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Abstract

We show how the PEPA performance modelling language could
be extended with a feature construct which can be used to describe
modifications to PEPA models. We provide this construct with an
operational description which conservatively extends the operational
semantics of the PEPA language. We apply the feature construct in
a small case study.

1 Introduction

PEPA (Performance Evaluation Process Algebra) [1] is a performance mod-
elling notation. It is also a process algebra, a concise mathematical language
which is amenable to formal reasoning. PEPA is defined by an unambiguous
semantics which makes clear the meaning of all models which are expressed in
the language. It has been used to investigate the behaviour and performance
of a diversity of distributed and concurrent systems [2, 3, 4, 5, 6, 7].

Constructing performance models of distributed systems is a worthwhile
activity. Distributed systems often have designs which are both complex and
novel. An ill-considered design decision can lead to an implementation which
fails to achieve planned levels of service or has unnecessarily high running
costs.

As is the case for other performance modelling notations, PEPA can be
applied either prospectively to assess the viability of a candidate design for a
yet-to-be-constructed system or retrospectively to provide insight into a fully
functional operation. Our novel contribution in this paper is to show how the
PEPA language could be extended with syntactic support for the description



of enhancements to models which reflect enhancements to the system under
study. We use the term features to describe these enhancements to both
systems and models, in keeping with the use of this term in the telecommu-
nications industry and in software development. With this extension, the
PEPA language can more easily be used throughout the entire lifetime of a
complex distributed system, tracking adaptive and corrective maintenance
in a formal setting.

Improving the suitability of the PEPA language for modelling complex
systems is a useful extension. The difficulty in computer system development
stems from the desire to create sophisticated and comprehensive products.
These are constructed piece by piece and are subject to many unpredictable
revisions over time. This is our motivation for considering a formal means
of expressing the addition of new features to an exisiting system. The fact
that a system has interesting performance qualities which are worth investi-
gating via the construction and analysis of system models does not make it
impervious to modifications and the addition of new features.

One way to address the problem of modelling the addition of features is
to modify the extant system description in such a way that the new feature
is incorporated or interwoven into the model description. This might at first
seem to be an attractive option since it does not require any modification
to the existing modelling language which was used to describe the original
system. The modeller can simply think that they are only constructing a
model of a more complex system, namely the one which includes the added
feature. However, this approach has the disadvantage that it reduces the
intellectual leverage which the identification of features gives both to system
designers and system builders. Firstly, the valuable documentation function
which features provide has not been exploited with the consequence that no
formal record of the change history of the system is being created. Secondly,
the dependency of the added feature upon components of the existing system
will be unclear. Effectively, all of the existing system description has been
considered to be essential to the description of the new feature. It is not
usual that this is the case in practice.

We adopt the principle that feature descriptions require a different form of
expression from system descriptions. Particularly, their descriptions should
make clear the dependencies of components of the existing system. This
places a demand upon our modelling language to provide some distinctive
syntactic support for the formal expression of features. Other authors have
also argued that the addition of a feature construct to an existing modelling
language is the right method by which to make progress in this problem [8, 9].



2 Design of the feature construct

PEPA is a small language with essential, simple combinators. A description
appears in Appendix A. Briefly, PEPA components perform timed activities.
Each PEPA model defines a labelled multi-transition system which can be
read as a Continuous Time Markov Chain (CTMC) by ignoring the activity
names which label the arcs from one state to another.

A feature construct for PEPA must add value without incurring unneces-
sary loss of simplicity. (The feature construct can itself be seen as a feature
which is being added to the existing PEPA language. Many of the good prac-
tices which are applied when adding functional features to software systems
have their analogues here where we are adding a model structuring feature
to an existing modelling language.)

Following [8], we consider that a feature construct should describe features
formally as self-contained units of functionality. It should be possible to
consider features in isolation, without complete knowledge of the system to
which they are being added. A feature construct should be general-purpose,
allowing a number of different types of features to be added. However, it
should not allow undisciplined modifications which would be hard to reason
about or understand. This last requirement would rule out of consideration
as candidates a number of powerful, but low-level, macro-like operators.

In the particular setting of the PEPA modelling language we want a
feature construct which is applicable, general, clear and easy to explain. It
must have a formal definition. Two candidates present themselves as being
possibly suitable; re-binding and parametric definition.

2.1 Re-binding component definitions

PEPA is a compositional description language so in principle new features
could be installed by re-binding the definitions of key components. Such
an extension to the PEPA language would meet most of our criteria for a
feature construct. Re-binding definitions is a general-purpose concept and
it can certainly be described both formally and with clarity. Unfortunately,
it fails to meet our key criteria of applicability because it cannot describe
the most general case of making unforeseen extensions to an existing sys-
tem. The use of re-binding as a feature construct is only applicable in the
cases where the designers of the system have previously loaded the system
with re-progammable hooks. It is usual to describe such systems as feature-
ready because they have been designed in the anticipation of the addition of
new features in particular ways. Extensible software systems such as Web
browsers with a “plug-in” capability are an example of feature-ready systems.



