but does not have a name,
corresponding to a 7 activity in the stochastic process algebra model.

For these reasons activity names are represented in our translation by named
statement blocks such as procedures or entries in tasks and rates are repres-
ented using delay statements.



5.1 A simple rule for internal choice

It might seem that the problem of handling internal choices in stochastic
process algebra models can be solved simply by bringing together two of the
rules from Appendix A. The first is the rule for (e, ).S in Section A.2 and
the second is the rule for > " (a;,t;).7; in Section A.3. However, such a
simple construction would not provide us with a sound rule and we would be
forced to add a condition on its applicability.

R; ~ E E named
Zf=1 (et,r;).R; ~ accept a do
declare A : rate_list(1..k) := (r1,...,7%);
begin
case psrf (A) is
[when i = delay (1.0/7;); E]i?:l
when others = null;
end case;
end;
end o;

The declaration at the start of the accept statement introduces an array
of dimension £ of real number values. The function psrf when given an
array containing rates r; to r; computes a pseudo-random integer value in
the range 1 to k with the correct expectation relative to these rates. The
default clause at the end of the case statement [when others . .. ]| is required
because the Ada language does not allow cases to be omitted. However,
the psrf function will always return a number in the allowed range and thus
every execution of the a activity will have an associated delay and the case
of the null [do nothing] statement will never be selected.

The condition upon the rule, R; named, requires all of the derivatives to be
identifiers in order that they have a simple translation which does not involve
further inter-task communication. It is not possible to weaken this condition,
say to include 7 actions or to allow a choice between named derivatives
because both of these have associated delays which would be conflated with
the delay associated with a in the rule above. It would however be possible
to include in the grammar for the PEPA language the restriction that every
prefix activity must be followed by a named derivative. We have chosen not to
do this because it would be an unnecessary burden in the many cases where it
is not needed. We believe that it is preferable to deal with this problem in the
place where it arises through the device of an auxiliary function, the named
predicate.



5.2 An example which does not respect naming

Consider the following simple system which is composed of two mutually
communicating tasks.

P Z (a,n).(8,T)P+(a,s).(8,T).P
Q = (a,T).(B,5)Q
Sys € p>Q

{«.B}

The component P has an internal choice. The activity a will either be per-
formed with rate r or with rate s and the calling task cannot determine
beforehand which rate will apply for any given call instance. The two oc-
currences of (3, T).P within the component P are not named and we wish
to use this example to illustrate why the naming condition which we have
added to the previous rule is needed.

Following the application of rules without respecting the naming condi-
tion would lead us to generate a programming language representation which
would deadlock. This is caused because the task P accepts an a entry re-
quest from () and within that, calls on task @) to perform activity 8. At this
time @) is of course suspended by the ¢ call to P. This is a deadlock but the
stochastic process algebra model had no deadlocks. Such a translation is not
acceptable.

The following simple re-phrasing of the model will make this example
suitable for use with the rule which we have already seen.

P = (an).P+(as).P
P 2 (B,T).P

Q = (aT)(B9)Q
Sys = P{EE}Q

Evolving to the derivative named P’ is achieved by an assignment to the
local variable which records the present derivative and thus does not involve
any further inter-task communication. However, the re-working of a model
will not always be so facile and we are motivated to produce a generally
applicable rule.

5.3 An improved rule for internal choice

The problems which arose with the previous rule could be attributed to the
more liberal use of statements within an accept. Relaxing our previous con-
vention of only permitting delay statements within an accept led to the



situation where a non-deadlocking model was translated into a deadlocking
program. We dispense with these problems by avoiding inter-task commu-
nication within an accept.