2.2 Parametric component definitions

Our winning candidate for a feature construct for PEPA is the use of param-
eterised components. The parameters capture the dependency of the feature
on the existing system. By defining our new feature in terms of the existing
system, monitored for essential behaviour, we allow for system reconfigura-
tion and the introduction of new components.

3 Semantics of the feature construct

Simply put, we allow components to be parameterised by other components.
The parameterisation is first-order, that is we do not allow parameterised
components to be passed as parameters. More formally, parameters range
over PEPA expressions extended with formal parameter identifiers in ad-
dition to the identifiers used for PEPA constants. To preclude syntactic
ambiguity, we use the convention that if a constant appears in a formal pa-
rameter expression then it denotes the component bound to that constant
name and it is not a re-use of that identifier with another meaning in the
body of the parameterised component definition. Thus it is not possible to
make a hole in the scope of a component definition by re-using the identifier
of that component as the identifier of a formal parameter.

The operational definition of the feature construct presented in Figure 1
is built structurally from the transition relation on PEPA components (writ-
ten ——) and the transitions of parameterised components (written =—=).
The definition of the transition relation for PEPA components is in Figure 6
in Appendix A. The definition of the transition relation for parameterised
components is in Figure 2. It depends on the definition given in Figure 3 of
the judgement relation for contexts (written ).

3.1 Impose and treat

A useful separation of concerns in describing feature integration is the dis-
tinction between imposing new behaviour on the system and treating the
existing behaviour in a new way. In a state-based modelling approach such
as ours this divides into a concern in the former case that the system should
not reach certain states and in the later case that the system should not
perform certain activities.

In both cases there are two possibilities. Either the transition which the
existing system would perform has a matching transition in the transitions
of the parameterised component or it does not (written =~). In the cases
where there is a matching transition the new state of the system is dictated
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Impose

Treat

Figure 1: Semantics of the feature construct

by the parameterised component as () replaces P'. The effect of the Treat
rule is to replace an existing activity « by a new activity (.

It is easy to see that the expressiveness of the Treat rule subsumes that
of the Impose rule. When the metavariables « and 3 denote the same PEPA
activity and the metavariables s and ¢ denote the same PEPA rate then the
Treat rule expresses the same adaptation of the existing system behaviour
as the Impose rule. It is also easy to see that the Impose rule by itself is
not sufficient because it is not possible to prevent the exisiting system model
from performing its first activity. This is a limitation because we wish to be
able to impose new behaviour on any state of the exisiting system, even the
initial state. The Treat rule does not suffer from this limitation.

Since the Treat rule subsumes the Impose rule, and is applicable in more
situations, why then do we keep the Impose rule at all? The reason is that in
practice it gives the most convenient form of expression to new features. The
more general Treat rule would need to be used almost always to simulate the
Impose rule, so an additional rule seems to be worthwhile.
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Figure 2: Transition relation for parameterised definitions

3.2 Parameterised definitions

Parameterised components are used to express the intervention of the new
feature on the existing system. We use the dot notation to express overriding
state and activities and the subsequent evolution to a new parameterised
system. We use the plus notation in parameterised components to express
the option of monitoring a range of activities.
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Figure 3: The judgement relation for definition contexts

3.3 Contexts

We introduce definition contexts to explain the binding of actual component
parameters to formal parameter identifiers. Recalling the syntactic restric-
tion on formal parameter identifiers from Section 3 on page 4 we note that
contexts cannot contain re-definitions of identifiers of constants. The nota-
tion C, I = P therefore denotes a context C extended by the binding of an
identifier I to a component P. Such an expression can be used to judge
that the identifiers I and P both denote the same component. The no-
tation £ = P, L is used to denote a list of equalities beginning with one
between E and P and continuing with those in L.

4 Example

We present, here an example which serves only to help explain the use of the
feature construct, not to act as a compelling defense of the use of formal
notations in performance modelling. We consider first the very simple model
of a transmitter which transmits at rate ¢ to a receiver which receives data
at rate r. This transmission is conducted through the medium of a network
which passively cooperates with the transmitter and the receiver. This is the
meaning of the T symbol used in the occurrences of the transmit and receive
activities specified in the description of the network, that it is passive with
respect to these activities.

The feature which we add to this simple system is a new component
which monitors the network bandwidth which the transmitter has been able
to obtain and signals whenever this drops below a critical threshold. In this
circumstance the transmitter halves its transmission rate (for example, in a
multimedia application by sampling an analogue input signal at half of the
previous rate or in another application by applying data compression).
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Existing system

Transmitter % (tra, t). Transmitter
Receiver = (rec,r).Receiver
Network = (tra, T).Network'
Network' % (rec, T).Network
System £ Transmitter Dﬂ Network |><l Receiver

{rec}

Addition of monitoring feature

. def
Transmitter’ =

(tra, t/2). Transmitter’
Monitor (low, 1). Monitor'

Monitor' % (high, h).Monitor

def

SM (T ENPER) =

(low, 1).S(Monitor" || (Transmitter’ {E?}N {Bﬂ} R))
+

(high, h).S(Monitor || (Transmitter {[?5} N {Dﬂ} R))

d

System’ = S (Monitor || System)

Figure 4: Use of the feature construct

It is possible that the congestion on the network will subsequently reduce.
In this case the monitor will signal that it is suitable for the transmitter
to resume transmitting at the higher rate. The details of how the monitor
measures the consumption of the available bandwidth are abstracted away
in the model and the signals to switch between transmitting at the low rate
and the high rate are simply modelled by stochastic events with parameters [
and h respectively. From a performance modelling point of view, the effect of
adding the new feature is to turn a simple Markovian model into a Markov
modulated process. The new feature ensures that the correct Transmitter
component is used whenever the Monitor component changes state.



The fact that there was no planning for the subsequent addition of a mon-
itoring feature in the original model is reflected in the fact that the activities
which are of interest to the feature S() are the low and high activities which
are themselves newly added to the system via the Monitor component.

5 Future work

We have presented a method of describing additional features of a system
separately from the description of the system itself. As features are pro-
gressively added, the complexity of a system inevitably grows. One avenue
of future work is the investigation of the estimation of the additional com-
plexity which is brought to the system by the addition of a single feature.
Concretely, we could ask for a formula which computes how the size of the
state space of the extended system will increase as a function of the state
spaces of the systems which are used as actual parameters of parameterised
components.

Conclusions

If performance modelling notations and tools are to realise the valuable con-
tribution which they promise for the development of reliable and efficient
complex software systems they must provide support not only for the initial
design of systems but also for their correction, revision, and subsequent ex-
tension. We have shown how a new construct could be added to the PEPA
performance modelling language: parameterised components. The new con-
struct satisfies many of the desired goals of a feature construct and in addition
promotes structured whole-lifecycle performance modelling of complex soft-
ware systems. We have given the construct an operational semantics which
builds upon the existing semantics of PEPA. We have applied the construct
in a small case study.
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A Summary of the PEPA language

The PEPA language provides a small set of combinators. These allow lan-
guage terms to be constructed defining the behaviour of components, via the
activities they undertake and the interactions between them. The syntax
may be formally introduced by means of the grammar shown in Figure 5.

S = (sequential components)

(a,7).S (prefix)

| S+S (choice)

| Cs (constant)

P = (model components)

PP (cooperation)

| P/L (hiding)

| C (constant)
Figure 5: The syntax of PEPA

In the grammar S denotes a sequential component and P denotes a model
component which executes in parallel. C' stands for a constant which denotes
either a sequential or a model component, as defined by a defining equation.
C when subscripted with an S stands for constants which denote sequential
components. The component combinators, together with their names and
interpretations, are presented informally below.

Prefix: The basic mechanism for describing the behaviour of a system is to
give a component a designated first action using the prefix combinator,
denoted by a full stop. For example, the component («,r).S carries
out activity («,r), which has action type a and an exponentially dis-
tributed duration with parameter r, and it subsequently behaves as
S. Sequences of actions can be combined to build up a life cycle for a
component.

Choice: The life cycle of a sequential component may be more complex
than any behaviour which can be expressed using the prefix combinator
alone. The choice combinator captures the possibility of competition
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between different possible activities. The component P + () represents
a system which may behave either as P or as (). The activities of
both P and @) are enabled. The first activity to complete distinguishes
one of them: the other is discarded. The system will behave as the
derivative resulting from the evolution of the chosen component.

Constant: It is convenient to be able to assign names to patterns of be-
haviour associated with components. Constants are components whose
meaning is given by a defining equation.

Hiding: The possibility to abstract away some aspects of a component’s be-
haviour is provided by the hiding operator, denoted by the division sign
in P/L. Here, the set L of visible action types identifies those activities
which are to be considered internal or private to the component. These
activities are not visible to an external observer, nor are they accessi-
ble to other components for cooperation. Once an activity is hidden it
only appears as the unknown type 7; the rate of the activity, however,
remains unaffected.