R; ~ E
Z§=1 (a,7;).R; ~ accept o do
declare A : rate_list(1..k) := (r1,...,7%);
begin choice := psrf (A);
end;

case choice is
[when i = delay (1.0/r,);]%_,
when others = null;
end case;
end o;
case choice is
(when i = f%\i]le
when others = null;
end case;

A minor disadvantage of this translation is the length of the Ada statement
sequence which is produced. A second, and more serious disadvantage is
the use of the additional variable, choice. The correctness of the translation
relies crucially upon the choice variable retaining its value between the first
inspection in the case statement within the accept statement and the second
inspection afterwards. This is clearly unproblematic in the abstract program
because the body of the first case statement contains only delay statements
and a null statement. However, as this abstract program is successively
refined towards the final system implementation, these statements will be
replaced with assignments and uses of other Ada language constructs and
care must be taken to ensure that the internal choice which was made within
the body of the accept statement is respected in the statements which follow
it. For this reason, the previous rule should always be used in preference to
the general one in any cases where it is applicable.

6 The translated model

Both of the rules for internal choice which we have shown have been added
to the PEPA to Ada translator which we have previously implemented. In
Figure 4 we show the translation of the Printer component from our model
which illustrated the unreliable resource problem. The rate constants R2 and
R3 have the values (1 — p) X ry and p X ry respectively.



task body Printer is
type states is (Jammed_Printer, Printer);
state: states := Printer;
begin
loop
case state is
when Jammed_Printer =
Secretary.unjam;
state := Printer;
when Printer =
—— an internal choice
accept print do
declare
A: rate_list(1..2) := (R2, R3);
begin
case psrf (A) is
when 1 = delay (1.0/R2); state := Printer;
when 2 = delay (1.0/R3); state := Jammed_Printer;
when others = null;
end case;
end;
end print;
end case;
end loop;
end Printer;

Figure 4: The translation produced for the Printer component

One significant change in the patterns of communication which arises be-
cause we bring together separate accept statements into a single one is that
a select statement which might otherwise have seemed to be necessary is
shown to be unnecessary and consequently omitted. This identification and
removal of unnecessary statements brings attendant benefits which simplify
the processes of reasoning about and checking the communication within the
model. We are keen to implement simplifications at this level which bring
with them a significant reduction in the complexity of the generated pro-
gramming language representation of the stochastic process algebra model.
We have not implemented some small optimisations which might make the
generated program more difficult to understand and relate back to its specific-
ation. An example of the latter kind of optimisations would be the removal



of the redundant state := Printer command in the when Printer = ... clause
in the outer case statement in Figure 4. Omitting this command brings no
attendant benefit in terms of reduction in complexity or increase in ease of
understanding and so we are not motivated to do this.

7 The translation tool

Our translator has been implemented in the Standard ML [MTH90] program-
ming language as an extension to the PEPA Workbench [GH94]. Although
Standard ML is an imperative programming language we have used only its
functional subset. The tool accepts as input a PEPA model and performs
static analysis to determine which derivatives should become Ada tasks and
which become states which these tasks adopt. Interfaces and scope informa-
tion is calculated in this phase. Using the information gathered, the dynamic
phase then implements the rules shown earlier and those in Appendix A.

8 Conclusions and future work

The identification of internal choice as a modelling construction of interest
which would appear in many stochastic process algebra models of computer
systems directed us to give special attention to occurrences of internal choice
in models. The representation of this construction in programming language
notation is sensitive to the encoding in the stochastic process algebra model
of the operations which follow the internal choice. We identified a syntactic
condition which distinguished between two frequently occurring sub-cases
and provided two rules which could be applied, in the case of the first when
the condition was satisfied and the case of the second when it was not. We
extended our existing translator tool to include these two rules.

We encountered difficulties in this part of our work which we had not
faced previously because we introduced a form of Ada accept statement
which could express multi-party synchronisation instead of the two party
synchronisation which we had previously employed. We noted that this fa-
cility, if used incautiously, could give rise to the derivation of a deadlocking
program from a non-deadlocking model. We added a condition of use to
the problematic rule in order to prevent difficulties of this kind. However,
we will be compelled to return to this problem again in the future because
we wish to allow the multi-party synchronisation which is provided in the
PEPA language and this would seem to force us to add some facility for use
of nested Ada accept statements in our generated abstract programs.