Cooperation: Most systems are comprised of several components which
interact. In PEPA direct interaction, or cooperation, between compo-
nents is represented by the butterfly combinator. The set which is used
as the subscript to the cooperation symbol determines those activities
on which the cooperands are forced to synchronise. Thus the cooper-
ation combinator is in fact an indexed family of combinators, one for
each possible cooperation set L (we write P || Q as an abbreviation for
P D§ @ when L is empty). When cooperation is not imposed, namely
for action types not in L, the components proceed independently and
concurrently with their enabled activities. However if a component en-
ables an activity whose action type is in the cooperation set it will not
be able to proceed with that activity until the other component also
enables an activity of that type. The two components then proceed to-
gether to complete the shared activity. The rate of the shared activity
may be altered to reflect the work carried out by both components to
complete the activity.

In some cases, when an activity is known to be carried out in coopera-
tion with another component, a component may be passive with respect
to that activity. This means that the rate of the activity is left unspec-
ified and is determined upon cooperation, by the rate of the activity in
the other component. All passive actions must be synchronised in the
final model.
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Model components capture the structure of the system in terms of its static
components. The dynamic behaviour of the system is represented by the
evolution of these components, either individually or in cooperation. The
form of this evolution is governed by a set of formal rules which give an op-
erational semantics of PEPA terms. The semantic rules, in the structured
operational style of Plotkin, are presented in Figure 6 without further com-
ment; the interested reader is referred to [1] for more details. The rules are
read as follows: if the transition(s) above the inference line can be inferred,
then we can infer the transition below the line. The notation 72 which is
used in the third cooperation rule denotes the apparent rate of o in F.

Thus, as in classical process algebra, the semantics of each term in PEPA
is given via a labelled multi-transition system—the multiplicities of arcs are
significant. In the transition system a state corresponds to each syntactic
term of the language, or derivative, and an arc represents the activity which
causes one derivative to evolve into another. The complete set of reachable
states is termed the derivative set of a model and these form the nodes of
the derivation graph formed by applying the semantic rules exhaustively.

The timing aspects of components’ behaviour are not represented in the
states of the derivation graph, but on each arc as the parameter of the neg-
ative exponential distribution governing the duration of the corresponding
activity. The interpretation is as follows: when enabled an activity a = (o, 1)
will delay for a period sampled from the negative exponential distribution
with parameter r. If several activities are enabled concurrently, either in com-
petition or independently, we assume that a race condition exists between
them. Thus the activity whose delay before completion is the least will be the
one to succeed. The evolution of the model will determine whether the other
activities have been aborted or simply interrupted by the state change. In
either case the memoryless property of the negative exponential distribution
eliminates the need to record the previous execution time.

When two components carry out an activity in cooperation the rate of
the shared activity will reflect the working capacity of the slower component.
We assume that each component has a capacity for performing an activity
type a, which cannot be enhanced by working in cooperation (it still must
carry out its own work), unless the component is passive with respect to that
activity type. For a component P and an action type «, this capacity is
termed the apparent rate of o in P. It is the sum of the rates of the a type
activities enabled in P. The apparent rate of o in a cooperation between P
and () over « will be the minimum of the apparent rate of a in P and the
apparent rate of « in ().

The derivation graph is the basis of the underlying Continuous Time
Markov Chain (CTMC) which is used to derive performance measures from
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Prefix

(a,r)
(a,7).E —— FE

Cooperation
b ﬂ) E F ﬂ F'
(a,r) (a @é L) (@) (a Q_f L)
EBLQF—>E’B§F EBLQF—>E[>§F’
E m E'F m} F
ryr
(a,R) (a € L) where R = r_;r_;min(rg’ 7“5)

E|>L<]F—>E’I>L<]FI

Choice
(a,r) (ar)
E——F Y
(er) (a,r)
Hiding
(a,r) (o)
E —_— EI E 7 E,
(a,r) (Oé ¢ L) ) (Oé € L)
E/L—— FE'/L /L L
Constant
E (ai; El def
o) o (A= E)
A g

Figure 6: The operational semantics of PEPA
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a PEPA model. The graph is systematically reduced to a form where it can
be treated as the state transition diagram of the underlying CTMC. Each
derivative is then a state in the CTMC. The transition rate between two
derivatives P and () in the derivation graph is the rate at which the system
changes from behaving as component P to behaving as ). It is denoted by
¢(P,Q) and is the sum of the activity rates labelling arcs connecting node
P to node ). In order for the CTMC to be ergodic its derivation graph
must be strongly connected. Some necessary conditions for ergodicity, at
the syntactic level of a PEPA model, have been defined [1]. These syntactic
conditions are imposed by the grammar introduced earlier.

A.1 Availability of the modelling tools

The PEPA modelling tools, together with user documentation and papers
and example PEPA models are available from the PEPA Web page at the
address http://www.dcs.ed.ac.uk/pepa.
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