References

[ACBS4]

[Bar96]
[GHY4]

[GHHO96)

[GHHR96]

[Hil96a]

[Hil96b]

[Hol95]

[MTH90]

M. Ajmone Marsan, G. Conte, and G. Balbo. A Class of Gen-
eralised Stochastic Petri Nets for the Performance Evaluation of

Multiprocessor Systems. ACM Transactions on Computer Sys-
tems, 2(2):93-122, May 1984.

J. Barnes. Programming in Ada 95. Addison-Wesley, 1996.

S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to
Support a Process Algebra-based Approach to Performance Mod-
elling. In Proceedings of the Seventh International Conference on
Modelling Techniques and Tools for Computer Performance Eval-

uation, number 794 in Lecture Notes in Computer Science, pages
353-368, Vienna, May 1994. Springer-Verlag.

S. Gilmore, J. Hillston, and D.R.W. Holton. From SPA mod-
els to programs. In Marina Ribaudo, editor, Proceedings of the
Fourth Annual Workshop on Process Algebra and Performance
Modelling. Universita di Torino, July 1996.

S. Gilmore, J. Hillston, D.R.W. Holton, and M. Rettelbach.
Specifications in Stochastic Process Algebra for a Robot Con-
trol Problem. International Journal of Production Research,
34(4):1065-1080, 1996.

J. Hillston. A Class of PEPA Models Exhibiting Product Form
Solution over Submodels. Technical report, Department of Com-
puter Science, The University of Edinburgh, 1996.

J. Hillston. A Compositional Approach to Performance Model-
ling. Cambridge University Press, 1996.

D.R.W. Holton. A PEPA specification of an industrial produc-
tion cell. In S. Gilmore and J. Hillston, editors, Proceedings of the
Third International Workshop on Process Algebras and Perform-

ance Modelling, pages 542-551. Special Issue of The Computer
Journal, 38(7), December 1995.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard
ML. The MIT Press, 1990.



A Summary of the translation

A.1 Translation of task bodies

def

dsP={P} PXR R~R
P ~> loop R end loop;

—

dSPZ{Pi‘ISiSH} PidZEfRi Ri’\»RZ‘
P ~ loop
case state is
[when P; = E]?:l
end case;
end loop;

P, P; identifiers; R, R; expressions; ﬁj%\z statements.

A.2 Translation of simple terms

S~ S
P ~> state:=P; (o, 7).8 ~ a(r); g
S~ 8 S~ S
(7,7).5 ~ delay (1.0/r); S (a,r).S ~» accept a do
delay (/\1.0/7“);
end o; S

S~ S recipa={ P } S~ S recipa={F|1<i<n}
(a,T).S~ Po; S (a, T).S ~ loop
select
P).a; exit;
or---or
P,.a; exit;
else
null;
end select;
end loop; S

P, P; identifiers; S an expression; S a statement sequence.



A.3 Translation of choices

R~ R
Zf:l(az‘,n)-Ri ~» select
accept o1 do delay(1.0/71); end ay; Ry
or --- or

accept o, do delay(1.0/r); end ay; ]/%;
end select;

—

S; ~» SA'Z recipa; = P,

Eézl(ai, T).S; ~ loop
select

Py, .oq; Sp exit; or Pp,.oq; Sp exit; or - --

or --- or
P .oy; SA‘l exit; or P, .oy; §l exit; or ---
end select;
end loop;
T~ T,
Yot (i, t;). Ty ~  declare A : rate_list(1..m) := (t1,...,tn);
begin

case psrf (A) is
[when i = «; (t;); f@];ll
when others = null;
end case;
end;

«; distinct; R;, S;, T; expressions; ]/%\Z-, §i, j\’l statements
The symbol ~» is used to signify translation. We often write P ~» 13, re-
serving the hat symbol as a decoration for terms which have been produced
by translation. Occasionally terms are passed from the stochastic process al-
gebra model to the programming language representation unchanged. When
this occurs the terms are always only identifiers.

Several utility functions are used within these rules. Definitions of these
appear in the paper [GHH96] but we give brief explanations here for the sake
of completeness. The function ds computes the derivative set of a component.
These are the derivatives which the component can evolve to through a series
of activities. The function recip computes the recipients of an activity as
determined by analysis of scope and interface information.



